1
|
Lakhova TN, Tsygichko AA, Klimenko AI, Ismailov VY, Vasiliev GV, Asaturova AM, Lashin SA. Assembly and Genome Annotation of Different Strains of Apple Fruit Moth Virus ( Cydia pomonella granulovirus). Int J Mol Sci 2024; 25:7146. [PMID: 39000263 PMCID: PMC11240899 DOI: 10.3390/ijms25137146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/16/2024] Open
Abstract
Cydia pomonella granulovirus is a natural pathogen for Cydia pomonella that is used as a biocontrol agent of insect populations. The study of granulovirus virulence is of particular interest since the development of resistance in natural populations of C. pomonella has been observed during the long-term use of the Mexican isolate CpGV. In our study, we present the genomes of 18 CpGV strains endemic to southern Russia and from Kazakhstan, as well as a strain included in the commercial preparation "Madex Twin", which were sequenced and analyzed. We performed comparative genomic analysis using several tools. From comparisons at the level of genes and protein products that are involved in the infection process of virosis, synonymous and missense substitution variants have been identified. The average nucleotide identity has demonstrated a high similarity with other granulovirus genomes of different geographic origins. Whole-genome alignment of the 18 genomes relative to the reference revealed regions of low similarity. Analysis of gene repertoire variation has shown that BZR GV 4, BZR GV 6, and BZR GV L-7 strains have been the closest in gene content to the commercial "Madex Twin" strain. We have confirmed two deletions using read depth coverage data in regions lacking genes shown by homology analysis for granuloviruses BZR GV L-4 and BZR GV L-6; however, they are not related to the known genes causing viral pathogenicity. Thus, we have isolated novel CpGV strains and analyzed their potential as strains producing highly effective bioinsecticides against C. pomonella.
Collapse
Affiliation(s)
- Tatiana N. Lakhova
- Kurchatov Genomic Centre of Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (A.I.K.); (S.A.L.)
- Department of Mathematics and Mechanics, Mathematical Center, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Aleksandra A. Tsygichko
- Federal State Budgetary Scientific Institution, Federal Research Center of Biological Plant Protection, 350039 Krasnodar, Russia; (A.A.T.); (A.M.A.)
| | - Alexandra I. Klimenko
- Kurchatov Genomic Centre of Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (A.I.K.); (S.A.L.)
- Department of Mathematics and Mechanics, Mathematical Center, Novosibirsk State University, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Vladimir Y. Ismailov
- Federal State Budgetary Scientific Institution, Federal Research Center of Biological Plant Protection, 350039 Krasnodar, Russia; (A.A.T.); (A.M.A.)
| | - Gennady V. Vasiliev
- Kurchatov Genomic Centre of Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (A.I.K.); (S.A.L.)
| | - Anzhela M. Asaturova
- Federal State Budgetary Scientific Institution, Federal Research Center of Biological Plant Protection, 350039 Krasnodar, Russia; (A.A.T.); (A.M.A.)
| | - Sergey A. Lashin
- Kurchatov Genomic Centre of Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (A.I.K.); (S.A.L.)
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
2
|
Tomilova OG, Kryukov VY, Kryukova NA, Tolokonnikova KP, Tokarev YS, Rumiantseva AS, Alekseev AA, Glupov VV. Effects of passages through an insect or a plant on virulence and physiological properties of the fungus Metarhizium robertsii. PeerJ 2023; 11:e15726. [PMID: 37583910 PMCID: PMC10424674 DOI: 10.7717/peerj.15726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/18/2023] [Indexed: 08/17/2023] Open
Abstract
Species of the genus Metarhizium are characterized by a multitrophic lifestyle of being arthropod parasites, rhizosphere colonizers, endophytes, and saprophytes. The process of adaptation to various organisms and substrates may lead to specific physiological alterations that can be elucidated by passaging through different hosts. Changes in virulence and cultivation properties of entomopathogenic fungi subcultured on different media or passaged through a live insect host are well known. Nevertheless, comparative in-depth physiological studies on fungi after passaging through insect or plant organisms are scarce. Here, virulence, plant colonization, hydrolytic enzymatic activities, toxin production, and antimicrobial action were compared between stable (nondegenerative) parent strain Metarhizium robertsii MB-1 and its reisolates obtained after eight passages through Galleria mellonella larvae or Solanum lycopersicum or after subculturing on the Sabouraud medium. The passaging through the insect caused similar physiological alterations relative to the plant-based passaging: elevation of destruxin A, B, and E production, a decrease in protease and lipase activities, and lowering of virulence toward G. mellonella and Leptinotarsa decemlineata as compared to the parent strain. The reisolates passaged through the insect or plant showed a slight trend toward increased tomato colonization and enhanced antagonistic action on tomato-associated bacterium Bacillus pumilus as compared to the parental strain. Meanwhile, the subculturing of MB-1 on the Sabouraud medium showed stability of the studied parameters, with minimal alterations relative to the parental strain. We propose that the fungal virulence factors are reprioritized during adaptation of M. robertsii to insects, plants, and media.
