1
|
Santos LPA, Moraes D, Assunção LDP, Brock M, da Silva KLP, Chaves AR, Martins RO, Silva-Bailão MG, Soares CMDA, Bailão AM. Propionate consumption activates mitochondrial activity, methylcitrate cycle and promotes changes in the cell wall of the human pathogen Histoplasma capsulatum. Fungal Biol 2025; 129:101545. [PMID: 40023528 DOI: 10.1016/j.funbio.2025.101545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 12/29/2024] [Accepted: 01/24/2025] [Indexed: 03/04/2025]
Abstract
Histoplasma capsulatum is the fungal causative agent of the systemic mycosis Histoplasmosis, a disease with high incidence in the Americas and with worldwide occurrence. During infection, H. capsulatum yeast cells may metabolize nutrients such as odd fatty acids and amino acids, which render propionyl-CoA, a three-carbon molecule that may be toxic in high concentrations. In fungi, propionyl-CoA metabolism occurs mainly via the methylcitrate cycle (MCC). Therefore, this work aimed to analyze the adaptation of H. capsulatum to propionate. In silico analysis indicated potential genes coding for MCC specific enzymes, such as methylcitrate synthase (MCS), methylcitrate dehydratase (MCD) and methylisocitrate lyase (MCL). Propionate-grown cells induced the expression of MCS and MCL. Additionally, MCS enzymatic activity increased in propionate, regardless of the presence of the preferred carbon source glucose. Although propionate alone does not promote strong growth of H. capsulatum, propionate was consumed from the medium. Proteomic analyses identified 348 propionate-regulated proteins, 133 down-regulated and 215 up-regulated. Propionate metabolization increased ROS accumulation, cell wall remodeling, and fatty acid and amino acid oxidations. Altogether, these findings suggest that propionate metabolization activates the MCC, promotes changes in the cell wall, increases oxidative stress and activates alternative carbon source utilization.
Collapse
Affiliation(s)
- Luiz Paulo Araújo Santos
- Laboratório de Biologia Molecular (LBM), Instituto de Ciências Biológicas (ICB), Universidade Federal de Goiás (UFG), Brazil
| | - Dayane Moraes
- Laboratório de Biologia Molecular (LBM), Instituto de Ciências Biológicas (ICB), Universidade Federal de Goiás (UFG), Brazil
| | - Leandro do Prado Assunção
- Laboratório de Biologia Molecular (LBM), Instituto de Ciências Biológicas (ICB), Universidade Federal de Goiás (UFG), Brazil
| | - Matthias Brock
- Fungal Biology and Genetics Group, University of Nottingham, Nottingham, UK
| | | | - Andréa Rodrigues Chaves
- Laboratório de Cromatografia e Espectrometria de Massas (LaCEM), Instituto de Química (IQ), Universidade Federal de Goiás (UFG), Brazil
| | - Rafael Oliveira Martins
- Laboratório de Cromatografia e Espectrometria de Massas (LaCEM), Instituto de Química (IQ), Universidade Federal de Goiás (UFG), Brazil
| | - Mirelle Garcia Silva-Bailão
- Laboratório de Biologia Molecular (LBM), Instituto de Ciências Biológicas (ICB), Universidade Federal de Goiás (UFG), Brazil
| | - Célia Maria de Almeida Soares
- Laboratório de Biologia Molecular (LBM), Instituto de Ciências Biológicas (ICB), Universidade Federal de Goiás (UFG), Brazil
| | - Alexandre Melo Bailão
- Laboratório de Biologia Molecular (LBM), Instituto de Ciências Biológicas (ICB), Universidade Federal de Goiás (UFG), Brazil.
| |
Collapse
|
2
|
Porollo A, Sayson SG, Ashbaugh A, Rebholz S, Landero Figueroa JA, Cushion MT. Insights into copper sensing and tolerance in Pneumocystis species. Front Microbiol 2024; 15:1383737. [PMID: 38812685 PMCID: PMC11133566 DOI: 10.3389/fmicb.2024.1383737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/01/2024] [Indexed: 05/31/2024] Open
Abstract
Introduction Pneumocystis species are pathogenic fungi known to cause pneumonia in immunocompromised mammals. They are obligate to their host, replicate extracellularly in lung alveoli and thrive in the copper-enriched environment of mammalian lungs. In this study, we investigated the proteome of Pneumocystis murina, a model organism that infects mice, in the context of its copper sensing and tolerance. Methods and results The query for copper-associated annotations in FungiDB followed by a manual curation identified only 21 genes in P. murina, significantly fewer compared to other clinically relevant fungal pathogens or phylogenetically similar free-living fungi. We then employed instrumental analyses, including Size-Exclusion Chromatography Inductively Coupled Plasma Mass Spectrometry (SEC-ICP-MS), Immobilized Metal Affinity Chromatography (IMAC), and Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS), to isolate and identify copper-binding proteins from freshly extracted organisms, revealing 29 distinct cuproproteins. The RNA sequencing (RNA-seq) analysis of P. murina exposed to various CuSO4 concentrations at three temporal intervals (0.5, 2, and 5 h) indicated that significant gene expression changes occurred only under the highest CuSO4 concentration probed (100 μM) and the longest exposure duration (5 h). This stimulus led to the upregulation of 43 genes and downregulation of 27 genes compared to untreated controls. Quantitative PCR (qPCR) confirmed the expression of four out of eight selected upregulated genes, including three assumed transcription factors (PNEG_01236, PNEG_01675, and PNEG_01730) and a putative copper transporter (PNEG_02609). Notably, the three applied methodologies - homology-based annotation, SEC-ICP-MS/IMAC/LC-MS/MS, and RNA-seq - yielded largely distinct findings, with only four genes (PNEG_02587, PNEG_03319, PNEG_02584, and PNEG_02989) identified by both instrumental methods. Discussion The insights contribute to the broader knowledge of Pneumocystis copper homeostasis and provide novel facets of host-pathogen interactions for extracellular pathogens. We suggest that future studies of Pneumocystis pathogenicity and copper stress survival should consider the entire spectrum of identified genes.
