1
|
Němcová K, Lhotský O, Stavělová M, Komárek M, Semerád J, Filipová A, Najmanová P, Cajthaml T. Effects of different organic substrate compositions on the decontamination of aged PAH-polluted soils through outdoor co-composting. CHEMOSPHERE 2024; 362:142580. [PMID: 38866336 DOI: 10.1016/j.chemosphere.2024.142580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/25/2024] [Accepted: 06/08/2024] [Indexed: 06/14/2024]
Abstract
The effects of different organic substrate compositions on the efficiency of outdoor co-composting as a bioremediation technology for decontaminating soil polluted by polycyclic aromatic hydrocarbons (PAHs) were investigated. Four different substrate mixtures and two different aged PAH-contaminated soils were used in a semi-pilot-scale experiment that lasted nearly 700 days. The two soils (A and B) differed concerning both the initial concentrations of the Ʃ16 US EPA PAHs (5926 vs. 369 mg kg-1, respectively) and the type of predominant PAH group by molecular weight. The experiments revealed that while the composition of the organic substrate had an impact on the rate of PAH degradation, it did not significantly influence the final extent of PAH degradation. Notably, the organic substrate consisting of green waste and wood chips (GW) was found to facilitate the most rapid rate of PAH degradation (first-order rate constant k = 0.033 ± 0.000 d-1 with soil A over the initial 42 days of the experiment and k = 0.036 ± 0.000 d-1 with soil B over the initial 56 days). Despite the differences in organic substrate compositions and types of soil being treated, PAH degradation levels exceeded at least 95% in all the treatments after more than 680 days of co-composting. Regardless of the composition, the removal of low- and medium- molecular-weight (2-4 rings) PAHs was nearly complete by the end of the experiment. Furthermore, high-molecular-weight PAHs (5 rings and more) were significantly degraded during co-composting, with reductions ranging from 54% to 79% in soil A and from 59% to 68% in soil B. All composts were dominated by Proteobacteria, Firmicutes, and Actinobacteria, with significant differences in abundance between soils. Genera with PAH degradation potentials were detected in all samples. The results of a battery of toxicity tests showed that there was almost no toxicity associated with the final composts.
Collapse
Affiliation(s)
- Kateřina Němcová
- Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, CZ-128 01, Prague 2, Czech Republic; Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20, Prague 4, Czech Republic
| | - Ondřej Lhotský
- Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, CZ-128 01, Prague 2, Czech Republic; Dekonta, a.s., Dřetovice 109, CZ-273 42, Stehelčeves, Czech Republic
| | - Monika Stavělová
- AECOM CZ s.r.o., Trojská 92, CZ-171 00, Prague 7, Czech Republic
| | - Michael Komárek
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, CZ-165 00, Prague - Suchdol, Czech Republic
| | - Jaroslav Semerád
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20, Prague 4, Czech Republic
| | - Alena Filipová
- Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, CZ-128 01, Prague 2, Czech Republic; Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20, Prague 4, Czech Republic
| | - Petra Najmanová
- Dekonta, a.s., Dřetovice 109, CZ-273 42, Stehelčeves, Czech Republic
| | - Tomáš Cajthaml
- Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, CZ-128 01, Prague 2, Czech Republic; Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20, Prague 4, Czech Republic.
| |
Collapse
|
2
|
Sankhyan S, Kumar P, Pandit S, Kumar S, Ranjan N, Ray S. Biological machinery for the production of biosurfactant and their potential applications. Microbiol Res 2024; 285:127765. [PMID: 38805980 DOI: 10.1016/j.micres.2024.127765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 05/02/2024] [Accepted: 05/12/2024] [Indexed: 05/30/2024]
Abstract
The growing biotechnology industry has focused a lot of attention on biosurfactants because of several advantages over synthetic surfactants. These benefits include worldwide public health, environmental sustainability, and the increasing demand from sectors for environmentally friendly products. Replacement with biosurfactants can reduce upto 8% lifetime CO2 emissions avoiding about 1.5 million tons of greenhouse gas released into the atmosphere. Therefore, the demand for biosurfactants has risen sharply occupying about 10% (∼10 million tons/year) of the world production of surfactants. Biosurfactants' distinct amphipathic structure, which is made up of both hydrophilic and hydrophobic components, enables these molecules to perform essential functions in emulsification, foam formation, detergency, and oil dispersion-all of which are highly valued characteristic in a variety of sectors. Today, a variety of biosurfactants are manufactured on a commercial scale for use in the food, petroleum, and agricultural industries, as well as the pharmaceutical and cosmetic industries. We provide a thorough analysis of the body of knowledge on microbial biosurfactants that has been gained over time in this research. We also discuss the benefits and obstacles that need to be overcome for the effective development and use of biosurfactants, as well as their present and future industrial uses.
Collapse
Affiliation(s)
- Shivangi Sankhyan
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Prasun Kumar
- MNR Foundation for Research & Innovations (MNR-FRI), MNR Medical College & Hospital, MNR Nagar, Fasalwadi, Sangareddy, Telangana 502294, India
| | - Soumya Pandit
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh 201310, India; Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
| | - Sanjay Kumar
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Nishant Ranjan
- University Center for Research and Development, Department of Mechanical Engineering, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Subhasree Ray
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh 201310, India.
| |
Collapse
|
3
|
Navina BK, Velmurugan NK, Senthil Kumar P, Rangasamy G, Palanivelu J, Thamarai P, Vickram AS, Saravanan A, Shakoor A. Fungal bioremediation approaches for the removal of toxic pollutants: Mechanistic understanding for biorefinery applications. CHEMOSPHERE 2024; 350:141123. [PMID: 38185426 DOI: 10.1016/j.chemosphere.2024.141123] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/30/2023] [Accepted: 01/03/2024] [Indexed: 01/09/2024]
Abstract
Pollution is a global menace that poses harmful effects on all the living ecosystems and to the Earth. As years pass by, the available and the looming rate of pollutants increases at a faster rate. Although many treatments and processing strategies are waged for treating such pollutants, the by-products and the wastes or drain off generated by these treatments further engages in the emission of hazardous waste. Innovative and long-lasting solutions are required to address the urgent global issue of hazardous pollutant remediation from contaminated environments. Myco-remediation is a top-down green and eco-friendly tool for pollution management. It is a cost-effective and safer practice of converting pernicious substances into non-toxic forms by the use of fungi. But these pollutants can be transformed into useable products along with multiple benefits for the environment such as sequestration of carbon emissions and also to generate high valuable bioactive materials that fits as a sustainable economic model. The current study has examined the possible applications of fungi in biorefineries and their critical role in the transformation and detoxification of pollutants. The paper offers important insights into using fungal bioremediation for both economically and environmentally sound solutions in the domain of biorefinery applications by combining recent research findings.
