1
|
Cameron ES, Sanchez S, Goldman N, Blaxter ML, Finn RD. Diversity and specificity of molecular functions in cyanobacterial symbionts. Sci Rep 2024; 14:18658. [PMID: 39134591 PMCID: PMC11319675 DOI: 10.1038/s41598-024-69215-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 08/01/2024] [Indexed: 08/15/2024] Open
Abstract
Cyanobacteria are globally occurring photosynthetic bacteria notable for their contribution to primary production and production of toxins which have detrimental ecosystem impacts. Furthermore, cyanobacteria can form mutualistic symbiotic relationships with a diverse set of eukaryotes, including land plants, aquatic plankton and fungi. Nevertheless, not all cyanobacteria are found in symbiotic associations suggesting symbiotic cyanobacteria have evolved specializations that facilitate host-interactions. Photosynthetic capabilities, nitrogen fixation, and the production of complex biochemicals are key functions provided by host-associated cyanobacterial symbionts. To explore if additional specializations are associated with such lifestyles in cyanobacteria, we have conducted comparative phylogenomics of molecular functions and of biosynthetic gene clusters (BGCs) in 984 cyanobacterial genomes. Cyanobacteria with host-associated and symbiotic lifestyles were concentrated in the family Nostocaceae, where eight monophyletic clades correspond to specific host taxa. In agreement with previous studies, symbionts are likely to provide fixed nitrogen to their eukaryotic partners, through multiple different nitrogen fixation pathways. Additionally, our analyses identified chitin metabolising pathways in cyanobacteria associated with specific host groups, while obligate symbionts had fewer BGCs. The conservation of molecular functions and BGCs between closely related symbiotic and free-living cyanobacteria suggests the potential for additional cyanobacteria to form symbiotic relationships than is currently known.
Collapse
Affiliation(s)
- Ellen S Cameron
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridge, CB10 1SD, UK
- Tree of Life, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Santiago Sanchez
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridge, CB10 1SD, UK
| | - Nick Goldman
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridge, CB10 1SD, UK
| | - Mark L Blaxter
- Tree of Life, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Robert D Finn
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridge, CB10 1SD, UK.
| |
Collapse
|
2
|
Schwob G, Almendras K, Veas-Mattheos K, Pezoa M, Orlando J. Host specialization and spatial divergence of bacteria associated with Peltigera lichens promote landscape gamma diversity. ENVIRONMENTAL MICROBIOME 2024; 19:57. [PMID: 39103916 DOI: 10.1186/s40793-024-00598-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 07/21/2024] [Indexed: 08/07/2024]
Abstract
BACKGROUND Lichens are micro-ecosystems relying on diverse microorganisms for nutrient cycling, environmental adaptation, and structural support. We investigated the spatial-scale dependency of factors shaping the ecological processes that govern lichen-associated bacteria. We hypothesize that lichens function as island-like habitats hosting divergent microbiomes and promoting landscape gamma-diversity. Three microenvironments -thalli, substrates, and neighboring soils- were sampled from four geographically overlapping species of Peltigera cyanolichens, spanning three bioclimatic zones in the Chilean Patagonia, to determine how bacterial diversity, assembly processes, ecological drivers, interaction patterns, and niche breadth vary among Peltigera microenvironments on a broad geographical scale. RESULTS The hosts' phylogeny, especially that of the cyanobiont, alongside climate as a secondary factor, impose a strong ecological filtering of bacterial communities within Peltigera thalli. This results in deterministically assembled, low diverse, and phylogenetically convergent yet structurally divergent bacterial communities. Host evolutionary and geographic distances accentuate the divergence in bacterial community composition of Peltigera thalli. Compared to soil and substrate, Peltigera thalli harbor specialized and locally adapted bacterial taxa, conforming sparse and weak ecological networks. CONCLUSIONS The findings suggest that Petigera thalli create fragmented habitats that foster landscape bacterial gamma-diversity. This underscores the importance of preserving lichens for maintaining a potential reservoir of specialized bacteria.
Collapse
Affiliation(s)
- Guillaume Schwob
- Instituto Milenio Biodiversidad de Ecosistemas Antárticos y Subantárticos (BASE), Las Palmeras 3425, Ñuñoa, Santiago, 7800003, Chile
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, 7800003, Chile
| | - Katerin Almendras
- Instituto Milenio Biodiversidad de Ecosistemas Antárticos y Subantárticos (BASE), Las Palmeras 3425, Ñuñoa, Santiago, 7800003, Chile
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, 7800003, Chile
| | - Karla Veas-Mattheos
- Instituto Milenio Biodiversidad de Ecosistemas Antárticos y Subantárticos (BASE), Las Palmeras 3425, Ñuñoa, Santiago, 7800003, Chile
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, 7800003, Chile
| | - Matías Pezoa
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, 7800003, Chile
| | - Julieta Orlando
- Instituto Milenio Biodiversidad de Ecosistemas Antárticos y Subantárticos (BASE), Las Palmeras 3425, Ñuñoa, Santiago, 7800003, Chile.
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, 7800003, Chile.
