1
|
Raman S, K V M, S V, Sankar A R. Silicon nanowire piezoresistor and its applications: a review. NANOTECHNOLOGY 2024; 35:362003. [PMID: 38848697 DOI: 10.1088/1361-6528/ad555e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/07/2024] [Indexed: 06/09/2024]
Abstract
Monocrystalline bulk silicon with doped impurities has been the widely preferred piezoresistive material for the last few decades to realize micro-electromechanical system (MEMS) sensors. However, there has been a growing interest among researchers in the recent past to explore other piezoresistive materials with varied advantages in order to realize ultra-miniature high-sensitivity sensors for area-constrained applications. Of the various alternative piezoresistive materials, silicon nanowires (SiNWs) are an attractive choice due to their benefits of nanometre range dimensions, giant piezoresistive coefficients, and compatibility with the integrated circuit fabrication processes. This review article elucidates the fundamentals of piezoresistance and its existence in various materials, including silicon. It comprehends the piezoresistance effect in SiNWs based on two different biasing techniques, viz., (i) ungated and (ii) gated SiNWs. In addition, it presents the application of piezoresistive SiNWs in MEMS-based pressure sensors, acceleration sensors, flow sensors, resonators, and strain gauges.
Collapse
Affiliation(s)
- Srinivasan Raman
- Centre for Innovation and Product Development (CIPD), Vellore Institute of Technology (VIT), Chennai campus, Chennai 600 127, Tamil Nadu, India
- School of Electronics Engineering (SENSE), Vellore Institute of Technology (VIT), Chennai campus, Chennai 600 127, Tamil Nadu, India
| | - Meena K V
- Mirrorcle Technologies Inc, Richmond, CA 94804, United States of America
| | - Vetrivel S
- Saint-Gobain Research India, IIT Madras Research Park, Taramani, Chennai 600 113, Tamil Nadu, India
| | - Ravi Sankar A
- Centre for Innovation and Product Development (CIPD), Vellore Institute of Technology (VIT), Chennai campus, Chennai 600 127, Tamil Nadu, India
- School of Electronics Engineering (SENSE), Vellore Institute of Technology (VIT), Chennai campus, Chennai 600 127, Tamil Nadu, India
| |
Collapse
|
2
|
Edwards NA, Talarico MK, Chaudhari A, Mansfield CJ, Oñate J. Use of accelerometers and inertial measurement units to quantify movement of tactical athletes: A systematic review. APPLIED ERGONOMICS 2023; 109:103991. [PMID: 36841096 DOI: 10.1016/j.apergo.2023.103991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 01/25/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
The dynamic work environments of tactical athletes are difficult to replicate in a laboratory. Accelerometers and inertial measurement units provide a way to characterize movement in the field. This systematic review identified how accelerometers and inertial measurement units are currently being used to quantify movement patterns of tactical athletes. Seven research and military databases were searched, producing 26,228 potential articles with 78 articles included in this review. The articles studied military personnel (73.1%), firefighters (19.2%), paramedics (3.8%), and law enforcement officers (3.8%). Accelerometers were the most used type of sensor, and physical activity was the primarily reported outcome variable. Seventy of the studies had fair or poor quality. Research on firefighters, emergency medical services, and law enforcement officers was limited. Future research should strive to make quantified movement data more accessible and user-friendly for non-research personnel, thereby prompting increased use in tactical athlete groups, especially first responder agencies.
Collapse
Affiliation(s)
- Nathan A Edwards
- School of Health and Rehabilitation Sciences, The Ohio State University, 453 W 10th Ave, Columbus, OH, 43210, USA; Human Performance Collaborative, The Ohio State University, 1961 Tuttle Park Place, Columbus, OH, 43210, USA; Sports Medicine Research Institute, The Ohio State University, 4835 Fred Taylor Drive, Columbus, OH, 43210, USA.
| | - Maria K Talarico
- Human Systems Integration Division, DEVCOM Analysis Center, U.S. Army Futures Command, 7188 Sustainment Rd, Aberdeen Proving Ground, MD, 21005, USA.
| | - Ajit Chaudhari
- School of Health and Rehabilitation Sciences, The Ohio State University, 453 W 10th Ave, Columbus, OH, 43210, USA; Sports Medicine Research Institute, The Ohio State University, 4835 Fred Taylor Drive, Columbus, OH, 43210, USA; Department of Mechanical and Aerospace Engineering, The Ohio State University, 201 W. 19th Avenue, Columbus, OH, 43210, USA; Department of Biomedical Engineering, The Ohio State University, 140 W. 19th Avenue, Columbus, OH, 43210, USA.
| | - Cody J Mansfield
- School of Health and Rehabilitation Sciences, The Ohio State University, 453 W 10th Ave, Columbus, OH, 43210, USA; Sports Medicine Research Institute, The Ohio State University, 4835 Fred Taylor Drive, Columbus, OH, 43210, USA.