Collapse
Affiliation(s)
- Oksana G. Tomilova
- Institute of Systematics and Ecology of Animals SB RAS, Novosibirsk, Russia
- All-Russian Institute of Plant Protection, St. Petersburg, Russia
| | - Vadim Y. Kryukov
- Institute of Systematics and Ecology of Animals SB RAS, Novosibirsk, Russia
| | | | | | - Yuri S. Tokarev
- All-Russian Institute of Plant Protection, St. Petersburg, Russia
| | | | - Alexander A. Alekseev
- Institute of Systematics and Ecology of Animals SB RAS, Novosibirsk, Russia
- Voevodsky Institute of Chemical Kinetics and Combustion SB RAS, Novosibirsk, Russia
| | - Viktor V. Glupov
- Institute of Systematics and Ecology of Animals SB RAS, Novosibirsk, Russia
| |
Collapse
|
3
|
Wang H, Lu Z, Keyhani NO, Deng J, Zhao X, Huang S, Luo Z, Jin K, Zhang Y. Insect fungal pathogens secrete a cell wall-associated glucanase that acts to help avoid recognition by the host immune system. PLoS Pathog 2023; 19:e1011578. [PMID: 37556475 PMCID: PMC10441804 DOI: 10.1371/journal.ppat.1011578] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/21/2023] [Accepted: 07/25/2023] [Indexed: 08/11/2023] Open
Abstract
Fungal insect pathogens have evolved diverse mechanisms to evade host immune recognition and defense responses. However, identification of fungal factors involved in host immune evasion during cuticular penetration and subsequent hemocoel colonization remains limited. Here, we report that the entomopathogenic fungus Beauveria bassiana expresses an endo-β-1,3-glucanase (BbEng1) that functions in helping cells evade insect immune recognition/ responses. BbEng1 was specifically expressed during infection, in response to host cuticle and hemolymph, and in the presence of osmotic or oxidative stress. BbEng1 was localized to the fungal cell surface/ cell wall, where it acts to remodel the cell wall pathogen associated molecular patterns (PAMPs) that can trigger host defenses, thus facilitating fungal cell evasion of host immune defenses. BbEng1 was secreted where it could bind to fungal cells. Cell wall β-1,3-glucan levels were unchanged in ΔBbEng1 cells derived from in vitro growth media, but was elevated in hyphal bodies, whereas glucan levels were reduced in most cell types derived from the BbEng1 overexpressing strain (BbEng1OE). The BbEng1OE strain proliferated more rapidly in the host hemocoel and displayed higher virulence as compared to the wild type parent. Overexpression of their respective Eng1 homologs or of BbEng1 in the insect fungal pathogens, Metarhizium robertsii and M. acridum also resulted in increased virulence. Our data support a mechanism by which BbEng1 helps the fungal pathogen to evade host immune surveillance by decreasing cell wall glucan PAMPs, promoting successful fungal mycosis.