| |
Collapse
|
3
|
Rodríguez‐Arribas C, Martínez I, Aragón G, Zamorano‐Elgueta C, Cavieres L, Prieto M. Specialization patterns in symbiotic associations: A community perspective over spatial scales. Ecol Evol 2023; 13:e10296. [PMID: 37441095 PMCID: PMC10333671 DOI: 10.1002/ece3.10296] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023] Open
Abstract
Specialization, contextualized in a resource axis of an organism niche, is a core concept in ecology. In biotic interactions, specialization can be determined by the range of interacting partners. Evolutionary and ecological factors, in combination with the surveyed scale (spatial, temporal, biological, and/or taxonomic), influence the conception of specialization. This study aimed to assess the specialization patterns and drivers in the lichen symbiosis, considering the interaction between the principal fungus (mycobiont) and the associated Nostoc (cyanobiont), from a community perspective considering different spatial scales. Thus, we determined Nostoc phylogroup richness and composition of lichen communities in 11 Nothofagus pumilio forests across a wide latitudinal gradient in Chile. To measure specialization, cyanobiont richness, Simpson's and d' indices were estimated for 37 mycobiont species in these communities. Potential drivers that might shape Nostoc composition and specialization measures along the environmental gradient were analysed. Limitations in lichen distributional ranges due to the availability of their cyanobionts were studied. Turnover patterns of cyanobionts were identified at multiple spatial scales. The results showed that environmental factors shaped the Nostoc composition of these communities, thus limiting cyanobiont availability to establish the symbiotic association. Besides, specialization changed with the spatial scale and with the metric considered. Cyanolichens were more specialized than cephalolichens when considering partner richness and Simpson's index, whereas the d' index was mostly explained by mycobiont identity. Little evidence of lichen distributional ranges due to the distribution of their cyanobionts was found. Thus, lichens with broad distributional ranges either associated with several cyanobionts or with widely distributed cyanobionts. Comparisons between local and regional scales showed a decreasing degree of specialization at larger scales due to an increase in cyanobiont richness. The results support the context dependency of specialization and how its consideration changes with the metric and the spatial scale considered. Subsequently, we suggest considering the entire community and widening the spatial scale studied as it is crucial to understand factors determining specialization.
Collapse
Affiliation(s)
- Clara Rodríguez‐Arribas
- Área de Biodiversidad y Conservación, Research Group of “Ecología, sistemática y evolución de hongos y líquenes (ESEFUNLICH)”, Departamento de Biología, Geología, Física y Química Inorgánica, ESCETUniversidad Rey Juan CarlosMóstolesSpain
| | - Isabel Martínez
- Área de Biodiversidad y Conservación, Research Group of “Ecología, sistemática y evolución de hongos y líquenes (ESEFUNLICH)”, Departamento de Biología, Geología, Física y Química Inorgánica, ESCETUniversidad Rey Juan CarlosMóstolesSpain
| | - Gregorio Aragón
- Área de Biodiversidad y Conservación, Research Group of “Ecología, sistemática y evolución de hongos y líquenes (ESEFUNLICH)”, Departamento de Biología, Geología, Física y Química Inorgánica, ESCETUniversidad Rey Juan CarlosMóstolesSpain
| | - Carlos Zamorano‐Elgueta
- Universidad de AysénCoyhaiqueChile
- CR2‐Center for Climate and Resilience Research (CR)2SantiagoChile
| | - Lohengrin Cavieres
- Departamento de Botánica, Facultad de Ciencias Naturales y OceanográficasUniversidad de ConcepciónConcepciónChile
| | - María Prieto
- Área de Biodiversidad y Conservación, Research Group of “Ecología, sistemática y evolución de hongos y líquenes (ESEFUNLICH)”, Departamento de Biología, Geología, Física y Química Inorgánica, ESCETUniversidad Rey Juan CarlosMóstolesSpain
| |
Collapse
|
4
|
García-Breijo FJ, Molins A, Reig-Armiñana J, Barreno E. The Tripartite Lichen Ricasolia virens: Involvement of Cyanobacteria and Bacteria in Its Morphogenesis. Microorganisms 2023; 11:1517. [PMID: 37375019 DOI: 10.3390/microorganisms11061517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Ricasolia virens is an epiphytic lichen-forming fungus mainly distributed in Western Europe and Macaronesia in well-structured forests with ecological continuity that lack eutrophication. It is considered to be threatened or extinct in many territories in Europe (IUCN). Despite its biological and ecological relevance, studies on this taxon are scarce. The thalli are tripartite, and the mycobiont has a simultaneous symbiotic relationship with cyanobacteria and green microalgae, which represent interesting models to analyse the strategies and adaptations resulting from the interactions of lichen symbionts. The present study was designed to contribute to a better understanding of this taxon, which has shown a clear decline over the last century. The symbionts were identified by molecular analysis. The phycobiont is Symbiochloris reticulata, and the cyanobionts (Nostoc) are embedded in internal cephalodia. Light, transmission electron and low-temperature scanning microscopy techniques were used to investigate the thallus anatomy, ultrastructure of microalgae and ontogeny of pycnidia and cephalodia. The thalli are very similar to its closest relative, Ricasolia quercizans. The cellular ultrastructure of S. reticulata by TEM is provided. Non-photosynthetic bacteria located outside the upper cortex are introduced through migratory channels into the subcortical zone by the splitting of fungal hyphae. Cephalodia were very abundant, but never as external photosymbiodemes.