Collapse
Affiliation(s)
- Aleksey Porollo
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, United States
| | - Steven G. Sayson
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, United States
- Cincinnati Veterans Affairs Medical Center, Cincinnati, OH, United States
| | - Alan Ashbaugh
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, United States
- Cincinnati Veterans Affairs Medical Center, Cincinnati, OH, United States
| | - Sandra Rebholz
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, United States
- Cincinnati Veterans Affairs Medical Center, Cincinnati, OH, United States
| | | | - Melanie T. Cushion
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, United States
- Cincinnati Veterans Affairs Medical Center, Cincinnati, OH, United States
| |
Collapse
|
3
|
Chot E, Medicherla KM, Reddy MS. Comparative transcriptome analysis of ectomycorrhizal fungus Pisolithus albus in response to individual and combined stress of copper and cadmium. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:118616-118633. [PMID: 37917254 DOI: 10.1007/s11356-023-30592-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/17/2023] [Indexed: 11/04/2023]
Abstract
An ectomycorrhizal fungus Pisolithus albus establishes the natural symbiosis with plant roots on extreme heavy metal (HM)-rich soil and enables their survival in toxic metal concentrations. Understanding P. albus key genes and pathways behind strong metal tolerance is crucial for its successful application in the rehabilitation of metal-contaminated barren lands. Therefore, this study aimed to analyze the whole transcriptome profile of P. albus under individual and combined metal stress of copper (Cu) and cadmium (Cd). At 480 µM Cu and 16 µM Cd toxic concentrations, P. albus has shown growth and survival and accumulated high metal (1.46 µg Cu and 1.13 µg Cd per mg of dry mycelia). The study found a stronger response of P. albus to single-metal stress in high concentration as compared to multi-metal stress in relatively lower concentration. Hence, the intensity of fungal response to HM stress is mainly determined by the metal concentration involved in stress. We have found a total of 11 pathways significantly associated with HM stress, among which amino acid, lipid, and carbohydrate metabolisms were highly affected. The functional enrichment of differentially expressed genes has shown the induced biosynthesis of arginine, melanin, metal chelating agents, membrane phospholipids, fatty acids, folate, pantothenate, ergothioneine, and other antioxidant agents; upregulation of zinc ion uptake, potassium transporters, and lysine degradation; and reduction of phosphatidylcholine degradation, incorrect protein folding, iron uptake, and potassium efflux as the top efficient tolerance mechanisms of P. albus against HM stress. The current study would contribute to understanding fungal HM tolerance and its further utilization in the bioremediation of metal-contaminated abandoned lands. The validation of RNA-sequencing analysis with RT-qPCR of selected genes showed the high credibility of the presented data.
Collapse
Affiliation(s)
- Eetika Chot
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Bhadson Road, Patiala, Punjab, 147004, India
| | | | - Mondem Sudhakara Reddy
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Bhadson Road, Patiala, Punjab, 147004, India.
| |
Collapse
|
4
|
de Figueiredo AMB, Moraes D, Bailão AM, Rocha OB, Silva LOS, Ribeiro-Dias F, Soares CMDA. Proteomic analysis reveals changes in the proteome of human THP-1 macrophages infected with Paracoccidioides brasiliensis. Front Cell Infect Microbiol 2023; 13:1275954. [PMID: 38045758 PMCID: PMC10693345 DOI: 10.3389/fcimb.2023.1275954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/24/2023] [Indexed: 12/05/2023] Open
Abstract
Paracoccidioides spp. is the etiologic agent of Paracoccidioidomycosis (PCM), a systemic disease with wide distribution in Latin America. Macrophages are very important cells during the response to infection by P. brasiliensis. In this study, we performed a proteomic analysis to evaluate the consequences of P. brasiliensis yeast cells on the human THP-1 macrophage proteome. We have identified 443 and 2247 upregulated or downregulated proteins, respectively, in macrophages co-cultured with yeast cells of P. brasiliensis in comparison to control macrophages unexposed to the fungus. Proteomic analysis revealed that interaction with P. brasiliensis caused metabolic changes in macrophages that drastically affected energy production pathways. In addition, these macrophages presented regulated many factors related to epigenetic modifications and gene transcription as well as a decrease of many proteins associated to the immune system activity. This is the first human macrophage proteome derived from interactions with P. brasiliensis, which contributes to elucidating the changes that occur during the host response to this fungus. Furthermore, it highlights proteins that may be targets for the development of new therapeutic approaches to PCM.
Collapse
Affiliation(s)
- Ana Marina Barroso de Figueiredo
- Laboratório de Imunidade Natural (LIN), Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Dayane Moraes
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Alexandre Melo Bailão
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Olivia Basso Rocha
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Lana Ohara Souza Silva
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Fátima Ribeiro-Dias
- Laboratório de Imunidade Natural (LIN), Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Célia Maria de Almeida Soares
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| |
Collapse
|