1
|
Boulay C, Gracies JM, Garcia L, Authier G, Ulian A, Pradines M, Vieira TM, Pinto T, Gazzoni M, Desnous B, Parratte B, Pesenti S. Serious Game with Electromyography Feedback and Physical Therapy in Young Children with Unilateral Spastic Cerebral Palsy and Equinus Gait: A Prospective Open-Label Study. SENSORS (BASEL, SWITZERLAND) 2024; 24:1513. [PMID: 38475049 DOI: 10.3390/s24051513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/01/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024]
Abstract
The clinical effects of a serious game with electromyography feedback (EMGs_SG) and physical therapy (PT) was investigated prospectively in children with unilateral spastic cerebral palsy (USCP). An additional aim was to better understand the influence of muscle shortening on function. Thirty children with USCP (age 7.6 ± 2.1 years) received four weeks of EMGs_SG sessions 2×/week including repetitive, active alternating training of dorsi- and plantar flexors in a seated position. In addition, each child received usual PT treatment ≤ 2×/week, involving plantar flexor stretching and command strengthening on dorsi- and plantar flexors. Five-Step Assessment parameters, including preferred gait velocity (normalized by height); plantar flexor extensibility (XV1); angle of catch (XV3); maximal active ankle dorsiflexion (XA); and derived coefficients of shortening, spasticity, and weakness for both soleus and gastrosoleus complex (GSC) were compared pre and post treatment (t-tests). Correlations were explored between the various coefficients and gait velocities at baseline. After four weeks of EMGs_SG + PT, there was an increase in normalized gait velocity from 0.72 ± 0.13 to 0.77 ± 0.13 m/s (p = 0.025, d = 0.43), a decrease in coefficients of shortening (soleus, 0.10 ± 0.07 pre vs. 0.07 ± 0.08 post, p = 0.004, d = 0.57; GSC 0.16 ± 0.08 vs. 0.13 ± 0.08, p = 0.003, d = 0.58), spasticity (soleus 0.14 ± 0.06 vs. 0.12 ± 0.07, p = 0.02, d = 0.46), and weakness (soleus 0.14 ± 0.07 vs. 0.11 ± 0.07, p = 0.005, d = 0.55). At baseline, normalized gait velocity correlated with the coefficient of GSC shortening (R = -0.43, p = 0.02). Four weeks of EMGs_SG and PT were associated with improved gait velocity and decreased plantar flexor shortening. A randomized controlled trial comparing EMGs_SG and conventional PT is needed.
Collapse
Affiliation(s)
- Christophe Boulay
- Gait Laboratory, Pediatric Orthopaedic Surgery Department, Timone Children Hospital, 13385 Marseille, France
- Aix-Marseille University, CNRS, ISM UMR 7287, 13284 Marseille, France
| | - Jean-Michel Gracies
- AP-HP, Service de Rééducation Neurolocomotrice, Unité de Neurorééducation, Hôpitaux Universitaires Henri Mondor, F-94010 Créteil, France
- UR 7377 BIOTN, Laboratoire Analyse et Restauration du Mouvement, Université Paris Est Créteil (UPEC), F-94000 Créteil, France
| | - Lauren Garcia
- Gait Laboratory, Pediatric Orthopaedic Surgery Department, Timone Children Hospital, 13385 Marseille, France
- Aix-Marseille University, CNRS, ISM UMR 7287, 13284 Marseille, France
| | - Guillaume Authier
- Gait Laboratory, Pediatric Orthopaedic Surgery Department, Timone Children Hospital, 13385 Marseille, France
- Aix-Marseille University, CNRS, ISM UMR 7287, 13284 Marseille, France
| | - Alexis Ulian
- Gait Laboratory, Pediatric Orthopaedic Surgery Department, Timone Children Hospital, 13385 Marseille, France
- Aix-Marseille University, CNRS, ISM UMR 7287, 13284 Marseille, France
| | - Maud Pradines
- AP-HP, Service de Rééducation Neurolocomotrice, Unité de Neurorééducation, Hôpitaux Universitaires Henri Mondor, F-94010 Créteil, France
- UR 7377 BIOTN, Laboratoire Analyse et Restauration du Mouvement, Université Paris Est Créteil (UPEC), F-94000 Créteil, France
| | - Taian Martins Vieira