Collapse
Affiliation(s)
- Francisco J García-Breijo
- Departamento de Ecosistemas Agroforestales, ETSIAMN, Universitat Politècnica de València, Camino de Vera s/n, 46022 València, Spain
| | - Arantzazu Molins
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva (ICBiBE), Botánica, Universitat de València, C/Dr. Moliner, 50, 46100 Burjassot, Spain
- Instituto de Investigaciones Agroambientales y de Economía del Agua (INAGEA), Departamento de Biología, Universitat de les Illes Balears (UIB), Ctra. Valldemossa Km.7., 07122 Palma de Malllorca, Spain
| | - José Reig-Armiñana
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva (ICBiBE), Botánica, Universitat de València, C/Dr. Moliner, 50, 46100 Burjassot, Spain
| | - Eva Barreno
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva (ICBiBE), Botánica, Universitat de València, C/Dr. Moliner, 50, 46100 Burjassot, Spain
| |
Collapse
|
5
|
Magain N, Miadlikowska J, Goffinet B, Goward T, Pardo-De la Hoz C, Jüriado I, Simon A, Mercado-Díaz J, Barlow T, Moncada B, Lücking R, Spielmann A, Canez L, Wang L, Nelson P, Wheeler T, Lutzoni F, Sérusiaux E. High species richness in the lichen genus Peltigera ( Ascomycota, Lecanoromycetes): 34 species in the dolichorhizoid and scabrosoid clades of section Polydactylon, including 24 new to science. PERSOONIA 2023; 51:1-88. [PMID: 38665978 PMCID: PMC11041898 DOI: 10.3767/persoonia.2023.51.01] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 10/10/2022] [Indexed: 04/28/2024]
Abstract
Applying molecular methods to fungi establishing lichenized associations with green algae or cyanobacteria has repeatedly revealed the existence of numerous phylogenetic taxa overlooked by classical taxonomic approaches. Here, we report taxonomical conclusions based on multiple species delimitation and validation analyses performed on an eight-locus dataset that includes world-wide representatives of the dolichorhizoid and scabrosoid clades in section Polydactylon of the genus Peltigera. Following the recommendations resulting from a consensus species delimitation approach and additional species validation analysis (BPP) performed in this study, we present a total of 25 species in the dolichorhizoid clade and nine in the scabrosoid clade, including respectively 18 and six species that are new to science and formally described. Additionally, one combination and three varieties (including two new to science) are proposed in the dolichorhizoid clade. The following 24 new species are described: P. appalachiensis, P. asiatica, P. borealis, P. borinquensis, P. chabanenkoae, P. clathrata, P. elixii, P. esslingeri, P. flabellae, P. gallowayi, P. hawaiiensis, P. holtanhartwigii, P. itatiaiae, P. hokkaidoensis, P. kukwae, P. massonii, P. mikado, P. nigriventris, P. orientalis, P. rangiferina, P. sipmanii, P. stanleyensis, P. vitikainenii and P. willdenowii; the following new varieties are introduced: P. kukwae var. phyllidiata and P. truculenta var. austroscabrosa; and the following new combination is introduced: P. hymenina var. dissecta. Each species from the dolichorhizoid and scabrosoid clades is morphologically and chemically described, illustrated, and characterised with ITS sequences. Identification keys are provided for the main biogeographic regions where species from the two clades occur. Morphological and chemical characters that are commonly used for species identification in the genus Peltigera cannot be applied to unambiguously recognise most molecularly circumscribed species, due to high variation of thalli formed by individuals within a fungal species, including the presence of distinct morphs in some cases, or low interspecific variation in others. The four commonly recognised morphospecies: P. dolichorhiza, P. neopolydactyla, P. pulverulenta and P. scabrosa in the dolichorhizoid and scabrosoid clades represent species complexes spread across multiple and often phylogenetically distantly related lineages. Geographic origin of specimens is often helpful for species recognition; however, ITS sequences are frequently required for a reliable identification. Citation: Magain N, Miadlikowska J, Goffinet B, et al. 2023. High species richness in the lichen genus Peltigera (Ascomycota, Lecanoromycetes): 34 species in the dolichorhizoid and scabrosoid clades of section Polydactylon, including 24 new to science. Persoonia 51: 1-88. doi: 10.3767/persoonia.2023.51.01.
Collapse
Affiliation(s)
- N. Magain
- Evolution and Conservation Biology, InBioS Research Center, University of Liège, Sart Tilman B22, Quartier vallée 1, Chemin de la vallée 4, B-4000 Liège, Belgium
- Department of Biology, Duke University, Box 90338, Durham, North Carolina, 27708 USA
| | - J. Miadlikowska
- Department of Biology, Duke University, Box 90338, Durham, North Carolina, 27708 USA
| | - B. Goffinet
- Ecology and Evolutionary Biology, Unit 3043, University of Connecticut, 75 North Eagleville road, Storrs CT, 06269-3043 USA
| | - T. Goward
- Beaty Biodiversity Museum, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - C.J. Pardo-De la Hoz
- Department of Biology, Duke University, Box 90338, Durham, North Carolina, 27708 USA
| | - I. Jüriado
- Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi 2, Tartu 50409, Estonia; Institute of Agricultural & Environmental Sciences, Estonian University of Life Sciences, Fr. R. Kreutzwaldi 5, Tartu 51006, Estonia
| | - A. Simon
- Evolution and Conservation Biology, InBioS Research Center, University of Liège, Sart Tilman B22, Quartier vallée 1, Chemin de la vallée 4, B-4000 Liège, Belgium
- Ecology and Evolutionary Biology, Unit 3043, University of Connecticut, 75 North Eagleville road, Storrs CT, 06269-3043 USA
| | - J.A. Mercado-Díaz
- Science & Education, The Field Museum, 1400 S. Lake Shore Drive, Chicago, Illinois, 60605 USA
| | - T. Barlow
- Department of Biology, Duke University, Box 90338, Durham, North Carolina, 27708 USA
| | - B. Moncada
- Licenciatura en Biología, Universidad Distrital Francisco José de Caldas, Cra. 4 No. 26B-54, Torre de Laboratorios, Herbario, Bogotá, Colombia; current address: Botanischer Garten, Freie Universität Berlin, Königin-Luise-Straße 6–8, 14195 Berlin, Germany
| | - R. Lücking
- Botanischer Garten, Freie Universität Berlin, Königin-Luise-Straße 6–8, 14195 Berlin, Germany
| | - A. Spielmann
- Laboratòrio de Botanica / Liquenologia, Instituto de Biociencias, Universidade Federal de Mato Grosso do Sul, Campo Grande – MS, Brazil
| | - L. Canez
- Laboratòrio de Botanica / Liquenologia, Instituto de Biociencias, Universidade Federal de Mato Grosso do Sul, Campo Grande – MS, Brazil
| | - L.S. Wang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, CAS, Kunming 650201, China
| | - P. Nelson
- Natural and Behavioral Sciences Division, University of Maine – Fort Kent, Fort Kent, ME, USA
| | - T. Wheeler
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - F. Lutzoni
- Department of Biology, Duke University, Box 90338, Durham, North Carolina, 27708 USA
| | - E. Sérusiaux
- Evolution and Conservation Biology, InBioS Research Center, University of Liège, Sart Tilman B22, Quartier vallée 1, Chemin de la vallée 4, B-4000 Liège, Belgium
| |
Collapse
|
6
|
High Andean Steppes of Southern Chile Contain Little-Explored Peltigera Lichen Symbionts. J Fungi (Basel) 2023; 9:jof9030372. [PMID: 36983540 PMCID: PMC10058012 DOI: 10.3390/jof9030372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/08/2023] [Accepted: 03/16/2023] [Indexed: 03/22/2023] Open
Abstract
Peltigera lichens can colonize extreme habitats, such as high-elevation ecosystems, but their biodiversity is still largely unknown in these environments, especially in the southern hemi- sphere. We assessed the genetic diversity of mycobionts and cyanobionts of 60 Peltigera lichens collected in three high Andean steppes of southern Chile using LSU, β-tubulin, COR3 and ITS loci for mycobionts, and SSU and rbcLX loci for cyanobionts. We obtained 240 sequences for the different mycobiont markers and 118 for the cyanobiont markers, including the first report of β-tubulin sequences of P. patagonica through modifying a previously designed primer. Phylogenetic analyses, ITS scrutiny and variability of haplotypes were used to compare the sequences with those previously reported. We found seven mycobiont species and eleven cyanobiont haplotypes, including considerable novel symbionts. This was reflected by ~30% of mycobionts and ~20% of cyanobionts haplotypes that yielded less than 99% BLASTn sequence identity, 15 new sequences of the ITS1-HR, and a putative new Peltigera species associated with 3 Nostoc haplotypes not previously reported. Our results suggest that high Andean steppe ecosystems are habitats of unknown or little-explored lichen species and thus valuable environments to enhance our understanding of global Peltigera biodiversity.
