1
|
Mojžišová M, Weiperth A, Gebauer R, Laffitte M, Patoka J, Grandjean F, Kouba A, Petrusek A. Diversity and distribution of Aphanomyces astaci in a European hotspot of ornamental crayfish introductions. J Invertebr Pathol 2024; 202:108040. [PMID: 38081448 DOI: 10.1016/j.jip.2023.108040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/28/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023]
Abstract
Ornamental trade has become an important introduction pathway of non-native aquatic species worldwide. Correspondingly, there has been an alarming increase in the number of established crayfish of aquarium origin in Europe over the previous decade. The oomycete Aphanomyces astaci, the pathogen causing crayfish plague responsible for serious declines of European crayfish populations, is dispersed with introduced North American crayfish. The role of ornamental taxa in introducing and spreading different genotypes of this pathogen in open waters remains unclear. We investigated the distribution, prevalence, and diversity of A. astaci in Budapest, Hungary, which became a hotspot of aquarium crayfish introductions. Their establishment in this area was facilitated by locally abundant thermal waters. We screened for A. astaci in six host taxa from 18 sites sampled between 2018 and 2021: five cambarids (Cambarellus patzcuarensis, Faxonius limosus, Procambarus alleni, P. clarkii, P. virginalis) and one native astacid (Pontastacus leptodactylus). The pathogen was confirmed at five sampled sites in four host taxa: P. virginalis, P. clarkii, F. limosus, and for the first time in European open waters also in P. alleni. Genotyping was successful only in individuals from two different brooks where multiple host species coexisted but revealed unexpected patterns. Mitochondrial B-haplogroup of A. astaci, previously usually reported from Pacifastacus leniusculus or infected European species, was detected in P. virginalis at both sites, and in both F. limosus and P. virginalis sampled from a thermally stable tributary of Barát brook in 2018. In contrast, A-haplogroup of A. astaci was detected in coexisting F. limosus, P. virginalis and P. clarkii sampled in the same watercourse just a few hundred meters downstream in 2020. Additional genotyping methods indicated that a previously unknown A. astaci strain was associated with the latter haplogroup. One P. virginalis individual from 2020 was apparently co-infected by strains representing both mitochondrial haplogroups. The results indicated multiple sources of A. astaci in Budapest, likely directly associated with the introduction of ornamental species, interspecific transmission of this pathogen among ornamental hosts, and potential for a quick spatial or temporal turnover of dominant A. astaci strains at a certain locality. This highlights that in regions with high richness of potential A. astaci hosts, host taxon/pathogen genotype combinations become unpredictable, which might prevent reliable genotyping of pathogen sources in local crayfish mass mortalities.
Collapse
Affiliation(s)
- Michaela Mojžišová
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, Prague 2, CZ-12800, Czechia.
| | - András Weiperth
- Department of Freshwater Fish Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter Károly utca 1, Gödöllő, HU-2100, Hungary.
| | - Radek Gebauer
- Faculty of Fisheries and Protection of Waters, CENAKVA, University of South Bohemia in České Budějovice, Zátiší 728/II, Vodňany, CZ-38925, Czechia.
| | - Maud Laffitte
- Laboratoire Ecologie et Biologie des Interactions, UMR CNRS 7267 Equipe Ecologie Evolution Symbiose, Université de Poitiers, 3 rue Jacques Fort, TSA 51106, Poitiers Cedex, FR-86073, France.
| | - Jiří Patoka
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, Prague - Suchdol, CZ-16500, Czechia.
| | - Frédéric Grandjean
- Laboratoire Ecologie et Biologie des Interactions, UMR CNRS 7267 Equipe Ecologie Evolution Symbiose, Université de Poitiers, 3 rue Jacques Fort, TSA 51106, Poitiers Cedex, FR-86073, France.
| | - Antonín Kouba
- Faculty of Fisheries and Protection of Waters, CENAKVA, University of South Bohemia in České Budějovice, Zátiší 728/II, Vodňany, CZ-38925, Czechia.
| | - Adam Petrusek
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, Prague 2, CZ-12800, Czechia.