- Laboratory for Engineering of the Neuromuscular System (LISiN), Department of Electronics and Telecommunication, Politecnico di Torino, 10129 Turin, Italy
- PoliToBIOMed Laboratory, Department of Electronics and Telecommunications, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Talita Pinto
- UR 7377 BIOTN, Laboratoire Analyse et Restauration du Mouvement, Université Paris Est Créteil (UPEC), F-94000 Créteil, France
- Instituto D'Or de Pesquisa e Ensino (IDOR), Rio de Janeiro 22281-100, Brazil
| | - Marco Gazzoni
- Laboratory for Engineering of the Neuromuscular System (LISiN), Department of Electronics and Telecommunication, Politecnico di Torino, 10129 Turin, Italy
- PoliToBIOMed Laboratory, Department of Electronics and Telecommunications, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Béatrice Desnous
- Pediatric Neurology Department, Timone Children Hospital, 13005 Marseille, France
| | - Bernard Parratte
- Gait Laboratory, Pediatric Orthopaedic Surgery Department, Timone Children Hospital, 13385 Marseille, France
| | - Sébastien Pesenti
- Gait Laboratory, Pediatric Orthopaedic Surgery Department, Timone Children Hospital, 13385 Marseille, France
- Aix-Marseille University, CNRS, ISM UMR 7287, 13284 Marseille, France
| |
Collapse
|
2
|
Deschrevel J, Andries A, Maes K, Peeters J, van Opstal A, Jiang D, De Beukelaer N, Corvelyn M, Staut L, De Houwer H, Costamagna D, Desloovere K, Van Campenhout A, Gayan-Ramirez G. Histological analysis of the gastrocnemius muscle in preschool and school age children with cerebral palsy compared with age-matched typically developing children. Am J Physiol Cell Physiol 2024; 326:C573-C588. [PMID: 38105751 DOI: 10.1152/ajpcell.00344.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/05/2023] [Accepted: 12/15/2023] [Indexed: 12/19/2023]
Abstract
Inconsistent alterations in skeletal muscle histology have been reported in adolescents with cerebral palsy (CP) and whether alterations are present in young children and differ from older children is not yet known. This study aimed to define histological alterations in the medial gastrocnemius (MG) of ambulant CP (gross-motor classification system, GMFCS I-III) stratified in two age groups (preschool children, PS: 2-5 and school age children, SA: 6-9-yr old) compared with age-matched typically developing (TD) children. We hypothesized that alterations in muscle microscopic properties are already present in PS-CP and are GMFCS level specific. Ultrasound guided percutaneous microbiopsies were collected in 46 CP (24-PS) and 45 TD (13-PS) children. Sections were stained to determine fiber cross-sectional area (fCSA) and proportion, capillary, and satellite cell amount. Average absolute and normalized fCSA were similar in CP and TD, but a greater percentage of smaller fibers was found in CP. Coefficient of variation (CV) was significantly larger in PS-CP-GMFCS I-II and for type I fiber. In SA-CP, all fiber types contributed to the higher CV. Type IIx proportion was higher and type I was lower in PS-CP-GMFCS-III and for all SA-CP. Reduced capillary-to-fiber ratio was present in PS-CP-GMFCS II-III and in all SA-CP. Capillary fiber density was lower in SA-CP. Capillary domain was enhanced in all CP, but capillary spatial distribution was maintained as was satellite cell content. We concluded that MG histological alterations are already present in very young CP but are only partly specific for GMFCS level and age.NEW & NOTEWORTHY Inconsistent histological alterations have been reported in children with cerebral palsy (CP) but whether they are present in very young and ambulant CP children and differ from those reported in old CP children is not known. This study highlighted for the first time that enhanced muscle fiber size variability and loss of capillaries are already present in very young CP children, even in the most ambulant ones, and these alterations seem to extend with age.