Collapse
Affiliation(s)
- Huifang Wang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing, People’s Republic of China
- Key Laboratory of Entomology and Pest Control Engineering, Academy of Agricultural Sciences, Southwest University, Chongqing, People’s Republic of China
| | - Zhuoyue Lu
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing, People’s Republic of China
- Key Laboratory of Entomology and Pest Control Engineering, Academy of Agricultural Sciences, Southwest University, Chongqing, People’s Republic of China
| | - Nemat O. Keyhani
- Department of Biological Sciences, University of Illinois, Chicago, Illinois, United States of America
| | - Juan Deng
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing, People’s Republic of China
- Key Laboratory of Entomology and Pest Control Engineering, Academy of Agricultural Sciences, Southwest University, Chongqing, People’s Republic of China
| | - Xin Zhao
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing, People’s Republic of China
- Key Laboratory of Entomology and Pest Control Engineering, Academy of Agricultural Sciences, Southwest University, Chongqing, People’s Republic of China
| | - Shuaishuai Huang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing, People’s Republic of China
- Key Laboratory of Entomology and Pest Control Engineering, Academy of Agricultural Sciences, Southwest University, Chongqing, People’s Republic of China
| | - Zhibing Luo
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing, People’s Republic of China
- Key Laboratory of Entomology and Pest Control Engineering, Academy of Agricultural Sciences, Southwest University, Chongqing, People’s Republic of China
| | - Kai Jin
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, People’s Republic of China
| | - Yongjun Zhang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing, People’s Republic of China
- Key Laboratory of Entomology and Pest Control Engineering, Academy of Agricultural Sciences, Southwest University, Chongqing, People’s Republic of China
| |
Collapse
|
4
|
Vidhate RP, Dawkar VV, Punekar SA, Giri AP. Genomic Determinants of Entomopathogenic Fungi and Their Involvement in Pathogenesis. MICROBIAL ECOLOGY 2023; 85:49-60. [PMID: 34977966 DOI: 10.1007/s00248-021-01936-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/24/2021] [Indexed: 06/14/2023]
Abstract
Entomopathogenic fungi offer an effective and eco-friendly alternative to curb insect populations in biocontrol strategy. The evolutionary history of selected entomopathogenic fungi indicates their ancestral relationship with plant endophytes. During this host shifting, entomopathogenic fungi must have acquired multiple mechanisms, including a combination of various biomolecules that make them distinguishable from other fungi. In this review, we focus on understanding various biochemical and molecular mechanisms involved in entomopathogenesis. In particular, we attempt to explain the indispensable role of enlarged gene families of various virulent factors, viz. chitinases, proteases, lipases, specialized metabolites, and cytochrome P450, in entomopathogenesis. Our analysis suggests that entomopathogenic fungi recruit a different set of gene products during the progression of pathogenesis. Knowledge of these bio-molecular interactions between fungi and insect hosts will allow researchers to execute pointed efforts towards the development of improved entomopathogenic fungal strains.
Collapse
Affiliation(s)
- Ravindra P Vidhate
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, 411008, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Vishal V Dawkar
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, 411008, Maharashtra, India
| | - Sachin A Punekar
- Biospheres, Eshwari, 52/403, Lakshminagar, Parvati, Pune, 411009, Maharashtra, India
| | - Ashok P Giri
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, 411008, Maharashtra, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.
| |
Collapse
|
5
|
Qiu L, Song JZ, Li J, Zhang TS, Li Z, Hu SJ, Liu JH, Dong JC, Cheng W, Wang JJ. The transcription factor Ron1 is required for chitin metabolism, asexual development and pathogenicity in Beauveria bassiana, an entomopathogenic fungus. Int J Biol Macromol 2022; 206:875-885. [PMID: 35278517 DOI: 10.1016/j.ijbiomac.2022.03.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 11/05/2022]
Abstract
Ndt80-like transcription factor Ron1 is best known for its essential role in the regulation of N-acetylglucosamine (GlcNAc) catabolism. Ron1 was again found to be essential for sensing GlcNAc in Beauveria bassiana. Importantly, our study revealed that Ron1 is involved in the metabolic processes of chitin and asexual development. To further investigate the novel functions of Ron1 in B. bassiana, extracellular chitinase activity in the ΔRon1 mutant was found to decrease by 84.73% compared with wild type. The deletion of Ron1 made it difficult for the fungus to accumulate intracellular GlcNAc. Furthermore, transcriptomic analysis revealed that Ron1 exerted a significant effect on global transcription and positively regulated genes encoding chitin metabolism in respond to chitin nutrition. Yeast one-hybrid assay confirmed that Ron1 could bind to specific cis-acting elements in the promoters of chitinase and hexokinase. In addition, ΔRon1 displayed an impaired chitin component of the cell wall, with a chitin synthetase (ChsVII) predicted to function downstream of Ron1. Finally, the virulence of ΔRon1 mutant was significantly reduced in the Galleria mellonella insect model through cuticle infection or cuticle bypassing infection. These data functionally characterize Ron1 in B. bassiana and expand our understanding of how the transcription factor Ron1 works in pathogens.