Collapse
Affiliation(s)
- Bala Krishnan Navina
- Department of Biotechnology, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, 600062, India
| | - Nandha Kumar Velmurugan
- Department of Biotechnology, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, 600062, India
| | - P Senthil Kumar
- Centre for Pollution Control and Environmental Engineering, School of Engineering and Technology, Pondicherry University, Kalapet, Puducherry, 605014, India.
| | - Gayathri Rangasamy
- School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| | - Jeyanthi Palanivelu
- Department of Biotechnology, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, 600062, India
| | - P Thamarai
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - A S Vickram
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - A Saravanan
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - Awais Shakoor
- Hawkesbury Institute for the Environment, West Sydney University, Penrith, NSW, 2751, Australia
| |
Collapse
|
4
|
Zheng X, Chen F, Zhu Y, Zhang X, Li Z, Ji J, Wang G, Guan C. Laccase as a useful assistant for maize to accelerate the phenanthrene degradation in soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:4848-4863. [PMID: 38105330 DOI: 10.1007/s11356-023-31515-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
Polycyclic aromatic hydrocarbon (PAH) pollution has attracted much attention due to their wide distribution in soil environment and serious harm to human health. In order to establish an efficient and eco-friendly technology for remediation of PAH-contaminated soil, phytoremediation utilizing maize assisted with enzyme remediation was explored in this study. The results showed that the participation of laccase could promote the degradation of phenanthrene (PHE) from soil and significantly reduce the accumulation of PHE in maize. The degradation efficiency of PHE in soil could reach 77.19% under laccase-assisted maize remediation treatment, while the accumulation of PHE in maize roots and leaves decreased by 41.23% and 74.63%, respectively, compared to that without laccase treatment, after 24 days of maize cultivation. Moreover, it was found that laccase addition shifted the soil microbial community structure and promoted the relative abundance of some PAH degrading bacteria, such as Pseudomonas and Sphingomonas. In addition, the activities of some enzymes that were involved in PAH degradation process and soil nutrient cycle increased with the treatment of laccase enzyme. Above all, the addition of laccase could not only improve the removal efficiency of PHE in soil, but also alter the soil environment and reduce the accumulation of PHE in maize. This study provided new perspective for exploring the efficiency of the laccase-assisted maize in the remediation of contaminated soil, evaluating the way for reducing the risk of secondary pollution of plants in the phytoremediation process.
Collapse
Affiliation(s)
- Xiaoyan Zheng
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Fenyan Chen
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Yalan Zhu
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Xiaoge Zhang
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Zhiman Li
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Jing Ji
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Gang Wang
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Chunfeng Guan
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China.
| |
Collapse
|
5
|
Chen X, Zhu Y, Chen F, Li Z, Zhang X, Wang G, Ji J, Guan C. The role of microplastics in the process of laccase-assisted phytoremediation of phenanthrene-contaminated soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167305. [PMID: 37742959 DOI: 10.1016/j.scitotenv.2023.167305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/16/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are highly toxic organic pollutants widely distributed in terrestrial environments and laccase was considered as an effective enzyme in PAHs bioremediation. However, laccase-assisted phytoremediation of PAHs-contaminated soil has not been reported. Moreover, the overuse of plastic films in agriculture greatly increased the risk of co-existence of PAHs and microplastics in soil. Microplastics can adsorb hydrophobic organics, thus altering the bioavailability of PAHs and ultimately affecting the removal of PAHs from soil. Therefore, this study aimed to evaluate the efficiency of laccase-assisted maize (Zea mays L.) in the remediation of phenanthrene (PHE)-contaminated soil and investigate the effect of microplastics on this remediation process. The results showed that the combined application of laccase and maize achieved a removal efficiency of 83.47 % for soil PHE, and laccase significantly reduced the accumulation of PHE in maize. However, microplastics significantly inhibited the removal of soil PHE (10.88 %) and reduced the translocation factor of PHE in maize (87.72 %), in comparison with PHE + L treatment. Moreover, microplastics reduced the laccase activity and the relative abundance of some PAHs-degrading bacteria in soil. This study provided an idea for evaluating the feasibility of the laccase-assisted plants in the remediation of PAHs-contaminated soil, paving the way for reducing the risk of secondary pollution in the process of phytoremediation.
Collapse
Affiliation(s)
- Xiancao Chen
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Yalan Zhu
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Fenyan Chen
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Zhiman Li
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Xiaoge Zhang
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Gang Wang
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Jing Ji
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Chunfeng Guan
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China.
| |
Collapse
|
6
|
Mou B, Gong G, Wu S. Biodegradation mechanisms of polycyclic aromatic hydrocarbons: Combination of instrumental analysis and theoretical calculation. CHEMOSPHERE 2023; 341:140017. [PMID: 37657699 DOI: 10.1016/j.chemosphere.2023.140017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/18/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a common class of petroleum hydrocarbons, widely encountered in both environment and industrial pollution sources. Owing to their toxicity, environmental persistence, and potential bioaccumulation properties, a mounting interest has been kindled in addressing the remediation of PAHs. Biodegradation is widely employed for the removal and remediation of PAHs due to its low cost, lack of second-contamination and ease of operation. This paper reviews the degradation efficiency of degradation and the underlying mechanisms exhibited by algae, bacteria, and fungi in remediation. Additionally, it delved into the application of modern instrumental analysis techniques and theoretical investigations in the realm of PAH degradation. Advanced instrumental analysis methods such as mass spectrometry provide a powerful tool for identifying intermediates and metabolites throughout the degradation process. Meanwhile, theoretical calculations could guide the optimization of degradation processes by revealing the reaction mechanisms and energy changes in PAH degradation. The combined use of instrumental analysis and theoretical calculations allows for a comprehensive understanding of the degradation mechanisms of PAHs and provides new insights and approaches for the development of environmental remediation technologies.
Collapse
Affiliation(s)
- Bolin Mou
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Guangyi Gong
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Shimin Wu
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
7
|
Kaur R, Gupta S, Tripathi V, Chauhan A, Parashar D, Shankar P, Kashyap V. Microbiome based approaches for the degradation of polycyclic aromatic hydrocarbons (PAHs): A current perception. CHEMOSPHERE 2023; 341:139951. [PMID: 37652248 DOI: 10.1016/j.chemosphere.2023.139951] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/02/2023] [Accepted: 08/22/2023] [Indexed: 09/02/2023]
Abstract
Globally, polycyclic aromatic hydrocarbons (PAHs) pollution is primarily driven by their release into the air through various combustion processes, including burning fossil fuels such as coal, oil, and gas in motor vehicles, power plants, and industries, as well as burning organic matter like wood, tobacco, and food in fireplaces, cigarettes, and grills. Apart from anthropogenic pollution sources, PAHs also occur naturally in crude oil, and their potential release during oil extraction, refining processes, and combustion further contributes to contamination and pollution concerns. PAHs are resistant and persistent in the environment because of their inherent features, viz., heterocyclic aromatic ring configurations, hydrophobicity, and thermostability. A wide range of microorganisms have been found to be effective degraders of these recalcitrant contaminants. The presence of hydrocarbons as a result of numerous anthropogenic activities is one of the primary environmental concerns. PAHs are found in soil, water, and the air, making them ubiquitous in nature. The presence of PAHs in the environment creates a problem, as their presence has a detrimental effect on humans and animals. For a variety of life forms, PAH pollutants are reported to be toxic, carcinogenic, mutation-inducing, teratogenic, and immune toxicogenics. Degradation of PAHs via biological activity is an extensively used approach in which diverse microorganisms (fungal, algal, clitellate, and protozoan) and plant species and their derived composites are utilized as biocatalysts and biosurfactants. Some microbes have the ability to transform and degrade these PAHs, allowing them to be removed from the environment. The goal of this review is to provide a critical overview of the existing understanding of PAH biodegradation. It also examines current advances in diverse methodologies for PAH degradation in order to shed light on fundamental challenges and future potential.