| |
Collapse
|
2
|
Martínez-Ríos M, Martín-Torrijos L, Diéguez-Uribeondo J. Protocols for studying the crayfish plague pathogen, Aphanomyces astaci, and its host-pathogen interactions. J Invertebr Pathol 2023; 201:108018. [PMID: 37940036 DOI: 10.1016/j.jip.2023.108018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 11/03/2023] [Accepted: 11/05/2023] [Indexed: 11/10/2023]
Abstract
The crayfish plague caused by the pathogen Aphanomyces astaci has decimated the European and Asian populations of freshwater crayfish and represents an important threat to the other highly susceptible crayfish species in the world, such as the Australian, Madagascar, and South American species. The development and application of molecular methods addressed to the identification of A. astaci has increased exponentially during the last decades in contrast to a slow trend of the pathogen biology and host interaction. There is still a need for a better comprehension of the A. astaci-crayfish interactions, specifically the resistance and tolerance immune mechanism. These types of studies required a robust basic knowledge on the developmental biology of the pathogen in order to reproduce life stages and to perform infection experiments. A great piece of work in this area was carried out during the 1960 s to 80 s in University of Uppsala. Thus, the purpose of this work was to update previous protocols as well as to generate new guidelines to reproduce key developmental biology stages of A. astaci, to eventually identify crayfish populations with higher resistance and tolerance to this pathogen. This work also refers to other methodologies and guidelines for the diagnosis of crayfish plague, the pathogen isolation, and the in vitro production of zoospores.
Collapse
Affiliation(s)
- María Martínez-Ríos
- Mycology Department, Real Jardín Botánico-CSIC, Plaza Murillo 2, 28014 Madrid, Spain.
| | - Laura Martín-Torrijos
- Mycology Department, Real Jardín Botánico-CSIC, Plaza Murillo 2, 28014 Madrid, Spain.
| | | |
Collapse
|
3
|
Casabella-Herrero G, Martín-Torrijos L, Diéguez-Uribeondo J. eDNA monitoring as a tool for evaluating the reintroduction of Austropotamobius pallipes after a crayfish plague outbreak. J Invertebr Pathol 2023; 201:108026. [PMID: 38007177 DOI: 10.1016/j.jip.2023.108026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 11/27/2023]
Abstract
The crayfish plague, a severe disease caused by the oomycete Aphanomyces astaci, is responsible for most population declines of susceptible crayfish in Europe. This pathogen has been devastating native populations of Austropotamobius pallipes since the 1970s in the Iberian Peninsula. In this study, we report a massive mortality event in one of the most important Spanish populations of A. pallipes. We aimed to: (i) identify the cause of the mortality, and (ii) evaluate the reintroduction viability of the species. Over the course of six months, we used environmental DNA (eDNA) and traditional trap-based methods to detect the presence of A. astaci or of native or invasive crayfish in order to evaluate the reintroduction viability of A. pallipes to the affected population. We did not capture any live crayfish or detect the presence of A. astaci in the reservoir water during the six months following the mass mortality event. Our analyses indicated that it was feasible to initiate a reintroduction program at the site, which will continue to be monitored for three to five years and will help improve the conservation status of A. pallipes.
Collapse
Affiliation(s)
| | - Laura Martín-Torrijos
- Mycology Department, Real Jardín Botánico-CSIC, Plaza Murillo 2, 28014 Madrid, Spain.
| | | |
Collapse
|
4
|
Martín-Torrijos L, Hernández-Pérez A, Monroy-López JF, Diéguez-Uribeondo J. Aphanomyces astaci in Mexico: A new haplotype from dwarf crayfish Cambarellus montezumae. J Invertebr Pathol 2023; 201:108000. [PMID: 37806441 DOI: 10.1016/j.jip.2023.108000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/30/2023] [Accepted: 10/04/2023] [Indexed: 10/10/2023]
Abstract
The crayfish plague is an emerging infectious disease caused by the pathogen Aphanomyces astaci (Oomycota), which is responsible for the decimation of Eurasian freshwater crayfish. This pathogen can coexist with the North American crayfish. These are chronic carriers of the disease as consequence of an immune response that can contain the growth of the pathogen without killing it. The origin of A. astaci locates in the southeastern United States and coincides with the origin of the family Cambaridae. This diverse family of decapods is distributed in North America from southern Canada to Honduras. However, only the native crayfish species from Canada and the USA have been examined for the presence of A. astaci. In this study, we describe for the first time the presence of A. astaci in Mexico in a population of the native species Cambarellus montezumae. By analyzing the small (rrnS) and large (rrnL) mitochondrial ribosomal regions, we showed the presence of two haplotypes of A. astaci within the same population (d1-haplotype and, a novel haplotype that was named, mex1-haplotype). The finding of A. astaci in Mexico confirms the occurrence of this pathogen within the range of the family Cambaridae. The individuals of C. montezumae appear to be chronic carriers of A. astaci, indicated by the lack of documented crayfish plague outbreaks in this population, similar to the pattern observed in other North American species. Thus, the results are of special concern to susceptible species of southern regions of America, i.e., Parastacidae. Therefore, this work emphasizes the need to better understand the distribution and genetic diversity of A. astaci within the distribution range of the natural carriers, i.e., North American species, especially the unexplored area of the family Cambaridae.