Collapse
Affiliation(s)
- Lei Qiu
- School of Biological Science and Technology, University of Jinan, Jinan, China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Ji-Zheng Song
- School of Biological Science and Technology, University of Jinan, Jinan, China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China; Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Juan Li
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Tong-Sheng Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Ze Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Shun-Juan Hu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Jia-Hua Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Jing-Chong Dong
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Wen Cheng
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Juan-Juan Wang
- School of Biological Science and Technology, University of Jinan, Jinan, China.
| |
Collapse
|
6
|
Mateos Fernández R, Petek M, Gerasymenko I, Juteršek M, Baebler Š, Kallam K, Moreno Giménez E, Gondolf J, Nordmann A, Gruden K, Orzaez D, Patron NJ. Insect pest management in the age of synthetic biology. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:25-36. [PMID: 34416790 PMCID: PMC8710903 DOI: 10.1111/pbi.13685] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/04/2021] [Accepted: 08/08/2021] [Indexed: 05/10/2023]
Abstract
Arthropod crop pests are responsible for 20% of global annual crop losses, a figure predicted to increase in a changing climate where the ranges of numerous species are projected to expand. At the same time, many insect species are beneficial, acting as pollinators and predators of pest species. For thousands of years, humans have used increasingly sophisticated chemical formulations to control insect pests but, as the scale of agriculture expanded to meet the needs of the global population, concerns about the negative impacts of agricultural practices on biodiversity have grown. While biological solutions, such as biological control agents and pheromones, have previously had relatively minor roles in pest management, biotechnology has opened the door to numerous new approaches for controlling insect pests. In this review, we look at how advances in synthetic biology and biotechnology are providing new options for pest control. We discuss emerging technologies for engineering resistant crops and insect populations and examine advances in biomanufacturing that are enabling the production of new products for pest control.
Collapse
Affiliation(s)
| | - Marko Petek
- Department of Biotechnology and Systems BiologyNational Institute of BiologyLjubljanaSlovenia
| | - Iryna Gerasymenko
- Plant Biotechnology and Metabolic EngineeringTechnische Universität DarmstadtDarmstadtGermany
| | - Mojca Juteršek
- Department of Biotechnology and Systems BiologyNational Institute of BiologyLjubljanaSlovenia
- Jožef Stefan International Postgraduate SchoolLjubljanaSlovenia
| | - Špela Baebler
- Department of Biotechnology and Systems BiologyNational Institute of BiologyLjubljanaSlovenia
| | | | | | - Janine Gondolf
- Institut für PhilosophieTechnische Universität DarmstadtDarmstadtGermany
| | - Alfred Nordmann
- Institut für PhilosophieTechnische Universität DarmstadtDarmstadtGermany
| | - Kristina Gruden
- Department of Biotechnology and Systems BiologyNational Institute of BiologyLjubljanaSlovenia
| | - Diego Orzaez
- Institute for Plant Molecular and Cell Biology (IBMCP)UPV‐CSICValenciaSpain
| | | |
Collapse
|
7
|
Alonso-Díaz MA, Fernández-Salas A. Entomopathogenic Fungi for Tick Control in Cattle Livestock From Mexico. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:657694. [PMID: 37744087 PMCID: PMC10512273 DOI: 10.3389/ffunb.2021.657694] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 04/01/2021] [Indexed: 09/26/2023]
Abstract
Ticks are one of the main economic threats to the cattle industry worldwide affecting productivity, health and welfare. The need for alternative methods to control tick populations is prompted by the high prevalence of multiresistant tick strains to the main chemical acaricides and their ecological consequences. Biological control using entomopathogenic fungi (EPF) is one of the most promising alternative options. The objective of this paper is to review the use of EPF as an alternative control method against cattle ticks in Mexico. Metarhizium anisopliae sensu lato (s.l.) and Beauveria bassiana s.l. are the most studied EPF for the biological control of ticks in the laboratory and in the field, mainly against Rhipicephalus microplus; however, evaluations against other important cattle ticks such as Amblyomma mixtum and R. annulatus, are needed. A transdisciplinary approach is required to incorporate different types of tools, such as genomics, transcriptomics and proteomics in order to better understand the pathogenicity/virulence mechanism in EPF against ticks. Laboratory tests have demonstrated the EPF efficacy to control susceptible and resistant/multiresistant tick populations; whereas, field tests have shown satisfactory control efficiency of M. anisopliae s.l. against different stages of R. microplus when applied both on pasture and on cattle. Epidemiological aspects of ticks and environmental factors are considered as components that influence the acaricidal behavior of the EPF. Finally, considering all these aspects, some recommendations are proposed for the use of EPF in integrated control schemes for livestock ticks.