Collapse
|
7
|
Almer J, Resl P, Gudmundsson H, Warshan D, Andrésson ÓS, Werth S. Symbiont-specific responses to environmental cues in a threesome lichen symbiosis. Mol Ecol 2023; 32:1045-1061. [PMID: 36478478 DOI: 10.1111/mec.16814] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Photosymbiodemes are a special case of lichen symbiosis where one lichenized fungus engages in symbiosis with two different photosynthetic partners, a cyanobacterium and a green alga, to develop two distinctly looking photomorphs. We compared gene expression of thallus sectors of the photosymbiodeme-forming lichen Peltigera britannica containing cyanobacterial photobionts with thallus sectors with both green algal and cyanobacterial photobionts and investigated differential gene expression at different temperatures representing mild and putatively stressful conditions. First, we quantified photobiont-mediated differences in fungal gene expression. Second, because of known ecological differences between photomorphs, we investigated symbiont-specific responses in gene expression to temperature increases. Photobiont-mediated differences in fungal gene expression could be identified, with upregulation of distinct biological processes in the different morphs, showing that interaction with specific symbiosis partners profoundly impacts fungal gene expression. Furthermore, high temperatures expectedly led to an upregulation of genes involved in heat shock responses in all organisms in whole transcriptome data and to an increased expression of genes involved in photosynthesis in both photobiont types at 15 and 25°C. The fungus and the cyanobacteria exhibited thermal stress responses already at 15°C, the green algae mainly at 25°C, demonstrating symbiont-specific responses to environmental cues and symbiont-specific ecological optima.
Collapse
Affiliation(s)
- Jasmin Almer
- Systematics, Biodiversity and Evolution of Plants, LMU Munich, Munich, Germany.,Institute of Biology, University of Graz, Graz, Austria
| | - Philipp Resl
- Systematics, Biodiversity and Evolution of Plants, LMU Munich, Munich, Germany.,Institute of Biology, University of Graz, Graz, Austria
| | - Hörður Gudmundsson
- Life and Environmental Sciences, University of Iceland, Reykjavik, Iceland
| | - Denis Warshan
- Life and Environmental Sciences, University of Iceland, Reykjavik, Iceland
| | - Ólafur S Andrésson
- Life and Environmental Sciences, University of Iceland, Reykjavik, Iceland
| | - Silke Werth
- Systematics, Biodiversity and Evolution of Plants, LMU Munich, Munich, Germany
| |
Collapse
|
8
|
Alonso-García M, Pino-Bodas R, Villarreal A JC. Co-dispersal of symbionts in the lichen Cladonia stellaris inferred from genomic data. FUNGAL ECOL 2022. [DOI: 10.1016/j.funeco.2022.101165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Furmanek Ł, Czarnota P, Seaward MRD. A review of the potential of lichen substances as antifungal agents: the effects of extracts and lichen secondary metabolites on Fusarium fungi. Arch Microbiol 2022; 204:523. [PMID: 35881248 PMCID: PMC9325835 DOI: 10.1007/s00203-022-03104-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/06/2022] [Accepted: 06/27/2022] [Indexed: 11/26/2022]
Abstract
The present meta-analysis provides literature data on the effect of lichen extracts and single secondary metabolites used against Fusarium spp. moulds. Lichen extracts were obtained from 51 corticolous, 17 terricolous and 18 saxicolous lichen species and 37 secondary compounds were tested against eight fungal species, i.e., Fusarium acuminatum, F. avenaceum, F. culmorum, F. fujikuroi, F. oxysporum, F. roseum, F. solani and F. udum. The researchers used several test methods, mostly to determine MIC and IZ. Extracts were obtained using several solvents, mainly organic ones with use of the Soxhlet apparatus. The most frequently tested species was F. oxysporum, against which lichen substances from Alectoria sarmentosa, Cladonia mitis, C. rangiferina, Flavoparmelia caperata, Hypotrachyna cirrhata, Leucodermia leucomelos, Parmotrema austrosinense, P. reticulatum, Physcia aipolia, Pseudevernia furfuracea, Roccella montagnei and Umbilicaria nylanderiana and secondary metabolites such as 2-hydroxy-4-methoxy-3,6-dimethylbenzoic acid, atranorin, lecanoric and (+)-usnic acids showed the highest antifungal potential. These agencies could compete with the potential of fungicides, such as flucytosine and fluconazole. Other species have been poorly investigated. Statistical analysis of literature data showed that the fungistatic potential of lichen extracts is significantly different from individual secondary metabolites. Similarly, the potential of secondary metabolites often differs significantly from that of non-lichen substances. This meta-analysis indicates the potential of lichen substances as future anti-fusarial agents.