Collapse
Affiliation(s)
- Laura Martín-Torrijos
- Department of Mycology, Real Jardín Botánico-CSIC, Plaza Murillo 2, 28014 Madrid, Spain.
| | - Ariadne Hernández-Pérez
- Departamento de Medicina Preventiva y Salud Pública. Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Circuito de la Investigación Científica s/n, 04510, Ciudad Universitaria, México
| | - Jorge Francisco Monroy-López
- Departamento de Medicina y Zootecnia de Abejas, Conejos y Organismos Acuáticos. Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Circuito de la Investigación Científica s/n, 04510, Ciudad Universitaria, México
| | | |
Collapse
|
5
|
Casabella-Herrero G, Higuera-Gamindez M, Azcona VA, Martín-Torrijos L, Diéguez-Uribeondo J. Austropotamobius pallipes can be infected by two haplotypes of Aphanomyces astaci: A key example from an outbreak at an ex-situ conservation facility. J Invertebr Pathol 2023; 201:107989. [PMID: 37659741 DOI: 10.1016/j.jip.2023.107989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
The crayfish plague, caused by the pathogen Aphanomyces astaci, is a pandemic disease endemic to North America that has been devastating susceptible crayfish populations in Europe since the 19th century. In Spain, this disease has decimated populations of the native crayfish species Austropotamobius pallipes due to introductions of North American crayfish, which act as vectors of the pathogen. To combat against these losses, several regional governments have established ex-situ breeding programs to restock wild populations of the species. In this study, we report on an outbreak of A. astaci that occurred in one of the most important A. pallipes aquaculture centers in Spain. Using a variety of detection methods, we analyzed affected crayfish and environmental samples from the facilities over a period of six months and determined that the outbreak was caused by two haplotypes of A. astaci, d1 and d2, which are both associated with the North American crayfish species Procambarus clarkii. To our knowledge, this is the first report of a two-haplotype coinfection of A. astaci outside the native range of this pathogen.
Collapse
Affiliation(s)
| | | | - Vicente Alcaide Azcona
- Centro de Investigación Agroambiental "El Chaparrillo", CM412 Carretera de Porzuna, km4, 13071 Ciudad Real, Spain.
| | - Laura Martín-Torrijos
- Mycology Department, Real Jardín Botánico-CSIC, Plaza Murillo 2, 28014 Madrid, Spain.
| | | |
Collapse
|
6
|
Yu YB, Choi JH, Kang JC, Kim HJ, Kim JH. Shrimp bacterial and parasitic disease listed in the OIE: A review. Microb Pathog 2022; 166:105545. [PMID: 35452787 DOI: 10.1016/j.micpath.2022.105545] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/15/2022] [Accepted: 04/15/2022] [Indexed: 10/18/2022]
Abstract
Shrimp aquaculture industry has steadily increased with demand and development of aquaculture technology. In recent years, frequent diseases have become a major risk factor for shrimp aquaculture, such as a drastically reduced the production of shrimp and causing national economic loss. Among them, shrimp bacterial diseases such as hepatopancreatic necrosis disease (AHPND) and necrotizing hepatopancreatitis (NHP-B) and parasitic disease such as Aphanomyces astaci (crayfish plague) are emerging and evolving into new types. OIE (World Organization for Animal Health) regularly updates information on diseases in the Aquatic Code and Aquatic Manual, but in-depth information on the shrimp diseases are lacking. Therefore, the purpose of this review is to provide information necessary for the response and prevention of shrimp diseases by understanding the characteristics and diagnosis of shrimp diseases designated by OIE.