Collapse
|
8
|
Kornienko EI, Osmolovskiy AA, Kreyer VG, Baranova NA, Kotova IB, Egorov NS. Characteristics and Properties of the Complex of Proteolytic Enzymes of the Thrombolytic Action of the Micromycete Sarocladium strictum. APPL BIOCHEM MICRO+ 2021. [DOI: 10.1134/s0003683821010129] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Nascimento TP, Conniff AES, Moura JAS, Batista JMS, Costa RMPB, Porto CS, Takaki GMC, Porto TS, Porto ALÚF. Protease from Mucor subtilissimus UCP 1262: Evaluation of several specific protease activities and purification of a fibrinolytic enzyme. AN ACAD BRAS CIENC 2020; 92:e20200882. [PMID: 33295582 DOI: 10.1590/0001-3765202020200882] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 08/17/2020] [Indexed: 02/07/2023] Open
Abstract
The industrial demand for proteolytic enzymes is stimulating the search for new enzyme sources. Fungal enzymes are preferred over bacterial enzymes, and more effective and easier to extract. The aim of this work was to evaluate the potential of protease production by solid state fermentation (SSF) of Mucor subtilissimus UCP 1262, evaluate different specific activities, purify and partially characterize the enzyme in terms of biochemical as to the optimal pH and temperature. Initially, the enzyme crude extract was screened for 3 different proteolytic activities, collagenolytic (161.4 U/mL), keratinolytic (39.6 U/mL) and fibrinolytic (26.1 U/mL) in addition to conventional proteinase activity. After ammonium sulfate precipitation, the active fractions with fibrinolytic activity were dialyzed in 15 mM Tris-HCl buffer, pH 8, loaded onto DEAE-Sephadex A50 ion-exchange column and gel filtrated through Superdex 75 HR10/300. The enzyme showed a fibrinolytic maximum activity at 40 C and pH 9,0. The purified enzyme showed activity against a chromogenic chymotrypsin substrate, SDS-PAGE showing a molecular mass of approximately 70 kDa and, the specific activity of 25.93 U/mg. These characteristics suggest that the enzyme could be and efficiently produced in a simple and low-cost way using Mucor subtilissimus UCP 1262 in SSF.