Collapse
Affiliation(s)
- Łukasz Furmanek
- Department of Ecology and Environmental Protection, University of Rzeszów, ul. Zelwerowicza 4, 35-601, Rzeszow, Poland.
| | - Paweł Czarnota
- Department of Ecology and Environmental Protection, University of Rzeszów, ul. Zelwerowicza 4, 35-601, Rzeszow, Poland
| | - Mark R D Seaward
- School of Archaeological and Forensic Sciences, University of Bradford, Bradford, BD7 1DP, UK
| |
Collapse
|
10
|
Blázquez M, Hernández-Moreno LS, Gasulla F, Pérez-Vargas I, Pérez-Ortega S. The Role of Photobionts as Drivers of Diversification in an Island Radiation of Lichen-Forming Fungi. Front Microbiol 2022; 12:784182. [PMID: 35046912 PMCID: PMC8763358 DOI: 10.3389/fmicb.2021.784182] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/02/2021] [Indexed: 01/04/2023] Open
Abstract
Speciation in oceanic islands has attracted the interest of scientists since the 19th century. One of the most striking evolutionary phenomena that can be studied in islands is adaptive radiation, that is, when a lineage gives rise to different species by means of ecological speciation. Some of the best-known examples of adaptive radiation are charismatic organisms like the Darwin finches of the Galapagos and the cichlid fishes of the great African lakes. In these and many other examples, a segregation of the trophic niche has been shown to be an important diversification driver. Radiations are known in other groups of organisms, such as lichen-forming fungi. However, very few studies have investigated their adaptive nature, and none have focused on the trophic niche. In this study, we explore the role of the trophic niche in a putative radiation of endemic species from the Macaronesian Region, the Ramalina decipiens group. The photobiont diversity was studied by Illumina MiSeq sequencing of the ITS2 region of 197 specimens spanning the phylogenetic breadth and geographic range of the group. A total of 66 amplicon sequence variants belonging to the four main clades of the algal genus Trebouxia were found. Approximately half of the examined thalli showed algal coexistence, but in most of them, a single main photobiont amounted to more than 90% of the reads. However, there were no significant differences in photobiont identity and in the abundance of ITS2 reads across the species of the group. We conclude that a segregation of the trophic niche has not occurred in the R. decipiens radiation.
Collapse
Affiliation(s)
- Miguel Blázquez
- Department of Mycology, Real Jardín Botánico (CSIC), Madrid, Spain.,Open Access Publication Support Program, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,Escuela Internacional de Doctorado, Universidad Rey Juan Carlos, Móstoles, Spain
| | - Lucía S Hernández-Moreno
- Department of Mycology, Real Jardín Botánico (CSIC), Madrid, Spain.,Open Access Publication Support Program, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Francisco Gasulla
- Department of Life Sciences, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Israel Pérez-Vargas
- Department of Botany, Ecology and Plant Physiology, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Sergio Pérez-Ortega
- Department of Mycology, Real Jardín Botánico (CSIC), Madrid, Spain.,Open Access Publication Support Program, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|
11
|
Moya P, Molins A, Škaloud P, Divakar PK, Chiva S, Dumitru C, Molina MC, Crespo A, Barreno E. Biodiversity Patterns and Ecological Preferences of the Photobionts Associated With the Lichen-Forming Genus Parmelia. Front Microbiol 2021; 12:765310. [PMID: 35003003 PMCID: PMC8739953 DOI: 10.3389/fmicb.2021.765310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/26/2021] [Indexed: 11/17/2022] Open
Abstract
The worldwide, ecologically relevant lichen-forming genus Parmelia currently includes 41 accepted species, of which the Parmelia sulcata group (PSULgp) and the Parmelia saxatilis group (PSAXgp) have received considerable attention over recent decades; however, phycobiont diversity is poorly known in Parmelia s. lat. Here, we studied the diversity of Trebouxia microalgae associated with 159 thalli collected from 30 locations, including nine Parmelia spp.: P. barrenoae, P. encryptata, P. ernstiae, P. mayi, P. omphalodes, P. saxatilis, P. serrana, P. submontana, and P. sulcata. The mycobionts were studied by carrying out phylogenetic analyses of the nrITS. Microalgae genetic diversity was examined by using both nrITS and LSU rDNA markers. To evaluate putative species boundaries, three DNA species delimitation analyses were performed on Trebouxia and Parmelia. All analyses clustered the mycobionts into two main groups: PSULgp and PSAXgp. Species delimitation identified 13 fungal and 15 algal species-level lineages. To identify patterns in specificity and selectivity, the diversity and abundance of the phycobionts were identified for each Parmelia species. High specificity of each Parmelia group for a given Trebouxia clade was observed; PSULgp associated only with clade I and PSAXgp with clade S. However, the degree of specificity is different within each group, since the PSAXgp mycobionts were less specific and associated with 12 Trebouxia spp., meanwhile those of PSULgp interacted only with three Trebouxia spp. Variation-partitioning analyses were conducted to detect the relative contributions of climate, geography, and symbiotic partner to phycobiont and mycobiont distribution patterns. Both analyses explained unexpectedly high portions of variability (99 and 98%) and revealed strong correlations between the fungal and algal diversity. Network analysis discriminated seven ecological clusters. Even though climatic conditions explained the largest proportion of the variation among these clusters, they seemed to show indifference relative to climatic parameters. However, the cluster formed by P. saxatilis A/P. saxatilis B/Trebouxia sp. 2/Trebouxia sp. S02/Trebouxia sp. 3A was identified to prefer cold-temperate as well as humid summer environments.