Collapse
Affiliation(s)
- Jorieke Deschrevel
- Laboratory of Respiratory Diseases and Thoracic surgery, Department of Chronic Diseases and Metabolism, KU-Leuven, Leuven, Belgium
| | - Anke Andries
- Laboratory of Respiratory Diseases and Thoracic surgery, Department of Chronic Diseases and Metabolism, KU-Leuven, Leuven, Belgium
| | - Karen Maes
- Laboratory of Respiratory Diseases and Thoracic surgery, Department of Chronic Diseases and Metabolism, KU-Leuven, Leuven, Belgium
| | - Jules Peeters
- Laboratory of Respiratory Diseases and Thoracic surgery, Department of Chronic Diseases and Metabolism, KU-Leuven, Leuven, Belgium
| | - Axel van Opstal
- Laboratory of Respiratory Diseases and Thoracic surgery, Department of Chronic Diseases and Metabolism, KU-Leuven, Leuven, Belgium
| | - Dina Jiang
- Laboratory of Respiratory Diseases and Thoracic surgery, Department of Chronic Diseases and Metabolism, KU-Leuven, Leuven, Belgium
| | - Nathalie De Beukelaer
- Neurorehabilitation group, Department of Rehabilitation Sciences, KU-Leuven, Leuven, Belgium
| | - Marlies Corvelyn
- Stem Cell and Developmental Biology, Department of Development and Regeneration, KU-Leuven, Leuven, Belgium
| | - Lauraine Staut
- Neurorehabilitation group, Department of Rehabilitation Sciences, KU-Leuven, Leuven, Belgium
| | - Hannah De Houwer
- Pediatric Orthopedics, Department of Development and Regeneration, KU-Leuven, Leuven, Belgium
| | - Domiziana Costamagna
- Neurorehabilitation group, Department of Rehabilitation Sciences, KU-Leuven, Leuven, Belgium
- Stem Cell and Developmental Biology, Department of Development and Regeneration, KU-Leuven, Leuven, Belgium
- Exercise Physiology Research group, Department of Movement Sciences, KU-Leuven, Leuven, Belgium
| | - Kaat Desloovere
- Neurorehabilitation group, Department of Rehabilitation Sciences, KU-Leuven, Leuven, Belgium
| | - Anja Van Campenhout
- Pediatric Orthopedics, Department of Development and Regeneration, KU-Leuven, Leuven, Belgium
| | - Ghislaine Gayan-Ramirez
- Laboratory of Respiratory Diseases and Thoracic surgery, Department of Chronic Diseases and Metabolism, KU-Leuven, Leuven, Belgium
| |
Collapse
|
3
|
Hanssen B, Peeters N, Dewit T, Huyghe E, Dan B, Molenaers G, Van Campenhout A, Bar-On L, Van den Broeck C, Calders P, Desloovere K. Reliability of 3D freehand ultrasound to assess lower limb muscles in children with spastic cerebral palsy and typical development. J Anat 2023; 242:986-1002. [PMID: 36807218 PMCID: PMC10184546 DOI: 10.1111/joa.13839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/29/2022] [Accepted: 01/20/2023] [Indexed: 02/22/2023] Open
Abstract
This study investigated the reliability of 3-dimensional freehand ultrasound (3DfUS) to quantify the size (muscle volume [MV] and anatomical cross-sectional area [aCSA]), length (muscle length [ML], tendon length [TL], and muscle tendon unit length [MTUL]), and echo-intensity (EI, whole muscle and 50% aCSA), of lower limb muscles in children with spastic cerebral palsy (SCP) and typical development (TD). In total, 13 children with SCP (median age 14.3 (7.3) years) and 13 TD children (median age 11.1 (1.7) years) participated. 3DfUS scans of rectus femoris, semitendinosus, medial gastrocnemius, and tibialis anterior were performed by two raters in two sessions. The intra- and inter-rater and intra- and inter-session reliability were defined with relative and absolute reliability measures, that is, intra-class correlation coefficients (ICCs) and absolute and relative standard error of measurement (SEM and SEM%), respectively. Over all conditions, ICCs for muscle size measures ranged from 0.818 to 0.999 with SEM%s of 12.6%-1.6%. For EI measures, ICCs varied from 0.233 to 0.967 with SEM%s of 15.6%-1.7%. Length measure ICCs ranged from 0.642 to 0.999 with SEM%s of 16.0%-0.5%. In general, reliability did not differ between the TD and SCP cohort but the influence of different muscles, raters, and sessions was not constant for all 3DfUS parameters. Muscle length and muscle tendon unit length were the most reliable length parameters in all conditions. MV and aCSA showed comparable SEM%s over all muscles, where tibialis anterior MV was most reliable. EI had low-relative reliability, but absolute reliability was better, with better reliability for the distal muscles in comparison to the proximal muscles. Combining these results with earlier studies describing muscle morphology assessed in children with SCP, 3DfUS seems sufficiently reliable to determine differences between cohorts and functional levels. The applicability on an individual level, for longitudinal follow-up and after interventions is dependent on the investigated muscle and parameter. Moreover, the semitendinosus, the acquisition, and processing of multiple sweeps, and the definition of EI and TL require further investigation. In general, it is recommended, especially for longitudinal follow-up studies, to keep the rater the same, while standardizing acquisition settings and positioning of the subject.