Collapse
Affiliation(s)
- Thiago P Nascimento
- Federal Rural University of Pernambuco, Department of Morphology and Animal Physiology, Dom Manuel de Medeiros, s/n, Dois Irmãos, 52171-900 Recife, PE, Brazil
| | - Amanda Emmanuelle S Conniff
- University of South Florida, Department of Molecular Medicine, College of Medicine, Bruce B. Downs Blvd, MDC 3518, 12901, Tampa, FL, U.S.A
| | - JosÉ Arion S Moura
- Federal University of Pernambuco, Department of Pharmaceutics Sciences, Av. Prof. Moraes Rego, 1235, Cidade Universitária, 50670-420 Recife, PE, Brazil
| | - Juanize Matias S Batista
- Federal Rural University of Pernambuco, Department of Morphology and Animal Physiology, Dom Manuel de Medeiros, s/n, Dois Irmãos, 52171-900 Recife, PE, Brazil
| | - Romero Marcos P B Costa
- University of Pernambuco, Institute of Biological Sciences, Arnóbio Marquês, 310, Santo Amaro, 50100-130 Recife, PE, Brazil
| | - Camila S Porto
- Federal University of Alagoas, Unit of Penedo, s/n, Av. Duque de Caxias, 1074, 57200-000 Penedo, AL, Brazil
| | - Galba Maria C Takaki
- Catholic University of Pernambuco, Center for Research in Environmental Sciences, R. do Príncipe, 526, Boa Vista, 50050-900 Recife, PE, Brazil
| | - Tatiana S Porto
- Federal Rural University of Pernambuco, Academic Unit of Garanhuns, Av. Bom Pastor, s/n, Boa Vista, 55296-901 Garanhuns, PE, Brazil
| | - Ana LÚcia F Porto
- Federal Rural University of Pernambuco, Department of Morphology and Animal Physiology, Dom Manuel de Medeiros, s/n, Dois Irmãos, 52171-900 Recife, PE, Brazil
| |
Collapse
|
10
|
Li J, Guo M, Cao Y, Xia Y. Disruption of a C69-Family Cysteine Dipeptidase Gene Enhances Heat Shock and UV-B Tolerances in Metarhizium acridum. Front Microbiol 2020; 11:849. [PMID: 32431687 PMCID: PMC7214794 DOI: 10.3389/fmicb.2020.00849] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 04/08/2020] [Indexed: 12/14/2022] Open
Abstract
In fungi, peptidases play a crucial role in adaptability. At present, the roles of peptidases in ultraviolet (UV) and thermal tolerance are still unclear. In this study, a C69-family cysteine dipeptidase of the entomopathogenic fungus Metarhizium acridum, MaPepDA, was expressed in Escherichia coli. The purified enzyme had a molecular mass of 56-kDa, and displayed a high activity to dipeptide substrate with an optimal Ala-Gln hydrolytic activity at about pH 6.0 and 55°C. It was demonstrated that MaPepDA is an intracellular dipeptidase localized in the cytosol, and that it is expressed during the whole fungal growth. Disruption of the MaPepDA gene increased conidial germination, growth rate, and significantly improved the tolerance to UV-B and heat stress in M. acridum. However, virulence and conidia production was largely unaffected in the ΔMaPepDA mutant. Digital gene expression data revealed that the ΔMaPepDA mutant had a higher UV-B and heat-shock tolerance compared to wild type by regulating transcription of sets of genes involved in cell surface component, cell growth, DNA repair, amino acid metabolism, sugar metabolism and some important signaling pathways of stimulation. Our results suggested that disruption of the MaPepDA could potentially improve the performance of fungal pesticides in the field application with no adverse effect on virulence and conidiation.
Collapse
Affiliation(s)
- Juan Li
- School of Life Sciences, Chongqing University, Chongqing, China.,Chongqing Engineering Research Center for Fungal Insecticides, Chongqing, China.,Key Laboratory of Gene Function and Regulation Technologies, Chongqing Municipal Education Commission, Chongqing, China
| | - Mei Guo
- School of Life Sciences, Chongqing University, Chongqing, China.,Chongqing Engineering Research Center for Fungal Insecticides, Chongqing, China.,Key Laboratory of Gene Function and Regulation Technologies, Chongqing Municipal Education Commission, Chongqing, China
| | - Yueqing Cao
- School of Life Sciences, Chongqing University, Chongqing, China.,Chongqing Engineering Research Center for Fungal Insecticides, Chongqing, China.,Key Laboratory of Gene Function and Regulation Technologies, Chongqing Municipal Education Commission, Chongqing, China
| | - Yuxian Xia
- School of Life Sciences, Chongqing University, Chongqing, China.,Chongqing Engineering Research Center for Fungal Insecticides, Chongqing, China.,Key Laboratory of Gene Function and Regulation Technologies, Chongqing Municipal Education Commission, Chongqing, China
| |
Collapse
|