Collapse
Affiliation(s)
- Young-Bin Yu
- Department of Aquatic Life Medicine, Pukyong National University, Busan, South Korea
| | - Jae-Ho Choi
- Department of Aquatic Life Medicine, Pukyong National University, Busan, South Korea
| | - Ju-Chan Kang
- Department of Aquatic Life Medicine, Pukyong National University, Busan, South Korea.
| | - Hyoung Jun Kim
- OIE Reference Laboratory for VHS, National Institute of Fisheries Science, Busan, South Korea.
| | - Jun-Hwan Kim
- Department of Aquatic Life and Medical Science, Sun Moon University, Asan-si, South Korea.
| |
Collapse
|
7
|
González-Miguéns R, Soler-Zamora C, Villar-Depablo M, Todorov M, Lara E. Multiple convergences in the evolutionary history of the testate amoeba family Arcellidae (Amoebozoa: Arcellinida: Sphaerothecina): when the ecology rules the morphology. Zool J Linn Soc 2021. [DOI: 10.1093/zoolinnean/zlab074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Protists are probably the most species-rich eukaryotes, yet their systematics are inaccurate, leading to an underestimation of their actual diversity. Arcellinida (= lobose testate amoebae) are amoebozoans that build a test (a hard shell) whose shape and composition are taxonomically informative. One of the most successful groups is Arcellidae, a family found worldwide in many freshwater and terrestrial environments where they are indicators of environmental quality. However, the systematics of the family is based on works published nearly a century ago. We re-evaluated the systematics based on single-cell barcoding, morphological and ecological data. Overall, test shape appears to be more related to environmental characteristics than to the species’ phylogenetic position. We show several convergences in organisms with similar ecology, some traditionally described species being paraphyletic. Based on conservative traits, we review the synapomorphies of the infraorder Sphaerothecina, compile a list of synonyms and describe a new genus Galeripora, with five new combinations. Seven new species: Arcella guadarramensis sp. nov., Galeripora balari sp. nov., Galeripora bufonipellita sp. nov., Galeripora galeriformis sp. nov., Galeripora naiadis sp. nov., Galeripora sitiens sp. nov. andGaleripora succelli sp. nov. are also described here.
Collapse
Affiliation(s)
| | | | - Mar Villar-Depablo
- Real Jardín Botánico (RJB-CSIC), Plaza Murillo 2, Madrid, Spain
- Museo Nacional de Ciencias Naturales (MNCN-CSIC), Serrano 115 bis, Madrid, Spain
| | - Milcho Todorov
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Science, Sofia, Bulgaria
| | - Enrique Lara
- Real Jardín Botánico (RJB-CSIC), Plaza Murillo 2, Madrid, Spain
| |
Collapse
|
8
|
Di Domenico M, Curini V, Caprioli R, Giansante C, Mrugała A, Mojžišová M, Cammà C, Petrusek A. Real-Time PCR Assays for Rapid Identification of Common Aphanomyces astaci Genotypes. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.597585] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The oomycete Aphanomyces astaci is the etiologic agent of crayfish plague, a disease that has seriously impacted the populations of European native crayfish species. The introduction of non-indigenous crayfish of North American origin and their wide distribution across Europe have largely contributed to spread of crayfish plague in areas populated by indigenous crayfish. Tracking A. astaci genotypes may thus be a useful tool for investigating the natural history of crayfish plague in its European range, as well as the sources and introduction pathways of the pathogen. In this study, we describe the development of real-time PCR TaqMan assays aiming to distinguish the five genotype groups of A. astaci (A–E) previously defined by their distinct RAPD patterns. The method was evaluated using DNA extracts from pure A. astaci cultures representing the known genotype groups, and from A. astaci-positive crayfish clinical samples collected mostly during crayfish plague outbreaks that recently occurred in Central Italy and Czechia. The assays do not cross-react with each other, and those targeting genotype groups A, B, D, and E seem sufficiently specific to genotype the pathogen from infected crayfish in the areas invaded by A. astaci (particularly Europe). The unusual A. astaci genotype “SSR-Up” documented from crayfish plague outbreaks in Czechia and chronically infected Pontastacus leptodactylus in the Danube is detected by the group B real-time PCR. The assay originally developed to detect group C (one not yet documented from crayfish plague outbreaks) showed cross-reactivity with Aphanomyces fennicus; the A. astaci genotype “rust1” described in the United States from Faxonius rusticus is detected by that assay as well. Analyses of additional markers (such as sequencing of the nuclear internal transcribed spacer or mitochondrial ribosomal subunits) may complement such cases when the real-time PCR-based genotyping is not conclusive. Despite some limitations, the method is a robust tool for fast genotyping of A. astaci genotype groups common in Europe, both during crayfish plague outbreaks and in latent infections.