Collapse
Affiliation(s)
- Rasanpreet Kaur
- Department of Biotechnology, GLA University, Mathura, 281406, Uttar Pradesh, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, 281406, Uttar Pradesh, India.
| | - Vishal Tripathi
- Department of Biotechnology, Graphic Era (Deemed to Be University), Dehradun 248002, Uttarakhand, India
| | - Arjun Chauhan
- Department of Biotechnology, GLA University, Mathura, 281406, Uttar Pradesh, India
| | - Deepak Parashar
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Prem Shankar
- Department of Neurobiology, The University of Texas Medical Branch, 301 University Blvd, Galveston, TX-77555, USA
| | - Vivek Kashyap
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas, 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA.
| |
Collapse
|
8
|
Yang J, Lu J, Yang Y, Tian K, Kong X, Tian X, Scheu S. Earthworms neutralize the influence of components of particulate pollutants on soil extracellular enzymatic functions in subtropical forests. PeerJ 2023; 11:e15720. [PMID: 37551350 PMCID: PMC10404396 DOI: 10.7717/peerj.15720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 06/16/2023] [Indexed: 08/09/2023] Open
Abstract
Human activities are increasing the input of atmospheric particulate pollutants to forests. The components of particulate pollutants include inorganic anions, base cations and hydrocarbons. Continuous input of particulate pollutants may affect soil functioning in forests, but their effects may be modified by soil fauna. However, studies investigating how soil fauna affects the effects of particulate pollutants on soil functioning are lacking. Here, we investigated how earthworms and the particulate components interact in affecting soil enzymatic functions in a deciduous (Quercus variabilis) and a coniferous (Pinus massoniana) forest in southeast China. We manipulated the addition of nitrogen (N, ammonium nitrate), sodium (Na, sodium chloride) and polycyclic aromatic hydrocarbons (PAHs, five mixed PAHs) in field mesocosms with and without Eisenia fetida, an earthworm species colonizing forests in eastern China. After one year, N and Na addition increased, whereas PAHs decreased soil enzymatic functions, based on average Z scores of extracellular enzyme activities. Earthworms generally stabilized soil enzymatic functions via neutralizing the effects of N, Na and PAHs addition in the deciduous but not in the coniferous forest. Specifically, earthworms neutralized the effects of N and Na addition on soil pH and the effects of the addition of PAHs on soil microbial biomass. Further, both particulate components and earthworms changed the correlations among soil enzymatic and other ecosystem functions in the deciduous forest, but the effects depended on the type of particulate components. Generally, the effects of particulate components and earthworms on soil enzymatic functions were weaker in the coniferous than the deciduous forest. Overall, the results indicate that earthworms stabilize soil enzymatic functions in the deciduous but not the coniferous forest irrespective of the type of particulate components. This suggests that earthworms may neutralize the influence of atmospheric particulate pollutants on ecosystem functions, but the neutralization may be restricted to deciduous forests.
Collapse
Affiliation(s)
- Junbo Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu Province, China
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Lower Saxony, Germany
| | - Jingzhong Lu
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Lower Saxony, Germany
| | - Yinghui Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu Province, China
| | - Kai Tian
- College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, Henan Province, China
| | - Xiangshi Kong
- Key Laboratory for Ecotourism of Hunan Province, School of Tourism and Management Engineering, Jishou University, Jishou, Hunan Province, China
| | - Xingjun Tian
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu Province, China
- College of Eco-Environmental Engineering, Qinghai University, Xining, Qinghai Province, China
| | - Stefan Scheu
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Lower Saxony, Germany
- Centre of Biodiversity and Sustainable Land Use, University of Göttingen, Göttingen, Lower Saxony, Germany
| |
Collapse
|
9
|
Komorowicz M, Janiszewska-Latterini D, Przybylska-Balcerek A, Stuper-Szablewska K. Fungal Biotransformation of Hazardous Organic Compounds in Wood Waste. Molecules 2023; 28:4823. [PMID: 37375379 DOI: 10.3390/molecules28124823] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/11/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
A diverse spectrum of organisms, such as fungi, bacteria, and actinomycetes, can degrade and transform organic matter, including wood, into valuable nutrients. A sustainable economy has the goal of efficiently using waste as raw materials, and in this optic, it uses biological preparations more and more often, supporting the decomposition of lignocellulosic waste. With reference to wood wastes, which are produced in a substantial amount by the forest and wood industry, one of the possibilities to biodegrade such lignocellulosic material is the composting process. In particular, microbiological inoculum containing dedicated fungi can contribute to the biodegradation of wood waste, as well as the biotransformation of substances from the protection of wood, such as pentachlorophenol (PCP), lindane (hexachlorobenzene) and polycyclic aromatic hydrocarbons (PAHs). The purpose of this research was to produce a literature review in terms of the selection of decay fungi that could potentially be used in toxic biotransformation unions. The findings of the literature review highlighted how fungi such as Bjerkandera adusta, Phanerochaete chrysosporium, and Trametes versicolor might be ingredients of biological consortia that can be effectively applied in composting wood waste containing substances such as pentachlorophenol, lindane, and polycyclic aromatic hydrocarbons (PAHs).
Collapse
Affiliation(s)
- Magdalena Komorowicz
- Łukasiewicz Research Network-Poznan Institute of Technology, 60-654 Poznan, Poland
- Faculty of Forestry and Wood Technology, Department of Chemistry, Poznan University of Life Sciences, 60-628 Poznan, Poland
| | | | - Anna Przybylska-Balcerek
- Faculty of Forestry and Wood Technology, Department of Chemistry, Poznan University of Life Sciences, 60-628 Poznan, Poland
| | - Kinga Stuper-Szablewska
- Faculty of Forestry and Wood Technology, Department of Chemistry, Poznan University of Life Sciences, 60-628 Poznan, Poland
| |
Collapse
|
10
|
Maqsood Q, Sumrin A, Waseem R, Hussain M, Imtiaz M, Hussain N. Bioengineered microbial strains for detoxification of toxic environmental pollutants. ENVIRONMENTAL RESEARCH 2023; 227:115665. [PMID: 36907340 DOI: 10.1016/j.envres.2023.115665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/05/2023] [Accepted: 03/08/2023] [Indexed: 05/08/2023]
Abstract
Industrialization and other anthropogenic human activities pose significant environmental risks. As a result of the hazardous pollution, numerous living organisms may suffer from undesirable diseases in their separate habitats. Bioremediation, which removes hazardous compounds from the environment using microbes or their biologically active metabolites, is one of the most successful remediation approaches. According to the United Nations Environment Program (UNEP), deteriorating soil health negatively impacts food security and human health over time. Soil health restoration is critical right now. Microbes are widely known for their importance in cleaning up toxins present in the soil, such as heavy metals, pesticides, and hydrocarbons. However, the capacity of local bacteria to digest these pollutants is limited, and the process takes an extended time. Genetically modified organisms (GMOs), whose altered metabolic pathways promote the over-secretion of a variety of proteins favorable to the bioremediation process, can speed up the breakdown process. The need for remediation procedures, degrees of soil contamination, site circumstances, broad adoptions, and numerous possibilities occurring at various cleaning stages are all studied in detail. Massive efforts to restore contaminated soils have also resulted in severe issues. This review focuses on the enzymatic removal of hazardous pollutants from the environment, such as pesticides, heavy metals, dyes, and plastics. There are also in-depth assessments of present discoveries and future plans for efficient enzymatic degradation of hazardous pollutants.
Collapse
Affiliation(s)
- Quratulain Maqsood
- Center for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Aleena Sumrin
- Center for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Rafia Waseem
- Center for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Maria Hussain
- Center for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Mehwish Imtiaz
- Center for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Nazim Hussain
- Center for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan.
| |
Collapse
|
11
|
Hidalgo J, Epelde L, Anza M, Becerril JM, Garbisu C. Mycoremediation with Agaricus bisporus and Pleurotus ostreatus growth substrates versus phytoremediation with Festuca rubra and Brassica sp. for the recovery of a Pb and γ-HCH contaminated soil. CHEMOSPHERE 2023; 327:138538. [PMID: 36996916 DOI: 10.1016/j.chemosphere.2023.138538] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
Mycoremediation with mushroom growth substrates can be used for the recovery of mixed contaminated soils due to the benefits derived from the physicochemical characteristics of the substrates, the activity of extracellular enzymes secreted by the fungi, and the presence of the fungal mycelia. The objective of this work was to assess the potential of Agaricus bisporus and Pleurotus ostreatus growth substrates (inoculated mushroom substrates vs. spent mushroom substrates) for the mycoremediation of soils co-contaminated with lead and lindane (γ-HCH). We compared the efficiency of these mycoremediation strategies with the phytoremediation with Brassica spp. Or Festuca rubra plants, in terms of both reduction in contaminant levels and enhancement of soil health. An enhanced soil health was achieved as a result of the application of mycoremediation treatments, compared to phytoremediation and control (untreated) treatments. The application of P. ostreatus inoculated substrate led to the most significant reduction in γ-HCH concentration (up to 88.9% compared to corresponding controls). In the presence of inoculated mushroom substrate, P. ostreatus fruiting bodies extracted more Pb than Brassica spp. Or F. rubra plants. Mycoremediation with P. ostreatus growth substrates appears a promising strategy for the recovery of the health of soils co-contaminated with Pb and γ-HCH.