Collapse
Affiliation(s)
- Patricia Moya
- Botánica, Instituto Cavanilles de Biodiversidad y Biología Evolutiva (ICBIBE), Fac. CC. Biológicas, Universitat de València, Valencia, Spain
| | - Arantzazu Molins
- Botánica, Instituto Cavanilles de Biodiversidad y Biología Evolutiva (ICBIBE), Fac. CC. Biológicas, Universitat de València, Valencia, Spain
| | - Pavel Škaloud
- Department of Botany, Faculty of Science, Charles University, Prague, Czechia
| | - Pradeep K. Divakar
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Salvador Chiva
- Botánica, Instituto Cavanilles de Biodiversidad y Biología Evolutiva (ICBIBE), Fac. CC. Biológicas, Universitat de València, Valencia, Spain
| | - Cristina Dumitru
- Botánica, Instituto Cavanilles de Biodiversidad y Biología Evolutiva (ICBIBE), Fac. CC. Biológicas, Universitat de València, Valencia, Spain
| | - Maria Carmen Molina
- Departamento de Biología, Geología, Física y Química Inorgánica, Escuela Superior de Ciencias Experimentales y Tecnología (ESCET), Universidad Rey Juan Carlos, Madrid, Spain
| | - Ana Crespo
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Eva Barreno
- Botánica, Instituto Cavanilles de Biodiversidad y Biología Evolutiva (ICBIBE), Fac. CC. Biológicas, Universitat de València, Valencia, Spain
| |
Collapse
|
12
|
Medeiros ID, Mazur E, Miadlikowska J, Flakus A, Rodriguez-Flakus P, Pardo-De la Hoz CJ, Cieślak E, Śliwa L, Lutzoni F. Turnover of Lecanoroid Mycobionts and Their Trebouxia Photobionts Along an Elevation Gradient in Bolivia Highlights the Role of Environment in Structuring the Lichen Symbiosis. Front Microbiol 2021; 12:774839. [PMID: 34987486 PMCID: PMC8721194 DOI: 10.3389/fmicb.2021.774839] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/19/2021] [Indexed: 12/21/2022] Open
Abstract
Shifts in climate along elevation gradients structure mycobiont-photobiont associations in lichens. We obtained mycobiont (lecanoroid Lecanoraceae) and photobiont (Trebouxia alga) DNA sequences from 89 lichen thalli collected in Bolivia from a ca. 4,700 m elevation gradient encompassing diverse natural communities and environmental conditions. The molecular dataset included six mycobiont loci (ITS, nrLSU, mtSSU, RPB1, RPB2, and MCM7) and two photobiont loci (ITS, rbcL); we designed new primers to amplify Lecanoraceae RPB1 and RPB2 with a nested PCR approach. Mycobionts belonged to Lecanora s.lat., Bryonora, Myriolecis, Protoparmeliopsis, the "Lecanora" polytropa group, and the "L." saligna group. All of these clades except for Lecanora s.lat. occurred only at high elevation. No single species of Lecanoraceae was present along the entire elevation gradient, and individual clades were restricted to a subset of the gradient. Most Lecanoraceae samples represent species which have not previously been sequenced. Trebouxia clade C, which has not previously been recorded in association with species of Lecanoraceae, predominates at low- to mid-elevation sites. Photobionts from Trebouxia clade I occur at the upper extent of mid-elevation forest and at some open, high-elevation sites, while Trebouxia clades A and S dominate open habitats at high elevation. We did not find Trebouxia clade D. Several putative new species were found in Trebouxia clades A, C, and I. These included one putative species in clade A associated with Myriolecis species growing on limestone at high elevation and a novel lineage sister to the rest of clade C associated with Lecanora on bark in low-elevation grassland. Three different kinds of photobiont switching were observed, with certain mycobiont species associating with Trebouxia from different major clades, species within a major clade, or haplotypes within a species. Lecanoraceae mycobionts and Trebouxia photobionts exhibit species turnover along the elevation gradient, but with each partner having a different elevation threshold at which the community shifts completely. A phylogenetically defined sampling of a single diverse family of lichen-forming fungi may be sufficient to document regional patterns of Trebouxia diversity and distribution.
Collapse
Affiliation(s)
- Ian D. Medeiros
- Department of Biology, Duke University, Durham, NC, United States
| | - Edyta Mazur
- W. Szafer Institute of Botany, Polish Academy of Sciences (PAS), Kraków, Poland
| | | | - Adam Flakus
- W. Szafer Institute of Botany, Polish Academy of Sciences (PAS), Kraków, Poland
| | | | | | - Elżbieta Cieślak
- W. Szafer Institute of Botany, Polish Academy of Sciences (PAS), Kraków, Poland
| | - Lucyna Śliwa
- W. Szafer Institute of Botany, Polish Academy of Sciences (PAS), Kraków, Poland
| | - François Lutzoni
- Department of Biology, Duke University, Durham, NC, United States
| |
Collapse
|
13
|
Pino-Bodas R, Stenroos S. Global Biodiversity Patterns of the Photobionts Associated with the Genus Cladonia (Lecanorales, Ascomycota). MICROBIAL ECOLOGY 2021; 82:173-187. [PMID: 33150498 PMCID: PMC8282589 DOI: 10.1007/s00248-020-01633-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/22/2020] [Indexed: 05/31/2023]
Abstract
The diversity of lichen photobionts is not fully known. We studied here the diversity of the photobionts associated with Cladonia, a sub-cosmopolitan genus ecologically important, whose photobionts belong to the green algae genus Asterochloris. The genetic diversity of Asterochloris was screened by using the ITS rDNA and actin type I regions in 223 specimens and 135 species of Cladonia collected all over the world. These data, added to those available in GenBank, were compiled in a dataset of altogether 545 Asterochloris sequences occurring in 172 species of Cladonia. A high diversity of Asterochloris associated with Cladonia was found. The commonest photobiont lineages associated with this genus are A. glomerata, A. italiana, and A. mediterranea. Analyses of partitioned variation were carried out in order to elucidate the relative influence on the photobiont genetic variation of the following factors: mycobiont identity, geographic distribution, climate, and mycobiont phylogeny. The mycobiont identity and climate were found to be the main drivers for the genetic variation of Asterochloris. The geographical distribution of the different Asterochloris lineages was described. Some lineages showed a clear dominance in one or several climatic regions. In addition, the specificity and the selectivity were studied for 18 species of Cladonia. Potentially specialist and generalist species of Cladonia were identified. A correlation was found between the sexual reproduction frequency of the host and the frequency of certain Asterochloris OTUs. Some Asterochloris lineages co-occur with higher frequency than randomly expected in the Cladonia species.