Collapse
Affiliation(s)
- Britta Hanssen
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium.,Department of Rehabilitation Sciences, Ghent University, Ghent, Belgium
| | - Nicky Peeters
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium.,Department of Rehabilitation Sciences, Ghent University, Ghent, Belgium
| | - Tijl Dewit
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium.,Clinical Motion Analysis Laboratory, University Hospitals Leuven, Pellenberg, Belgium
| | - Ester Huyghe
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Bernard Dan
- Inkendaal Rehabilitation Hospital, Vlezenbeek, Belgium.,Université Libre de Bruxelles, Bruxelles, Belgium
| | - Guy Molenaers
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium.,Orthopaedic surgery, University Hospitals Leuven, Belgium
| | - Anja Van Campenhout
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium.,Orthopaedic surgery, University Hospitals Leuven, Belgium
| | - Lynn Bar-On
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium.,Department of Rehabilitation Sciences, Ghent University, Ghent, Belgium.,Department of Rehabilitation Medicine, Amsterdam UMC, Amsterdam, The Netherlands
| | | | - Patrick Calders
- Department of Rehabilitation Sciences, Ghent University, Ghent, Belgium
| | - Kaat Desloovere
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium.,Clinical Motion Analysis Laboratory, University Hospitals Leuven, Pellenberg, Belgium
| |
Collapse
|
4
|
De Beukelaer N, Vandekerckhove I, Huyghe E, Molenberghs G, Peeters N, Hanssen B, Ortibus E, Van Campenhout A, Desloovere K. Morphological Medial Gastrocnemius Muscle Growth in Ambulant Children with Spastic Cerebral Palsy: A Prospective Longitudinal Study. J Clin Med 2023; 12:jcm12041564. [PMID: 36836099 PMCID: PMC9963346 DOI: 10.3390/jcm12041564] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Only cross-sectional studies have demonstrated muscle deficits in children with spastic cerebral palsy (SCP). The impact of gross motor functional limitations on altered muscle growth remains unclear. This prospective longitudinal study modelled morphological muscle growth in 87 children with SCP (age range 6 months to 11 years, Gross Motor Function Classification System [GMFCS] level I/II/III = 47/22/18). Ultrasound assessments were performed during 2-year follow-up and repeated for a minimal interval of 6 months. Three-dimensional freehand ultrasound was applied to assess medial gastrocnemius muscle volume (MV), mid-belly cross-sectional area (CSA) and muscle belly length (ML). Non-linear mixed models compared trajectories of (normalized) muscle growth between GMFCS-I and GMFCS-II&III. MV and CSA growth trajectories showed a piecewise model with two breakpoints, with the highest growth before 2 years and negative growth rates after 6-9 years. Before 2 years, children with GMFCS-II&III already showed lower growth rates compared to GMFCS-I. From 2 to 9 years, the growth rates did not differ between GMFCS levels. After 9 years, a more pronounced reduction in normalized CSA was observed in GMFCS-II&III. Different trajectories in ML growth were shown between the GMFCS level subgroups. These longitudinal trajectories highlight monitoring of SCP muscle pathology from early ages and related to motor mobility. Treatment planning and goals should stimulate muscle growth.
Collapse
Affiliation(s)
- Nathalie De Beukelaer
- Department of Rehabilitation Sciences, KU Leuven, 3000 Leuven, Belgium
- Correspondence: ; Tel.: +32-474033110
| | | | - Ester Huyghe
- Department of Rehabilitation Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Geert Molenberghs
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics (I-BIOSTAT), KU Leuven, 3000 Leuven, Belgium
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics (I-BIOSTAT), Data Science Institute, Hasselt University, 3590 Diepenbeek, Belgium
| | - Nicky Peeters
- Department of Rehabilitation Sciences, KU Leuven, 3000 Leuven, Belgium
- Department of Rehabilitation Sciences, Ghent University, 9000 Gent, Belgium
| | - Britta Hanssen
- Department of Rehabilitation Sciences, KU Leuven, 3000 Leuven, Belgium
- Department of Rehabilitation Sciences, Ghent University, 9000 Gent, Belgium
| | - Els Ortibus
- Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Anja Van Campenhout
- Department of Orthopedics, University Hospitals Leuven, 3000 Leuven, Belgium
- Clinical Motion Analysis Laboratory, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Kaat Desloovere
- Department of Rehabilitation Sciences, KU Leuven, 3000 Leuven, Belgium
- Clinical Motion Analysis Laboratory, University Hospitals Leuven, 3000 Leuven, Belgium
| |
Collapse
|
5
|