Collapse
Affiliation(s)
- June Hidalgo
- Department of Conservation of Natural Resources, Soil Microbial Ecology Group, NEIKER - Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Bizkaia, P812, 48160, Derio, Spain.
| | - Lur Epelde
- Department of Conservation of Natural Resources, Soil Microbial Ecology Group, NEIKER - Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Bizkaia, P812, 48160, Derio, Spain
| | - Mikel Anza
- Department of Conservation of Natural Resources, Soil Microbial Ecology Group, NEIKER - Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Bizkaia, P812, 48160, Derio, Spain
| | - José M Becerril
- Department of Plant Biology and Ecology, University of the Basque Country, UPV/EHU, P.O. Box 644, 48080, Bilbao, Spain
| | - Carlos Garbisu
- Department of Conservation of Natural Resources, Soil Microbial Ecology Group, NEIKER - Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Bizkaia, P812, 48160, Derio, Spain
| |
Collapse
|
12
|
Mishra P, Kiran NS, Romanholo Ferreira LF, Yadav KK, Mulla SI. New insights into the bioremediation of petroleum contaminants: A systematic review. CHEMOSPHERE 2023; 326:138391. [PMID: 36933841 DOI: 10.1016/j.chemosphere.2023.138391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/16/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
Petroleum product is an essential resource for energy, that has been exploited by wide range of industries and regular life. A carbonaceous contamination of marine and terrestrial environments caused by errant runoffs of consequential petroleum-derived contaminants. Additionally, petroleum hydrocarbons can have adverse effects on human health and global ecosystems and also have negative demographic consequences in petroleum industries. Key contaminants of petroleum products, primarily includes aliphatic hydrocarbons, benzene, toluene, ethylbenzene, and xylene (BTEX), polycyclic aromatic hydrocarbons (PAHs), resins, and asphaltenes. On environmental interaction, these pollutants result in ecotoxicity as well as human toxicity. Oxidative stress, mitochondrial damage, DNA mutations, and protein dysfunction are a few key causative mechanisms behind the toxic impacts. Henceforth, it becomes very evident to have certain remedial strategies which could help on eliminating these xenobiotics from the environment. This brings the efficacious application of bioremediation to remove or degrade pollutants from the ecosystems. In the recent scenario, extensive research and experimentation have been implemented towards bio-benign remediation of these petroleum-based pollutants, aiming to reduce the load of these toxic molecules in the environment. This review gives a detailed overview of petroleum pollutants, and their toxicity. Methods used for degrading them in the environment using microbes, periphytes, phyto-microbial interactions, genetically modified organisms, and nano-microbial remediation. All of these methods could have a significant impact on environmental management.
Collapse
Affiliation(s)
- Prabhakar Mishra
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, 560064, Karnataka, India.
| | - Neelakanta Sarvashiva Kiran
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, 560064, Karnataka, India
| | - Luiz Fernando Romanholo Ferreira
- Graduate Program in Process Engineering, Tiradentes University, Av. Murilo Dantas, 300, Farolândia, Aracaju, Sergipe, 49032-490, Brazil
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Ratibad, Bhopal, 462044, India
| | - Sikandar I Mulla
- Department of Biochemistry, School of Allied Health Sciences, REVA University, Bengaluru, 560064, Karnataka, India.
| |
Collapse
|
13
|
Sharma P, Bano A, Yadav S, Singh SP. Biocatalytic Degradation of Emerging Micropollutants. Top Catal 2023. [DOI: 10.1007/s11244-023-01790-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
14
|
Bokade P, Bajaj A. Molecular advances in mycoremediation of polycyclic aromatic hydrocarbons: Exploring fungal bacterial interactions. J Basic Microbiol 2023; 63:239-256. [PMID: 36670077 DOI: 10.1002/jobm.202200499] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/15/2022] [Accepted: 12/18/2022] [Indexed: 01/22/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous high global concern environmental pollutants and tend to bioaccumulate due to hydrophobic properties. These xenobiotics, having variable concentrations along different matrices, gradually undergo various physical, chemical, and biological transformation processes. Myco-remediation aids accelerated degradation by effectively transforming complex ring structures to oxidized/hydroxylated intermediates, which can further funnel to bacterial degradation pathways. Exploitation of such complementing fungal-bacterial enzymatic activity can overcome certain limitations of incomplete bioremediation process. Furthermore, high-throughput molecular methods can be employed to unveil community structure, taxon abundance, coexisting community interactions, and metabolic pathways under stressed conditions. The present review critically discusses the role of different fungal phyla in PAHs biotransformation and application of fungal-bacterial cocultures for enhanced mineralization. Moreover, recent advances in bioassays for PAH residue detection, monitoring, developing xenobiotics stress-tolerant strains, and application of fungal catabolic enzymes are highlighted. Application of next-generation sequencing methods to reveal complex ecological networks based on microbial community interactions and data analysis bias in performing such studies is further discussed in detail. Conclusively, the review underscores the application of mixed-culture approach by critically highlighting in situ fungal-bacterial community nexus and its role in complete mineralization of PAHs for the management of contaminated sites.
Collapse
Affiliation(s)
- Priyanka Bokade
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Abhay Bajaj
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
15
|
Hadibarata T, Kristanti RA, Bilal M, Al-Mohaimeed AM, Chen TW, Lam MK. Microbial degradation and transformation of benzo[a]pyrene by using a white-rot fungus Pleurotus eryngii F032. CHEMOSPHERE 2022; 307:136014. [PMID: 35970216 DOI: 10.1016/j.chemosphere.2022.136014] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/29/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are environmentally recalcitrant contaminants formed from naturally or incomplete combustion of organic materials and some of them are difficult to degrade due to their hydrophobicity and persistency. Benzo [a]pyrene (BaP), is one of PAHs that having five fused benzene and reported as mutagenic, carcinogenic and teratogenic compounds. Biodegradation is one of promising techniques due to its relatively low economic cost and microorganism is a natural capacity to consume hydrocarbons. In this investigation, Pleurotus eryngii F032 was grown in 20 mL of modified mineral salt broth (MSB) supplemented with BaP under static and agitated culture. Within 20 days, static culture removed 59% of BaP, whereas agitated culture removed the highest amount (73%). To expedite BaP elimination, the mechanism and behavior of BaP biosorption and biotransformation by Pleurotus eryngii F032 were additionally examined by gas chromatography-mass spectrometer (GC-MS). The optimal conditions for P. eryngii F032 to eliminate BaP were 25 °C, a C/N ratio of 8, pH 3 and 0.2% inoculum concentration. At an initial BaP content of 10 mg/L, more than 50% was effectively eliminated within 20 days under these conditions. Salinity, glucose, and rhamnolipids were the most important factors impacting BaP biodegradation. GC-MS found degradation products such as BaP-3,6-quinone, indicating plausible metabolic routes. Finally, it may be assumed that the primary mechanism by which white-rot fungi eliminate BaP is by the utilization of biotransformation enzymes such as laccase to mineralize the PAHs. Hence, Pleurotus eryngii F032 could be an ideal candidate to treat PAHs contaminated soils.