Collapse
Affiliation(s)
- Raquel Pino-Bodas
- Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Richmond, TW9 3DS, UK.
| | - Soili Stenroos
- Finnish Museum of Natural History, University of Helsinki, P.O. Box 7, Helsinki, 00014, Finland
| |
Collapse
|
14
|
Kaasalainen U, Tuovinen V, Mwachala G, Pellikka P, Rikkinen J. Complex Interaction Networks Among Cyanolichens of a Tropical Biodiversity Hotspot. Front Microbiol 2021; 12:672333. [PMID: 34177853 PMCID: PMC8220813 DOI: 10.3389/fmicb.2021.672333] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/26/2021] [Indexed: 11/13/2022] Open
Abstract
Interactions within lichen communities include, in addition to close mutualistic associations between the main partners of specific lichen symbioses, also more elusive relationships between members of a wider symbiotic community. Here, we analyze association patterns of cyanolichen symbionts in the tropical montane forests of Taita Hills, southern Kenya, which is part of the Eastern Afromontane biodiversity hotspot. The cyanolichen specimens analyzed represent 74 mycobiont taxa within the order Peltigerales (Ascomycota), associating with 115 different variants of the photobionts genus Nostoc (Cyanobacteria). Our analysis demonstrates wide sharing of photobionts and reveals the presence of several photobiont-mediated lichen guilds. Over half of all mycobionts share photobionts with other fungal species, often from different genera or even families, while some others are strict specialists and exclusively associate with a single photobiont variant. The most extensive symbiont network involves 24 different fungal species from five genera associating with 38 Nostoc photobionts. The Nostoc photobionts belong to two main groups, the Nephroma-type Nostoc and the Collema/Peltigera-type Nostoc, and nearly all mycobionts associate only with variants of one group. Among the mycobionts, species that produce cephalodia and those without symbiotic propagules tend to be most promiscuous in photobiont choice. The extent of photobiont sharing and the structure of interaction networks differ dramatically between the two major photobiont-mediated guilds, being both more prevalent and nested among Nephroma guild fungi and more compartmentalized among Peltigera guild fungi. This presumably reflects differences in the ecological characteristics and/or requirements of the two main groups of photobionts. The same two groups of Nostoc have previously been identified from many lichens in various lichen-rich ecosystems in different parts of the world, indicating that photobiont sharing between fungal species is an integral part of lichen ecology globally. In many cases, symbiotically dispersing lichens can facilitate the dispersal of sexually reproducing species, promoting establishment and adaptation into new and marginal habitats and thus driving evolutionary diversification.
Collapse
Affiliation(s)
- Ulla Kaasalainen
- Department of Geobiology, University of Göttingen, Göttingen, Germany.,Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - Veera Tuovinen
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | | | - Petri Pellikka
- Department of Geosciences and Geography, University of Helsinki, Helsinki, Finland.,State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, China
| | - Jouko Rikkinen
- Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland.,Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
15
|
Cornet L, Magain N, Baurain D, Lutzoni F. Exploring syntenic conservation across genomes for phylogenetic studies of organisms subjected to horizontal gene transfers: A case study with Cyanobacteria and cyanolichens. Mol Phylogenet Evol 2021; 162:107100. [PMID: 33592234 DOI: 10.1016/j.ympev.2021.107100] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 01/22/2021] [Accepted: 02/01/2021] [Indexed: 11/16/2022]
Abstract
Understanding the evolutionary history of symbiotic Cyanobacteria at a fine scale is essential to unveil patterns of associations with their hosts and factors driving their spatiotemporal interactions. As for bacteria in general, Horizontal Gene Transfers (HGT) are expected to be rampant throughout their evolution, which justified the use of single-locus phylogenies in macroevolutionary studies of these photoautotrophic bacteria. Genomic approaches have greatly increased the amount of molecular data available, but the selection of orthologous, congruent genes that are more likely to reflect bacterial macroevolutionary histories remains problematic. In this study, we developed a synteny-based approach and searched for Collinear Orthologous Regions (COR), under the assumption that genes that are present in the same order and orientation across a wide monophyletic clade are less likely to have undergone HGT. We searched sixteen reference Nostocales genomes and identified 99 genes, part of 28 COR comprising three to eight genes each. We then developed a bioinformatic pipeline, designed to minimize inter-genome contamination and processed twelve Nostoc-associated lichen metagenomes. This reduced our original dataset to 90 genes representing 25 COR, which were used to infer phylogenetic relationships within Nostocales and among lichenized Cyanobacteria. This dataset was narrowed down further to 71 genes representing 22 COR by selecting only genes part of one (largest) operon per COR. We found a relatively high level of congruence among trees derived from the 90-gene dataset, but congruence was only slightly higher among genes within a COR compared to genes across COR. However, topological congruence was significantly higher among the 71 genes part of one operon per COR. Nostocales phylogenies resulting from concatenation and species tree approaches based on the 90- and 71-gene datasets were highly congruent, but the most highly supported result was obtained when using synteny, collinearity, and operon information (i.e., 71-gene dataset) as gene selection criteria, which outperformed larger datasets with more genes.
Collapse
Affiliation(s)
- Luc Cornet
- InBioS - PhytoSYSTEMS, Eukaryotic Phylogenomics, University of Liège, Liège, Belgium
| | - Nicolas Magain
- Department of Biology, Duke University, Durham, NC, USA; Evolution and Conservation Biology, InBioS, University of Liège, Liège, Belgium
| | - Denis Baurain
- InBioS - PhytoSYSTEMS, Eukaryotic Phylogenomics, University of Liège, Liège, Belgium.
| | | |
Collapse
|
16
|
Assembly of Bacterial Genomes from the Metagenomes of Three Lichen Species. Microbiol Resour Announc 2020; 9:9/38/e00622-20. [PMID: 32943559 PMCID: PMC7498425 DOI: 10.1128/mra.00622-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Bacteria have recently emerged as important constituents of lichen holobionts. Here, 29 bacterial metagenome-assembled genome (MAG) sequences were reconstructed from lichen metagenomes and taxonomically classified in four phyla. These results provide a pivotal resource for further exploration of the ecological roles played by bacterial symbionts in lichen holobionts. Bacteria have recently emerged as important constituents of lichen holobionts. Here, 29 bacterial metagenome-assembled genome (MAG) sequences were reconstructed from lichen metagenomes and taxonomically classified in four phyla. These results provide a pivotal resource for further exploration of the ecological roles played by bacterial symbionts in lichen holobionts.