Collapse
|
9
|
Martín-Torrijos L, Correa-Villalona AJ, Azofeifa-Solano JC, Villalobos-Rojas F, Wehrtmann IS, Diéguez-Uribeondo J. First Detection of the Crayfish Plague Pathogen Aphanomyces astaci in Costa Rica: European Mistakes Should Not Be Repeated. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.623814] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The crayfish plague pathogen Aphanomyces astaci is one of the main factors responsible for the decline in European and Asian native crayfish species. This pathogen was transported to these regions through its natural carriers, North American crayfish species, which were introduced during the last century. Since then, the carrier species and the pathogen have spread worldwide due to globalization and the highly invasive nature of these species. In Europe, five carrier species have been categorized as high-risk as they are responsible for the loss of provisioning services, which endangers freshwater ecosystems. The red swamp crayfish Procambarus clarkii, in particular, is currently one of the most concerning species as its spread threatens crayfish biodiversity and freshwater ecosystems worldwide. In this study, we describe the first detection of A. astaci in an introduced population of P. clarkii in Central America, specifically in Costa Rica. Using molecular approaches, we analyzed 48 crayfish samples collected from Reservoir Cachí and detected the presence of A. astaci in four of these samples. The introduction of P. clarkii and the incorrect management of the species (related to its fishery and the commercialization of live specimens) over the past decades in Europe are mistakes that should not be repeated elsewhere. The detection of the pathogen is a warning sign about the dangerous impact that the introduction of this invasive crayfish may have, not only as a carrier of an emerging disease but also as a direct risk to the invaded ecosystems. Our results may serve to (1) assess current and future consequences, and (2) direct future research activities, such as determining the potential impacts of A. astaci on native decapod species, or on other introduced crayfish species that are used for aquaculture purposes, such as Cherax quadricarinatus.
Collapse
|
10
|
Martín-Torrijos L, Martínez-Ríos M, Casabella-Herrero G, Adams SB, Jackson CR, Diéguez-Uribeondo J. Tracing the origin of the crayfish plague pathogen, Aphanomyces astaci, to the Southeastern United States. Sci Rep 2021; 11:9332. [PMID: 33927290 PMCID: PMC8085144 DOI: 10.1038/s41598-021-88704-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 04/05/2021] [Indexed: 02/02/2023] Open
Abstract
The oomycete Aphanomyces astaci is an emerging infectious pathogen affecting freshwater crayfish worldwide and is responsible for one of the most severe wildlife pandemics ever reported. The pathogen has caused mass mortalities of freshwater crayfish species in Europe and Asia, and threatens other susceptible species in Madagascar, Oceania and South America. The pathogen naturally coexists with some North American crayfish species that are its chronic carriers. Presumptions that A. astaci originated in North America are based on disease outbreaks that followed translocations of North American crayfish and on the identification of the pathogen mainly in Europe. We studied A. astaci in the southeastern US, a center of freshwater crayfish diversity. In order to decipher the origin of the pathogen, we investigated (1) the distribution and haplotype diversity of A. astaci, and (2) whether there are crayfish species-specificities and/or geographical restrictions for A. astaci haplotypes. A total of 132 individuals, corresponding to 19 crayfish species and one shrimp species from 23 locations, tested positive for A. astaci. Mitochondrial rnnS and rnnL sequences indicated that A. astaci from the southeastern US exhibited the highest genetic diversity so far described for the pathogen (eight haplotypes, six of which we newly describe). Our findings that A. astaci is widely distributed and genetically diverse in the region supports the hypothesis that the pathogen originated in the southeastern US. In contrast to previous assumptions, however, the pathogen exhibited no clear species-specificity or geographical patterns.
Collapse
Affiliation(s)
- Laura Martín-Torrijos
- Department of Mycology, Real Jardín Botánico-CSIC, Plaza Murillo 2, 28014, Madrid, Spain.
| | - María Martínez-Ríos
- Department of Mycology, Real Jardín Botánico-CSIC, Plaza Murillo 2, 28014, Madrid, Spain
| | | | - Susan B Adams
- USDA Forest Service, Southern Research Station, Center for Bottomland Hardwoods Research, 1000 Front Street, Oxford, MS, 38655, USA
| | - Colin R Jackson
- Department of Biology, University of Mississippi, University, MS, 38677, USA
| | | |
Collapse
|