Peeters N, Hanssen B, Bar-On L, De Groote F, De Beukelaer N, Coremans M, Van den Broeck C, Dan B, Van Campenhout A, Desloovere K. Associations between muscle morphology and spasticity in children with spastic cerebral palsy. Eur J Paediatr Neurol 2023; 44:1-8. [PMID: 36706682 DOI: 10.1016/j.ejpn.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/03/2022] [Accepted: 01/07/2023] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Due to the heterogeneous clinical presentation of spastic cerebral palsy (SCP), which makes spasticity treatment challenging, more insight into the complex interaction between spasticity and altered muscle morphology is warranted. AIMS We studied associations between spasticity and muscle morphology and compared muscle morphology between commonly observed spasticity patterns (i.e. different muscle activation patterns during passive stretches). METHODS Spasticity and muscle morphology of the medial gastrocnemius (MG) and semitendinosus (ST) were defined in 74 children with SCP (median age 8 years 2 months, GMFCS I/II/III: 31/25/18, bilateral/unilateral: 46/27). Using an instrumented assessment, spasticity was quantified as the difference in muscle activation recorded during passive stretches at low and high velocities and was classified in mixed length-/velocity-dependent or pure velocity-dependent activation patterns. Three-dimensional freehand ultrasound was used to assess muscle morphology (volume and length) and echogenicity intensity (as a proxy for muscle quality). Spearman correlations and Mann-Whitney-U tests defined associations and group differences, respectively. RESULTS A moderate negative association (r = -0.624, p < 0.001) was found between spasticity and MG muscle volume, while other significant associations between spasticity and muscle morphology parameters were weak. Smaller normalized muscle volume (MG p = 0.004, ST p=<0.001) and reduced muscle belly length (ST p = 0.015) were found in muscles with mixed length-/velocity-dependent patterns compared to muscles with pure velocity-dependent patterns. DISCUSSION Higher spasticity levels were associated with smaller MG and ST volumes and shorter MG muscles. These muscle morphology alterations were more pronounced in muscles that activated during low-velocity stretches compared to muscles that only activated during high-velocity stretches.
Collapse
Affiliation(s)
- Nicky Peeters
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium; Department of Rehabilitation Sciences, Ghent University, Ghent, Belgium.
| | - Britta Hanssen
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium; Department of Rehabilitation Sciences, Ghent University, Ghent, Belgium.
| | - Lynn Bar-On
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium; Department of Rehabilitation Sciences, Ghent University, Ghent, Belgium; Department of Rehabilitation Medicine, Amsterdam UMC, Amsterdam, the Netherlands.
| | | | | | - Marjan Coremans
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium.
| | | | - Bernard Dan
- Université Libre de Bruxelles (ULB), Faculty of Psychology and Education Science, Brussels, Belgium; Inkendaal Rehabilitation Hospital, Vlezenbeek, Belgium.
| | - Anja Van Campenhout
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium; Department of Orthopedic Surgery, University Hospitals Leuven, Belgium.
| | - Kaat Desloovere
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium; Clinical Motion Analysis Laboratory, University Hospitals Leuven, Belgium.
| |
Collapse
|
6
|
Botulinum Toxin Intervention in Cerebral Palsy-Induced Spasticity Management: Projected and Contradictory Effects on Skeletal Muscles. Toxins (Basel) 2022; 14:toxins14110772. [PMID: 36356022 PMCID: PMC9692445 DOI: 10.3390/toxins14110772] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/22/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Spasticity, following the neurological disorder of cerebral palsy (CP), describes a pathological condition, the central feature of which is involuntary and prolonged muscle contraction. The persistent resistance of spastic muscles to stretching is often followed by structural and mechanical changes in musculature. This leads to functional limitations at the respective joint. Focal injection of botulinum toxin type-A (BTX-A) is effectively used to manage spasticity and improve the quality of life of the patients. By blocking acetylcholine release at the neuromuscular junction and causing temporary muscle paralysis, BTX-A aims to reduce spasticity and hereby improve joint function. However, recent studies have indicated some contradictory effects such as increased muscle stiffness or a narrower range of active force production. The potential of these toxin- and atrophy-related alterations in worsening the condition of spastic muscles that are already subjected to changes should be further investigated and quantified. By focusing on the effects of BTX-A on muscle biomechanics and overall function in children with CP, this review deals with which of these goals have been achieved and to what extent, and what can await us in the future.