Collapse
Affiliation(s)
- Tony Hadibarata
- Environmental Engineering Program, Faculty of Engineering and Science, Curtin University, CDT 250, Miri, Sarawak, 98009, Malaysia.
| | - Risky Ayu Kristanti
- Research Centre for Oceanography, National Research and Innovation Agency of Indonesia, Jalan Pasir Putih 1, Jakarta, 14430, Indonesia
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Amal M Al-Mohaimeed
- Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia
| | - Tse-Wei Chen
- Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Man Kee Lam
- Chemical Engineering Department, HICoE-Centre for Biofuels and Biochemical Research (CBBR), Institute of Self-Sustainable Building (ISB), Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
| |
Collapse
|
16
|
Gao D, Zhao H, Wang L, Li Y, Tang T, Bai Y, Liang H. Current and emerging trends in bioaugmentation of organic contaminated soils: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 320:115799. [PMID: 35930885 DOI: 10.1016/j.jenvman.2022.115799] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 07/14/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
Organic contaminated soils constitute an important environmental problem, whereas field applicability of existing physical-chemical methods has encountered numerous obstacles, such as high chemical cost, large energy consumption, secondary pollution, and soil degradation. Bioaugmentation is an environmentally friendly and potentially economic technology that efficiently removes toxic pollutants from organic contaminated soils by microorganisms or their enzymes and bioremediation additives. This review attempted to explore the recent advances in bioaugmentation of organic contaminated soils and provided a comprehensive summary of various bioaugmentation methods, including bacterial, fungus, enzymes and bioremediation additives. The practical application of bioaugmentation is frequently limited by soil environmental conditions, microbial relationships, enzyme durability and remediation cycles. To tackle these problems, the future of bioaugmentation can be processed from sustainability of broad-spectrum bioremediation carriers, microbial/enzyme agents targeting combined contaminants, desorption of environmentally friendly additives and small molecular biological stimulants. Findings of this research are expected to provide new references for bioaugmentation methods that are practically feasible and economically potential.
Collapse
Affiliation(s)
- Dawen Gao
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Huan Zhao
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Litao Wang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Ying Li
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Teng Tang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Yuhong Bai
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Hong Liang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
| |
Collapse
|
17
|
Agrawal N, Kumar V, Shahi SK. Biodegradation and detoxification of phenanthrene in in vitro and in vivo conditions by a newly isolated ligninolytic fungus Coriolopsis byrsina strain APC5 and characterization of their metabolites for environmental safety. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:61767-61782. [PMID: 34231140 DOI: 10.1007/s11356-021-15271-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are recalcitrant organic pollutants generated from agricultural, industrial, and municipal sources, and their strong carcinogenic and teratogenic properties pose a harmful threat to human beings. The present study deals with the bioremediation of phenanthrene by a ligninolytic fungus, Coriolopsis byrsina (Mont.) Ryvarden strain APC5 (GenBank; KY418163.1), isolated from the fruiting body of decayed wood surface. During the experiment, Coriolopsis byrsina strain APC5 was found as a promising organism for the degradation and detoxification of phenanthrene (PHE) in in vitro and in vivo conditions. Further, HPLC analysis showed that the C. byrsina strain degraded 99.90% of 20 mg/L PHE in in vitro condition, whereas 77.48% degradation of 50 mg/L PHE was reported in in vivo condition. The maximum degradation of PHE was noted 25 °C temperature under shaking flask conditions at pH 6.0. Further, GC-MS analysis of fungal treated samples showed detection of 9,10-Dihydroxy phenanthrene, 2,2-Diphenic acid, phthalic acid, 4-heptyloxy phenol, benzene octyl, and acetic acid anhydride as the metabolic products of degraded PHE. Furthermore, the phytotoxicity evaluation of degraded PHE was observed through the seed germination method using Vigna radiata and Cicer arietinum seeds. The phytotoxicity results showed that the seed germination index and vegetative growth parameters of tested plants were increased in the degraded PHE soil. As results, C. byrsina strain APC5 was found to be a potential and promising organism to degrade and detoxify PHE without showing any adverse effect of their metabolites.
Collapse
Affiliation(s)
- Nikki Agrawal
- Bio-Resource Tech Laboratory, Department of Botany, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, 495009, India
| | - Vineet Kumar
- Bio-Resource Tech Laboratory, Department of Botany, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, 495009, India
| | - Sushil Kumar Shahi
- Bio-Resource Tech Laboratory, Department of Botany, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, 495009, India.
| |
Collapse
|
18
|
Widespread Ability of Ligninolytic Fungi to Degrade Hazardous Organic Pollutants as the Basis for the Self-Purification Ability of Natural Ecosystems and for Mycoremediation Technologies. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12042164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The ability of sixteen wood- and soil-inhabiting basidiomycete strains and four ascomycete strains to degrade the most hazardous, widespread, and persistent pollutants (polycyclic aromatic hydrocarbons, oxyethylated nonylphenol, alkylphenol, anthraquinone-type synthetic dyes, and oil) was found. The disappearance of the pollutants, their main metabolites, and some adaptive properties (activities of ligninolytic enzymes, the production of emulsifying compounds and exopolysaccharides) were evaluated. The toxicity of polycyclic aromatic hydrocarbons decreased during degradation. New data were obtained regarding (1) the dependence of the completeness of polycyclic aromatic hydrocarbon degradation on the composition of the ligninolytic enzyme complex; (2) the degradation of neonol AF9-12 by higher fungi (different accessibilities of the oxyethyl chain and the aromatic ring of the molecules to different fungal genera); and (3) the production of an emulsifying agent in response to the presence in the cultivation medium of hydrophobic pollutants as the common property of wood- and soil-inhabiting basidiomycetes and ascomycetes. Promise for use in mycoremediation was shown in the wood-inhabiting basidiomycetes Pleurotus ostreatus f. Florida, Schizophyllum commune, Trametes versicolor MUT 3403, and Trametes versicolor DSM11372; the litter-decomposing basidiomycete Stropharia rugosoannulata; and the ascomycete Cladosporium herbarum. These fungi degrade a wide range of pollutants without accumulation of toxic metabolites and produce ligninolytic enzymes and emulsifying compounds.
Collapse
|
19
|
Imam A, Kumar Suman S, Kanaujia PK, Ray A. Biological machinery for polycyclic aromatic hydrocarbons degradation: A review. BIORESOURCE TECHNOLOGY 2022; 343:126121. [PMID: 34653630 DOI: 10.1016/j.biortech.2021.126121] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 06/13/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are hazardous environmental pollutants with widespread and well-recognized health concerns. Amidst more than a hundred known PAHs, 16 are categorized as priority pollutants. Use of widely diverse biological machinery comprising bacteria, fungi, and algae harnessed from contaminated sites has emerged as an ecologically safe and sustainable approach for PAH degradation. The potential of these biological systems has been thoroughly examined to maximize the degradation of specific PAHs by understanding their detailed biochemical pathways, enzymatic system, and gene organization. Recent advancements in microbial genetic engineering and metabolomics using modern analytical tools have facilitated the bioremediation of such xenobiotics. This review explores the role of microbes, their biochemical pathways, genetic regulation of metabolic pathways, and the effect of biosurfactants against the backdrop of PAH substrate structures.