Collapse
|
17
|
Moya P, Molins A, Chiva S, Bastida J, Barreno E. Symbiotic microalgal diversity within lichenicolous lichens and crustose hosts on Iberian Peninsula gypsum biocrusts. Sci Rep 2020; 10:14060. [PMID: 32820199 PMCID: PMC7441164 DOI: 10.1038/s41598-020-71046-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/05/2020] [Indexed: 11/16/2022] Open
Abstract
This study analyses the interactions among crustose and lichenicolous lichens growing on gypsum biocrusts. The selected community was composed of Acarospora nodulosa, Acarospora placodiiformis, Diploschistes diacapsis, Rhizocarpon malenconianum and Diplotomma rivas-martinezii. These species represent an optimal system for investigating the strategies used to share phycobionts because Acarospora spp. are parasites of D. diacapsis during their first growth stages, while in mature stages, they can develop independently. R. malenconianum is an obligate lichenicolous lichen on D. diacapsis, and D. rivas-martinezii occurs physically close to D. diacapsis. Microalgal diversity was studied by Sanger sequencing and 454-pyrosequencing of the nrITS region, and the microalgae were characterized ultrastructurally. Mycobionts were studied by performing phylogenetic analyses. Mineralogical and macro- and micro-element patterns were analysed to evaluate their influence on the microalgal pool available in the substrate. The intrathalline coexistence of various microalgal lineages was confirmed in all mycobionts. D. diacapsis was confirmed as an algal donor, and the associated lichenicolous lichens acquired their phycobionts in two ways: maintenance of the hosts' microalgae and algal switching. Fe and Sr were the most abundant microelements in the substrates but no significant relationship was found with the microalgal diversity. The range of associated phycobionts are influenced by thallus morphology.
Collapse
Affiliation(s)
- Patricia Moya
- Botánica, ICBIBE, Fac. CC. Biológicas, Universitat de València, C/ Dr. Moliner, 50, 46100, Burjassot, Valencia, Spain.
| | - Arantzazu Molins
- Botánica, ICBIBE, Fac. CC. Biológicas, Universitat de València, C/ Dr. Moliner, 50, 46100, Burjassot, Valencia, Spain
| | - Salvador Chiva
- Botánica, ICBIBE, Fac. CC. Biológicas, Universitat de València, C/ Dr. Moliner, 50, 46100, Burjassot, Valencia, Spain
| | - Joaquín Bastida
- Geología, Fac. CC. Biológicas, Universitat de València, C/ Dr. Moliner, 50, 46100, Burjassot, Valencia, Spain
| | - Eva Barreno
- Botánica, ICBIBE, Fac. CC. Biológicas, Universitat de València, C/ Dr. Moliner, 50, 46100, Burjassot, Valencia, Spain
| |
Collapse
|
18
|
Singh G, Kukwa M, Dal Grande F, Łubek A, Otte J, Schmitt I. A Glimpse into Genetic Diversity and Symbiont Interaction Patterns in Lichen Communities from Areas with Different Disturbance Histories in Białowieża Forest, Poland. Microorganisms 2019; 7:E335. [PMID: 31505790 PMCID: PMC6780458 DOI: 10.3390/microorganisms7090335] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 08/06/2019] [Accepted: 08/22/2019] [Indexed: 11/16/2022] Open
Abstract
Anthropogenic disturbances can have strong impacts on lichen communities, as well as on individual species of lichenized fungi. Traditionally, lichen monitoring studies are based on the presence and abundance of fungal morphospecies. However, the photobionts, as well photobiont mycobiont interactions also contribute to the structure, composition, and resilience of lichen communities. Here we assess the genetic diversity and interaction patterns of algal and fungal partners in lichen communities along an anthropogenic disturbance gradient in Białowieża Forest (Poland). We sampled a total of 224 lichen thalli in a protected, a managed, and a disturbed area of the forest, and sequenced internal transcribed spacer (ITS) ribosomal DNA (rDNA) of both, fungal and algal partners. Sequence clustering using a 97% similarity threshold resulted in 46 fungal and 23 green algal operational taxonomic units (OTUs). Most of the recovered photobiont OTUs (14 out of 23) had no similar hit in the NCBI-BLAST search, suggesting that even in well studied regions, such as central Europe, a lot of photobiont diversity is yet undiscovered. If a mycobiont was present at more than one site, it was typically associated with the same photobiont OTU(s). Generalist species, i.e., taxa that associate with multiple symbiont partners, occurred in all three disturbance regimes, suggesting that such taxa have few limitations in colonizing or persisting in disturbed areas. Trebouxia jamesii associated with 53% of the fungal OTUs, and was generally the most common photobiont OTU in all areas, implying that lichens that associate with this symbiont are not limited by the availability of compatible photobionts in Central European forests, regardless of land use intensity.
Collapse
Affiliation(s)
- Garima Singh
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), 60325 Frankfurt am Main, Germany.
| | - Martin Kukwa
- Department of Plant Taxonomy and Nature Conservation, Faculty of Biology, University of Gdańsk, 80-308 Gdańsk, Poland
| | - Francesco Dal Grande
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), 60325 Frankfurt am Main, Germany
| | - Anna Łubek
- Jan Kochanowski University in Kielce, Institute of Biology, 25-406 Kielce, Poland
| | - Jürgen Otte
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), 60325 Frankfurt am Main, Germany
| | - Imke Schmitt
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), 60325 Frankfurt am Main, Germany.
- Department of Biological Sciences, Institute of Ecology, Evolution and Diversity, Goethe Universität, 60325 Frankfurt am Main, Germany.
| |
Collapse
|