Collapse
|
7
|
Hazra P, Gibbs S, Arnold G, Nasir S, Wang W. Analysis of Joint Power and Work During Gait in Children With and Without Cerebral Palsy. Indian J Orthop 2022; 56:1647-1656. [PMID: 36046224 PMCID: PMC9385940 DOI: 10.1007/s43465-022-00691-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/16/2022] [Indexed: 02/04/2023]
Abstract
Purpose To compare joint work in the lower limb joints during different sub-phases of the gait cycle between Cerebral Palsy (CP) and healthy children. Methods Eighteen CP and 20 healthy children's gait data were collected. The CP group included orthoses, intra-muscular injection of botulinum toxin and surgery groups. A motion capture system was used to collect gait data. Joint work was calculated as positive and negative components in six subphases during gait and normalised by speed when comparing the groups. Results The CP group had a slower walking speed, smaller stride length and longer stance phase than the healthy group. Hip max positive work was 0.12 ± 0.02 Jkg-1/ms-1 for the CP group in pre-mid-stance but 0.07 ± 0.01 Jkg-1/ms-1 for the healthy group during the terminal phase. In terminal stance, ankle positive work was significantly lower in the CP group (0.12 ± 0.01) than in the healthy group (0.18 ± 0.01). The knee showed a similar distribution of positive work in the stance phase for the two groups. In the ankle and hip, the CP group had energy generation mainly in midstance while the healthy group was mainly in terminal stance. In the ankle, the CP group had larger energy absorption in mid-stance than the healthy children group, while the CP group showed lower energy generation in the terminal stance phase than seen in the healthy group. Conclusion The qualitative and quantitative analysis of joint work provides useful information for clinicians in the treatment and rehabilitation of CP patients.
Collapse
Affiliation(s)
- Priyam Hazra
- Institute of Motion Analysis and Research (IMAR), Department of Orthopaedic and Trauma Surgery, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY UK
| | - Sheila Gibbs
- Institute of Motion Analysis and Research (IMAR), Department of Orthopaedic and Trauma Surgery, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY UK
| | - Graham Arnold
- Institute of Motion Analysis and Research (IMAR), Department of Orthopaedic and Trauma Surgery, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY UK
| | - Sadiq Nasir
- Institute of Motion Analysis and Research (IMAR), Department of Orthopaedic and Trauma Surgery, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY UK
| | - Weijie Wang
- Institute of Motion Analysis and Research (IMAR), Department of Orthopaedic and Trauma Surgery, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY UK
| |
Collapse
|
8
|
Svane C, Forman CR, Rasul A, Nielsen JB, Lorentzen J. Muscle Contractures in Adults With Cerebral Palsy Characterized by Combined Ultrasound-Derived Echo Intensity and Handheld Dynamometry Measures. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:694-701. [PMID: 35065812 DOI: 10.1016/j.ultrasmedbio.2021.12.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/15/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
We used ultrasound-derived echo intensity and hand-held dynamometry to characterize plantar flexor muscle contractures in adults with cerebral palsy (CP). Eleven adults with CP (aged 41 ± 12 y, Gross Motor Function Classification System I-II) and 11 neurologically intact adults (aged 35 ± 10 y) participated in the study. Echo intensity was measured from the medial gastrocnemius muscle using brightness mode ultrasound. Hand-held dynamometry was used to quantify plantar flexor passive muscle stiffness and ankle joint passive range of motion (pROM). Echo intensity correlated with both passive muscle stiffness (r = 0.57, p = 0.006) and pROM (r = -0.56, p = 0.006). Ultrasound echo intensity (p = 0.02, standardized mean difference [SMD] = 1.13) and passive muscle stiffness (p < 0.001, SMD = 1.99) were higher and ankle joint pROM (p < 0.001, SMD = 2.69) was lower in adults with CP than in neurologically intact adults. We conclude that combined ultrasound-derived echo intensity and hand-held dynamometry may be used to provide an objective characterization of muscle contractures.
Collapse
Affiliation(s)
- Christian Svane
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark; Elsass Foundation, Charlottenlund, Denmark.