Collapse
Affiliation(s)
- Arfin Imam
- Analytical Sciences Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun 248005, Uttarakhand, India; Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun 248005, Uttarakhand, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad 201002, India
| | - Sunil Kumar Suman
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun 248005, Uttarakhand, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad 201002, India
| | - Pankaj K Kanaujia
- Analytical Sciences Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun 248005, Uttarakhand, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad 201002, India
| | - Anjan Ray
- Analytical Sciences Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun 248005, Uttarakhand, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad 201002, India.
| |
Collapse
|
20
|
Effects of Adding Laccase to Bacterial Consortia Degrading Heavy Oil. Processes (Basel) 2021. [DOI: 10.3390/pr9112025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
High-efficiency bioremediation technology for heavy oil pollution has been a popular research topic in recent years. Laccase is very promising for the remediation of heavy oil pollution because it can not only convert bio-refractory hydrocarbons into less toxic or completely harmless compounds, but also accelerate the biodegradation efficiency of heavy oil. However, there are few reports on the use of laccase to enhance the biodegradation of heavy oil. In this study, we investigated the effect of laccase on the bacterial consortia degradation of heavy oil. The degradation efficiencies of bacterial consortia and the laccase-bacterial consortia were 60.6 ± 0.1% and 68.2 ± 0.6%, respectively, and the corresponding heavy oil degradation rate constants were 0.112 day−1 and 0.198 day−1, respectively. The addition of laccase increased the heavy oil biodegradation efficiency (p < 0.05) and biodegradation rate of the bacterial consortia. Moreover, gas chromatography–mass spectrometry analysis showed that the biodegradation efficiencies of the laccase-bacterial consortia for saturated hydrocarbons and aromatic hydrocarbons were 82.5 ± 0.7% and 76.2 ± 0.9%, respectively, which were 16.0 ± 0.3% and 13.0 ± 1.8% higher than those of the bacterial consortia, respectively. In addition, the degradation rate constants of the laccase-bacterial consortia for saturated hydrocarbons and aromatic hydrocarbons were 0.267 day−1 and 0.226 day−1, respectively, which were 1.07 and 1.15 times higher than those of the bacterial consortia, respectively. The degradation of C15 to C35 n-alkanes and 2 to 5-ring polycyclic aromatic hydrocarbons by laccase-bacterial consortia was higher than individual bacterial consortia. It is further seen that the addition of laccase significantly improved the biodegradation of long-chain n-alkanes of C22–C35 (p < 0.05). Overall, this study shows that the combination of laccase and bacterial consortia is an effective remediation technology for heavy oil pollution. Adding laccase can significantly improve the heavy oil biodegradation efficiency and biodegradation rate of the bacterial consortia.
Collapse
|
21
|
Rybczyńska-Tkaczyk K. Enhanced Efficiency of the Removal of Cytostatic Anthracycline Drugs Using Immobilized Mycelium of Bjerkandera adusta CCBAS 930. Molecules 2021; 26:6842. [PMID: 34833934 PMCID: PMC8624642 DOI: 10.3390/molecules26226842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 12/07/2022] Open
Abstract
The aim of this study was to evaluate the bioremoval of anthracycline antibiotics (daunomycin-DNR, doxorubicin-DOX, and mitoxantrone-MTX) by immobilized mycelium of B. adusta CCBAS 930. The activity of oxidoreductases: versatile peroxidases (VP), superoxide dismutase (SOD), catalase (CAT), and glucose oxidase (GOX), and the levels of phenolic compounds (PhC) and free radicals (SOR) were determined during the biotransformation of anthracyclines by B. adusta strain CCBAS 930. Moreover, the phytotoxicity (Lepidium sativum L.), biotoxicity (MARA assay), and genotoxicity of anthracyclines were evaluated after biological treatment. After 120 h, more than 90% of anthracyclines were removed by the immobilized mycelium of B. adusta CCBAS 930. The effective biotransformation of anthracyclines was correlated with detoxification and reduced genotoxicity.
Collapse
Affiliation(s)
- Kamila Rybczyńska-Tkaczyk
- Department of Environmental Microbiology, The University of Life Sciences, Leszczyńskiego Street 7, 20-069 Lublin, Poland
| |
Collapse
|
22
|
Saravanan A, Kumar PS, Vo DVN, Jeevanantham S, Karishma S, Yaashikaa PR. A review on catalytic-enzyme degradation of toxic environmental pollutants: Microbial enzymes. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126451. [PMID: 34174628 DOI: 10.1016/j.jhazmat.2021.126451] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/14/2021] [Accepted: 06/18/2021] [Indexed: 05/17/2023]
Abstract
Industrialization and other human anthropogenic activities cause serious threats to the environment. The toxic pollutants can cause detrimental diseases on diverse living beings in their respective ecosystems. Bioremediation is one of the efficient remediation methods in which the toxic pollutants are removed from the environment by the application of microorganisms or their biologically active products (enzymes). Typically, the microorganisms in the environment produce various enzymes to immobilize and degrade the toxic environmental pollutants by utilizing them as a substrate for their growth and development. Both the bacterial and fungal enzymes can degrade the toxic pollutants present in the environment and convert them into non-toxic forms through their catalytic reaction mechanism. Hydrolases, oxidoreductases, dehalogenases, oxygenases and transferases are the major classes of microbial enzymes responsible for the degradation of most of the toxic pollutants in the environment. Recently, there are different immobilizations and genetic engineering techniques have been developed to enhance enzyme efficiency and diminish the process cost for pollutant removal. This review focused on enzymatic removal of toxic pollutants such as heavy metals, dyes, plastics and pesticides in the environment. Current trends and further expansion for efficient removal of toxic pollutants through enzymatic degradation are also reviewed in detail.
Collapse
Affiliation(s)
- A Saravanan
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai 602105, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, India.
| | - Dai-Viet N Vo
- Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| | - S Jeevanantham
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai 602105, India
| | - S Karishma
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai 602105, India
| | - P R Yaashikaa
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| |
Collapse
|
23
|
A Versatile Peroxidase from the Fungus Bjerkandera adusta Confers Abiotic Stress Tolerance in Transgenic Tobacco Plants. PLANTS 2021; 10:plants10050859. [PMID: 33922867 PMCID: PMC8146367 DOI: 10.3390/plants10050859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/15/2021] [Accepted: 04/20/2021] [Indexed: 11/17/2022]
Abstract
White-rot fungi are efficient lignin degraders due to the secretion of lignin peroxidase, manganese peroxidase, laccase, and versatile peroxidase (VP) on decayed wood. The VP is a high-redox-potential enzyme and could be used to detoxify reactive oxygen species (ROS), which accumulate in plants during biotic and abiotic stresses. We cloned the VP gene and expressed it via the Agrobacterium transformation procedure in transgenic tobacco plants to assay their tolerance to different abiotic stress conditions. Thirty independent T2 transgenic VP lines overexpressing the fungal Bjerkandera adustaVP gene were selected on kanamycin. The VP22, VP24, and VP27 lines showed significant manganese peroxidase (MnP) activity. The highest was VP22, which showed 10.87-fold more manganese peroxidase activity than the wild-type plants and led to a 34% increase in plant height and 28% more biomass. The VP22, VP24, and VP27 lines showed enhanced tolerance to drought, 200 mM NaCl, and 400 mM sorbitol. Also, these transgenics displayed significant tolerance to methyl viologen, an active oxygen-generating compound. The present data indicate that overproducing the VP gene in plants increases significantly their biomass and the abiotic stress tolerance. The VP enzyme is an effective biotechnological tool to protect organisms against ROS. In transgenic tobacco plants, it improves drought, salt, and oxidative stress tolerance. Thus, the VP gene represents a great potential for obtaining stress-tolerant crops.