| | - James Oñate
- School of Health and Rehabilitation Sciences, The Ohio State University, 453 W 10th Ave, Columbus, OH, 43210, USA; Human Performance Collaborative, The Ohio State University, 1961 Tuttle Park Place, Columbus, OH, 43210, USA; Division of Athletic Training, School of Health and Rehabilitation Sciences, The Ohio State University, 453 W 10th Ave, Columbus, OH, 43210, USA; Sports Medicine Research Institute, The Ohio State University, 4835 Fred Taylor Drive, Columbus, OH, 43210, USA.
| |
Collapse
|
3
|
Gilgen-Ammann R, Roos L, Wyss T, Veenstra BJ, Delves SK, Beeler N, Buller MJ, Friedl KE. Validation of ambulatory monitoring devices to measure energy expenditure and heart rate in a military setting. Physiol Meas 2021; 42. [PMID: 34340217 DOI: 10.1088/1361-6579/ac19f9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 08/02/2021] [Indexed: 11/12/2022]
Abstract
Objectives.To investigate the validity of different devices and algorithms used in military organizations worldwide to assess physical activity energy expenditure (PAEE) and heart rate (HR) among soldiers.Design.Device validation study.Methods. Twenty-three male participants serving their mandatory military service accomplished, firstly, nine different military specific activities indoors, and secondly, a normal military routine outdoors. Participants wore simultaneously an ActiHeart, Everion, MetaMax 3B, Garmin Fenix 3, Hidalgo EQ02, and PADIS 2.0 system. The PAEE and HR data of each system were compared to the criterion measures MetaMax 3B and Hidalgo EQ02, respectively.Results. Overall, the recorded systematic errors in PAEE estimation ranged from 0.1 (±1.8) kcal.min-1to -1.7 (±1.8) kcal.min-1for the systems PADIS 2.0 and Hidalgo EQ02 running the Royal Dutch Army algorithm, respectively, and in the HR assessment ranged from -0.1 (±2.1) b.min-1to 0.8 (±3.0) b.min-1for the PADIS 2.0 and ActiHeart systems, respectively. The mean absolute percentage error (MAPE) in PAEE estimation ranged from 29.9% to 75.1%, with only the Everion system showing an overall MAPE <30%, but all investigated devices reported overall MAPE <1.4% in the HR assessment.Conclusions. The present study demonstrated poor to moderate validity in terms of PAEE estimation, but excellent validity in all investigated devices in terms of HR assessment. Overall, the Everion performed among the best in both parameters and with a device placement on the upper arm, the Everion system is particularly useful during military service, as it does not interfere with other relevant equipment.
Collapse
Affiliation(s)
- Rahel Gilgen-Ammann
- Swiss Federal Institute of Sport Magglingen SFISM, Hauptstrasse 247, Magglingen, Switzerland
| | - Lilian Roos
- Swiss Federal Institute of Sport Magglingen SFISM, Hauptstrasse 247, Magglingen, Switzerland
| | - Thomas Wyss
- Swiss Federal Institute of Sport Magglingen SFISM, Hauptstrasse 247, Magglingen, Switzerland
| | - Bertil J Veenstra
- Institute of Training Medicine & Training Physiology, MOD/TGTF, Herculeslaan 1, Utrecht, The Netherlands
| | - Simon K Delves
- Institute of Naval Medicine, Crescent Rd, Alverstoke, Hampshire, United Kingdom
| | - Nadja Beeler
- Swiss Federal Institute of Sport Magglingen SFISM, Hauptstrasse 247, Magglingen, Switzerland
| | - Mark J Buller
- United States Army Research Institute of Environmental Medicine, 10 General Greene Avenue, Natick, Massachusetts, United States of America
| | - Karl E Friedl
- United States Army Research Institute of Environmental Medicine, 10 General Greene Avenue, Natick, Massachusetts, United States of America
| |
Collapse
|
5
|
Innovative Use of Wrist-Worn Wearable Devices in the Sports Domain: A Systematic Review. ELECTRONICS 2019. [DOI: 10.3390/electronics8111257] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Wrist wearables are becoming more and more popular, and its use is widespread in sports, both professional and amateur. However, at present, they do not seem to exploit all their potential. The objective of this study is to explore innovative proposals for the use of wearable wrist technology in the field of sports, to understand its potential and identify new challenges and lines of future research related to this technology. A systematic review of the scientific literature, collected in 4 major repositories, was carried out to locate research initiatives where wrist wearables were introduced to address some sports-related challenges. Those works that were limited to evaluating sensor performance in sports activities and those in which wrist wearable devices did not play a significant role were excluded. 26 articles were eventually selected for full-text analysis that discuss the introduction of wrist-worn wearables to address some innovative use in the sports field. This study showcases relevant proposals in 10 different sports. The research initiatives identified are oriented to the use of wearable wrist technology (i) for the comprehensive monitoring of sportspeople’s behavior in activities not supported by the vendors, (ii) to identify specific types of movements or actions in specific sports, and (iii) to prevent injuries. There are, however, open issues that should be tackled in the future, such as the incorporation of these devices in sports activities not currently addressed, or the provision of specific recommendation services for sport practitioners.
Collapse
|