| | - Christian Riis Forman
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark; Elsass Foundation, Charlottenlund, Denmark
| | - Aqella Rasul
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Jens Bo Nielsen
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark; Elsass Foundation, Charlottenlund, Denmark
| | - Jakob Lorentzen
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark; Elsass Foundation, Charlottenlund, Denmark
| |
Collapse
|
9
|
Handsfield GG, Williams S, Khuu S, Lichtwark G, Stott NS. Muscle architecture, growth, and biological Remodelling in cerebral palsy: a narrative review. BMC Musculoskelet Disord 2022; 23:233. [PMID: 35272643 PMCID: PMC8908685 DOI: 10.1186/s12891-022-05110-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 02/12/2022] [Indexed: 11/16/2022] Open
Abstract
Cerebral palsy (CP) is caused by a static lesion to the brain occurring in utero or up to the first 2 years of life; it often manifests as musculoskeletal impairments and movement disorders including spasticity and contractures. Variable manifestation of the pathology across individuals, coupled with differing mechanics and treatments, leads to a heterogeneous collection of clinical phenotypes that affect muscles and individuals differently. Growth of muscles in CP deviates from typical development, evident as early as 15 months of age. Muscles in CP may be reduced in volume by as much as 40%, may be shorter in length, present longer tendons, and may have fewer sarcomeres in series that are overstretched compared to typical. Macroscale and functional deficits are likely mediated by dysfunction at the cellular level, which manifests as impaired growth. Within muscle fibres, satellite cells are decreased by as much as 40-70% and the regenerative capacity of remaining satellite cells appears compromised. Impaired muscle regeneration in CP is coupled with extracellular matrix expansion and increased pro-inflammatory gene expression; resultant muscles are smaller, stiffer, and weaker than typical muscle. These differences may contribute to individuals with CP participating in less physical activity, thus decreasing opportunities for mechanical loading, commencing a vicious cycle of muscle disuse and secondary sarcopenia. This narrative review describes the effects of CP on skeletal muscles encompassing substantive changes from whole muscle function to cell-level effects and the effects of common treatments. We discuss growth and mechanics of skeletal muscles in CP and propose areas where future work is needed to understand these interactions, particularly the link between neural insult and cell-level manifestation of CP.
Collapse
Affiliation(s)
- Geoffrey G Handsfield
- Auckland Bioengineering Institute, University of Auckland, Auckland CBD, Auckland, 1010, New Zealand.
| | - Sîan Williams
- Liggins Institute, University of Auckland, Auckland CBD, Auckland, 1010, New Zealand
- School of Allied Health, Curtin University, Kent St, Bentley, WA, 6102, Australia
| | - Stephanie Khuu
- Auckland Bioengineering Institute, University of Auckland, Auckland CBD, Auckland, 1010, New Zealand
| | - Glen Lichtwark
- School of Human Movement and Nutrition Sciences, University of Queensland, QLD, St Lucia, 4072, Australia
| | - N Susan Stott
- Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland CBD, Auckland, 1010, New Zealand
| |
Collapse
|
10
|
Bell M, Al Masruri G, Fernandez J, Williams SA, Agur AM, Stott NS, Hajarizadeh B, Mirjalili A. Typical m. triceps surae morphology and architecture measurement from 0 to 18 years: A narrative review. J Anat 2021; 240:746-760. [PMID: 34750816 PMCID: PMC8930835 DOI: 10.1111/joa.13584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 10/18/2021] [Accepted: 10/25/2021] [Indexed: 12/01/2022] Open
Abstract
The aim of this review was to report on the imaging modalities used to assess morphological and architectural properties of the m. triceps surae muscle in typically developing children, and the available reliability analyses. Scopus and MEDLINE (Pubmed) were searched systematically for all original articles published up to September 2020 measuring morphological and architectural properties of the m. triceps surae in typically developing children (18 years or under). Thirty eligible studies were included in this analysis, measuring fibre bundle length (FBL) (n = 11), pennation angle (PA) (n = 10), muscle volume (MV) (n = 16) and physiological cross‐sectional area (PCSA) (n = 4). Three primary imaging modalities were utilised to assess these architectural parameters in vivo: two‐dimensional ultrasound (2DUS; n = 12), three‐dimensional ultrasound (3DUS; n = 9) and magnetic resonance imaging (MRI; n = 6). The mean age of participants ranged from 1.4 years to 18 years old. There was an apparent increase in m. gastrocnemius medialis MV and pCSA with age; however, no trend was evident with FBL or PA. Analysis of correlations of muscle variables with age was limited by a lack of longitudinal data and methodological variations between studies affecting outcomes. Only five studies evaluated the reliability of the methods. Imaging methodologies such as MRI and US may provide valuable insight into the development of skeletal muscle from childhood to adulthood; however, variations in methodological approaches can significantly influence outcomes. Researchers wishing to develop a model of typical muscle development should carry out longitudinal architectural assessment of all muscles comprising the m. triceps surae utilising a consistent approach that minimises confounding errors.