Collapse
|
24
|
Catabolic enzyme activities during biodegradation of three-ring PAHs by novel DTU-1Y and DTU-7P strains isolated from petroleum-contaminated soil. Arch Microbiol 2021; 203:3101-3110. [PMID: 33797590 DOI: 10.1007/s00203-021-02297-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 02/05/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous pollutants having health hazards. PAH-utilizing bacterial strains were isolated from petroleum-contaminated soil from siding area, Bijwasan supply location of BPCL, Delhi, India. Bacterial strains with different morphology were isolated and acclimatized to a mixture of low molecular weight PAH compounds in the concentration range of 50-10,000 mg/L. Two bacterial strains surviving at 10,000 mg/L PAH concentration were identified as Kocuria flava and Rhodococcus pyridinivorans, based on 16S rRNA gene sequencing and phylogenetic analysis over MEGA X, are reported for the first time for PAH degradation. The strain K. flava could degrade phenanthrene, anthracene, and fluorene with efficiency of 55.13%, 59.01%, and 63.46%, whereas R. pyridinivorans exhibited 62.03%, 64.99%, and 66.79% degradation for respective PAHs at initial PAH concentration of 10 mg/L. Slightly lower degradation of phenanthrene could be attributed to its more stable chemical structure. The consortium of both the strains degraded 61.32%, 64.72%, and 66.64%, of 10 mg/L of phenanthrene, anthracene, and fluorene, respectively, in 15 days of incubation period indicating no synergistic or antagonistic effect towards degradation. Catechol 2,3-dioxygenase (C23O), dehydrogenase and peroxidase enzyme activities during PAH degradation coincided with degradation of PAHs, thus highlighting the role of these enzymes in catabolising three-ring PAHs. This is the first investigation confirming the participation of C23O, dehydrogenase and peroxidases enzyme profiles throughout the period of degradation. The study concludes that these strains can play significant role in microbial remediation of PAH-contaminated environment.
Collapse
|
25
|
Wulandari R, Lotrakul P, Punnapayak H, Amirta R, Kim SW, Prasongsuk S. Toxicity evaluation and biodegradation of phenanthrene by laccase from Trametes polyzona PBURU 12. 3 Biotech 2021; 11:32. [PMID: 33457166 DOI: 10.1007/s13205-020-02556-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/17/2020] [Indexed: 11/30/2022] Open
Abstract
The newly isolated Trametes polyzona PBURU 12 demonstrated a high tolerance and potential for the degradation of phenanthrene. The fungal isolate was able to tolerate 100 ppm of phenanthrene with 45% relative growth. The crude laccase produced by Trametes polyzona PBURU 12 was able to degrade phenanthrene by up to 98% within 24 h. The degradation metabolites showed the absence of toxic compounds. Microbial viability tests using E. coli and B. subtilis revealed that the treated phenanthrene was less toxic than untreated phenanthrene. Phytotoxicity and genotoxicity tests, using Vigna radiata and Allium cepa, indicated that the treated phenanthrene was less toxic to the plants. No mutagenic activity was found in the Ames test. The crude laccase from Trametes polyzona PBURU 12 was demonstrated as a potential tool for the biodegradation of PAHs (phenanthrene), with low toxic effects after the degradation.
Collapse
Affiliation(s)
- Retno Wulandari
- Biological Sciences Program, Faculty of Science, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Pongtharin Lotrakul
- Plant Biomass Utilization Research Unit, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Hunsa Punnapayak
- Plant Biomass Utilization Research Unit, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, 10330 Thailand
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, 60115 Indonesia
| | - Rudianto Amirta
- Faculty of Forestry, Mulawarman University, Samarinda, 75199 Indonesia
| | - Seung Wook Kim
- Department of Chemical and Biological Engineering, Korea University, Seoul, 136-701 South Korea
| | - Sehanat Prasongsuk
- Plant Biomass Utilization Research Unit, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, 10330 Thailand
| |
Collapse
|
26
|
Albert Q, Baraud F, Leleyter L, Lemoine M, Heutte N, Rioult JP, Sage L, Garon D. Use of soil fungi in the biosorption of three trace metals (Cd, Cu, Pb): promising candidates for treatment technology? ENVIRONMENTAL TECHNOLOGY 2020; 41:3166-3177. [PMID: 30924724 DOI: 10.1080/09593330.2019.1602170] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/27/2019] [Indexed: 06/09/2023]
Abstract
Trace metal contamination is a widespread and complex environmental problem. Because fungi are capable of growing in adverse environments, several fungal species could have an interesting potential in remediation technologies for metal contaminated environments. This study proposes to test the ability to tolerate and biosorb three trace metals (Cd, Cu and Pb) of 28 fungal isolates collected from different soils. First, a tolerance assay in agar medium was performed. Each isolate was grown in the presence of Cd, Cu, and Pb at different concentrations. Then, we exposed each soil fungus to 50 mg L-1 of Cd, Cu, or Pb during 3 days in liquid medium. Parameters such as biomass production, pH, and biosorption were evaluated. The results showed that responses to metal exposure are very diverse even with fungi isolated from the same soil sample, or belonging to the same genera. Several isolates could be considered as good metal biosorbents and could be used in future mycoremediation studies. Among the 28 fungi tested, Absidia cylindrospora biosorbed more than 45% of Cd and Pb, Chaetomium atrobrunneum biosorbed more than 45% of Cd, Cu, Pb, and Coprinellus micaceus biosorbed 100% of Pb.
Collapse
Affiliation(s)
- Quentin Albert
- Centre F. Baclesse, Normandie Univ, UNICAEN, Caen, France
| | | | - Lydia Leleyter
- Centre F. Baclesse, Normandie Univ, UNICAEN, Caen, France
| | | | | | | | - Lucile Sage
- Laboratoire d'Ecologie Alpine, Université Grenoble Alpes, Cedex, France
| | - David Garon
- Centre F. Baclesse, Normandie Univ, UNICAEN, Caen, France
| |
Collapse
|
27
|
Yin C, Xiong W, Qiu H, Peng W, Deng Z, Lin S, Liang R. Characterization of the Phenanthrene-Degrading Sphingobium yanoikuyae SJTF8 in Heavy Metal Co-Existing Liquid Medium and Analysis of Its Metabolic Pathway. Microorganisms 2020; 8:E946. [PMID: 32586023 PMCID: PMC7355620 DOI: 10.3390/microorganisms8060946] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 01/27/2023] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are common organic pollutants with great carcinogenic threaten, and metal/PAH-contaminated environments represent one of the most difficult remedial challenges. In this work, Sphingobium yanoikuyae SJTF8 was isolated and identified with great and stable PAH-degrading efficiency even under stress conditions. It could utilize typical PAHs (naphthalene, phenanthrene, and anthracene) and heterocyclic and halogenated aromatic compounds (dibenzothiophene and 9-bromophenanthrene) as the sole carbon source. It could degrade over 98% of 500 mg/L phenanthrene in 4 days, and the cis-3,4-dihydrophenanthrene-3,4-diol was the first-step intermediate. Notably, strain SJTF8 showed great tolerance to heavy metals and acidic pH. Supplements of 0.30 mM of Cu2+, 1.15 mM of Zn2+, and 0.01 mM of Cd2+ had little effect on its cell growth and phenanthrene degradation; phenanthrene of 250 mg/L could still be degraded completely in 48 h. Further, the whole genome sequence of S. yanoikuyae SJTF8 was obtained, and three plasmids were found. The potential genes participating in stress-tolerance and PAH-degradation were annotated and were found mostly distributed in plasmids 1 and 2. Elimination of plasmid 2 resulted in the loss of the PAH-degradation ability. On the basis of genome mining results, the possible degrading pathway and the metabolites of S. yanoikuyae SJTF8 to phenanthrene were predicted.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Rubing Liang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (C.Y.); (W.X.); (H.Q.); (W.P.); (Z.D.); (S.L.)
| |
Collapse
|
28
|
Sakshi, Haritash AK. A comprehensive review of metabolic and genomic aspects of PAH-degradation. Arch Microbiol 2020; 202:2033-2058. [DOI: 10.1007/s00203-020-01929-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/14/2020] [Accepted: 05/26/2020] [Indexed: 01/01/2023]
|
29
|
Bio-removal of phenanthrene, 9-fluorenone and anthracene-9,10-dione by laccase from Aspergillus niger in waste cooking oils. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.06.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
30
|
Robichaud K, Stewart K, Labrecque M, Hijri M, Cherewyk J, Amyot M. An ecological microsystem to treat waste oil contaminated soil: Using phytoremediation assisted by fungi and local compost, on a mixed-contaminant site, in a cold climate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 672:732-742. [PMID: 30974363 DOI: 10.1016/j.scitotenv.2019.03.447] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/28/2019] [Accepted: 03/28/2019] [Indexed: 06/09/2023]
Abstract
As a result of anthropization and industrialization, northern remote communities face issues of soil contamination by mixtures of organic and inorganic contaminants. Soil bioremediation in cold environments is particularly challenging because of slower degradation rates, slower production of biomass for phytoextraction of trace elements (TEs), and remoteness, which can complicate logistics and inflate costs. This study evaluated a decontamination approach integrating indigenous willows, fungi and compost in a northern community. The site was a waste oil pit and its soil was initially contaminated with petroleum hydrocarbons (PHC) exceeding 200 g kg-1 and TEs including As, Cd, Co, Cr, Cu, Pb and Zn. In under five years, 65 and 75% of PHC (C6-C50 and >C50) were degraded, compared to 27 and 13% for the untreated control soil. We found contrasting TE translocation patterns to the aboveground biomass for the willow species used (Salix planifolia and Salix alaxensis), as well as distinctive rooting strategies. Hazard quotients were calculated to assess the risk plant material could pose to local wildlife. The highest TE concentration measured was Zn in S. planifolia, which exceeded Canadian soil guidelines. Results indicate toxicity risks to animals linked to TEs in Salix spp. leaves is generally unlikely. The fungus Trametes versicolor inoculated into the soil did not fruit, however fruiting bodies of Psathyrella sp. were observed consistently (four out of five years). Biological tests indicated that in five growing seasons soil toxicity significantly decreased compared to the untreated soil used as control. This was demonstrated by vegetation cover (137 vs 11% cover), toxicity assays on earthworms (Eisenia andrei) (0 vs 33% mortality) and barley seed germination (Hordeum vulgare) (86 vs 62% germination). The proposed decontamination approach, without the use of synthetic fertilizers, is promising for the PHC remediation of mixed-contaminants on cold climate sites.
Collapse
Affiliation(s)
- Kawina Robichaud
- Center for Northern Studies, Département de sciences biologiques, Université de Montréal, Pavillon Marie-Victorin, 90 Vincent d'Indy, Montreal, QC H2V2S9, Canada
| | - Katherine Stewart
- Department of Soil Science, University of Saskatchewan, 51 Campus Dr. Saskatoon, SK S7N 5A8, Canada; Yukon Research Center, Yukon College, 500 College drive, Whitehorse, YK Y1A 5K4, Canada
| | - Michel Labrecque
- Institut de recherche en biologie végétale, Université de Montréal, 4101 Sherbrooke Street East, Montreal, QC H1X 2B2, Canada
| | - Mohamed Hijri
- Institut de recherche en biologie végétale, Université de Montréal, 4101 Sherbrooke Street East, Montreal, QC H1X 2B2, Canada
| | - Jensen Cherewyk
- Toxicology Centre, University of Saskatchewan, 44 Campus Dr. Saskatoon, SK S7N 5B3, Canada
| | - Marc Amyot
- Center for Northern Studies, Département de sciences biologiques, Université de Montréal, Pavillon Marie-Victorin, 90 Vincent d'Indy, Montreal, QC H2V2S9, Canada.
| |
Collapse
|
31
|
González-Abradelo D, Pérez-Llano Y, Peidro-Guzmán H, Sánchez-Carbente MDR, Folch-Mallol JL, Aranda E, Vaidyanathan VK, Cabana H, Gunde-Cimerman N, Batista-García RA. First demonstration that ascomycetous halophilic fungi (Aspergillus sydowii and Aspergillus destruens) are useful in xenobiotic mycoremediation under high salinity conditions. BIORESOURCE TECHNOLOGY 2019; 279:287-296. [PMID: 30738355 DOI: 10.1016/j.biortech.2019.02.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 01/30/2019] [Accepted: 02/01/2019] [Indexed: 06/09/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAH) and pharmaceutical compounds (PhC) are xenobiotics present in many saline wastewaters. Although fungi are known for their ability to remove xenobiotics, the potential of halophilic fungi to degrade highly persistent pollutants was not yet investigated. The use of two halophilic fungi, Aspergillus sydowii and Aspergillus destruens, for the elimination of PAH and PhC at saline conditions was studied. In saline synthetic medium both fungi used benzo-α-pyrene and phenanthrene as sole carbon source and removed over 90% of both PAH, A. sydowii due to biodegradation and A. destruens to bioadsorption. They removed 100% of a mixture of fifteen PAH in saline biorefinery wastewater. Test using Cucumis sativus demonstrated that wastewater treated with the two fungi lowered considerably the phytotoxicity. This study is the first demonstration that ascomycetous halophilic fungi, in contrast to other fungi (and in particular basidiomycetes) can be used for mycotreatments under salinity conditions.
Collapse
Affiliation(s)
- Deborah González-Abradelo
- Centro de Investigación en Dinámica Celular, Instituto de Investigaciones en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos (UAEM), Ave. Universidad 1001, Col. Chamilpa, CP. 62209 Cuernavaca, Morelos, Mexico
| | - Yordanis Pérez-Llano
- Centro de Investigación en Dinámica Celular, Instituto de Investigaciones en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos (UAEM), Ave. Universidad 1001, Col. Chamilpa, CP. 62209 Cuernavaca, Morelos, Mexico
| | - Heidy Peidro-Guzmán
- Centro de Investigación en Dinámica Celular, Instituto de Investigaciones en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos (UAEM), Ave. Universidad 1001, Col. Chamilpa, CP. 62209 Cuernavaca, Morelos, Mexico
| | - María Del Rayo Sánchez-Carbente
- Centro de Investigaciones en Biotecnología, UAEM, Ave. Universidad 1001, Col. Chamilpa, CP. 62209 Cuernavaca, Morelos, Mexico
| | - Jorge Luis Folch-Mallol
- Centro de Investigaciones en Biotecnología, UAEM, Ave. Universidad 1001, Col. Chamilpa, CP. 62209 Cuernavaca, Morelos, Mexico
| | - Elisabet Aranda
- Instituto Universitario de Investigación del Agua, Universidad de Granada, Calle Núñez Blanca 1, CP. 18003 Granada, Spain
| | - Vinoth Kumar Vaidyanathan
- Department of Biotechnology, SRM Institute of Science and Technology, Mahatma Gandhi Rd, Potheri, SRM Nagar, Kattankulathur 603203, Tamil Nadu, India
| | - Hubert Cabana
- Faculté de Genié, Université de Sherbrooke, Sherbrooke, 2500 Boulevard de l Université, J1K 2R1 Sherbrooke, Quebec, Canada
| | - Nina Gunde-Cimerman
- Faculty of Biology, University of Ljubljana, Kongresni trg 12, 1000 Ljubljana, Slovenia
| | - Ramón Alberto Batista-García
- Centro de Investigación en Dinámica Celular, Instituto de Investigaciones en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos (UAEM), Ave. Universidad 1001, Col. Chamilpa, CP. 62209 Cuernavaca, Morelos, Mexico; Faculty of Biology, University of Ljubljana, Kongresni trg 12, 1000 Ljubljana, Slovenia.
| |
Collapse
|
32
|
Babu AG, Reja SI, Akhtar N, Sultana M, Deore PS, Ali FI. Bioremediation of Polycyclic Aromatic Hydrocarbons (PAHs): Current Practices and Outlook. MICROORGANISMS FOR SUSTAINABILITY 2019. [DOI: 10.1007/978-981-13-7462-3_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|