Collapse
Affiliation(s)
- Matthew Bell
- Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Ghaliya Al Masruri
- Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Justin Fernandez
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand.,Department of Engineering Science, University of Auckland, Auckland, New Zealand
| | - Sîan A Williams
- Faculty of Health Sciences, Curtin School of Allied Health, Curtin University, Perth, Australia.,Faculty of Medical and Health Sciences, Department of Surgery, University of Auckland, Auckland, New Zealand
| | - Anne M Agur
- Division of Anatomy, Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Ngaire S Stott
- Faculty of Medical and Health Sciences, Department of Surgery, University of Auckland, Auckland, New Zealand
| | | | - Ali Mirjalili
- Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
11
|
Hanssen B, De Beukelaer N, Schless SH, Cenni F, Bar-On L, Peeters N, Molenaers G, Van Campenhout A, Van den Broeck C, Desloovere K. Reliability of Processing 3-D Freehand Ultrasound Data to Define Muscle Volume and Echo-intensity in Pediatric Lower Limb Muscles with Typical Development or with Spasticity. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:2702-2712. [PMID: 34112554 DOI: 10.1016/j.ultrasmedbio.2021.04.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
This investigation assessed the processer reliability of estimating muscle volume and echo-intensity of the rectus femoris, tibialis anterior and semitendinosus. The muscles of 10 typically developing children (8.15 [1.40] y) and 15 children with spastic cerebral palsy (7.67 [3.80] y; Gross Motor Function Classification System I = 5, II = 5, III = 5) were scanned with 3-D freehand ultrasonography. For the intra-processer analysis, the intra-class correlations coefficients (ICCs) for muscle volume ranged from 0.943-0.997, with relative standard errors of measurement (SEM%) ranging from 1.24%-8.97%. For the inter-processer analysis, these values were 0.853 to 0.988 and 3.47% to 14.02%, respectively. Echo-intensity had ICCs >0.947 and relative SEMs <4% for both analyses. Muscle volume and echo-intensity can be reliably extracted for the rectus femoris, semitendinosus and tibialis anterior in typically developing children and children with cerebral palsy. The need for a single processer to analyze all data is dependent on the size of the expected changes or differences.
Collapse
Affiliation(s)
- Britta Hanssen
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium; Clinical Motion Analysis Laboratory, University Hospitals Leuven, Pellenberg, Belgium; Department of Rehabilitation Sciences, Ghent University, Ghent, Belgium.
| | - Nathalie De Beukelaer
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium; Clinical Motion Analysis Laboratory, University Hospitals Leuven, Pellenberg, Belgium
| | - Simon-Henri Schless
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium; Clinical Motion Analysis Laboratory, University Hospitals Leuven, Pellenberg, Belgium; Motion Analysis and Biofeedback Laboratory, ALYN Paediatric and Rehabilitation Hospital, Jerusalem, Israel
| | - Francesco Cenni
- Clinical Motion Analysis Laboratory, University Hospitals Leuven, Pellenberg, Belgium; Department of Mechanical Engineering, KU Leuven, Leuven, Belgium; Laboratory of Kinesiology Willy Taillard, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Lynn Bar-On
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium; Clinical Motion Analysis Laboratory, University Hospitals Leuven, Pellenberg, Belgium; Department of Rehabilitation Medicine, Amsterdam UMC, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Nicky Peeters
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium; Clinical Motion Analysis Laboratory, University Hospitals Leuven, Pellenberg, Belgium; Department of Rehabilitation Sciences, Ghent University, Ghent, Belgium
| | - Guy Molenaers
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium; Orthopaedic Section, University Hospitals Leuven, Leuven, Belgium
| | - Anja Van Campenhout
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium; Orthopaedic Section, University Hospitals Leuven, Leuven, Belgium
| | | | - Kaat Desloovere
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium; Clinical Motion Analysis Laboratory, University Hospitals Leuven, Pellenberg, Belgium
| |
Collapse
|
12
|
Krasovsky T, Keren-Capelovitch T, Friedman J, Weiss PL. Self-Feeding Kinematics in an Ecological Setting: Typically Developing Children and Children With Cerebral Palsy. IEEE Trans Neural Syst Rehabil Eng 2021; 29:1462-1469. [PMID: 34280104 DOI: 10.1109/tnsre.2021.3098056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Assessment of self-feeding kinematics is seldom performed in an ecological setting. In preparation for development of an instrumented spoon for measurement of self-feeding in children with cerebral palsy (CP), the current work aimed to evaluate upper extremity kinematics of self-feeding in young children with typical development (TD) and a small, age-matched group of children with CP in a familiar setting, while eating with a spoon. METHODS Sixty-five TD participants and six children diagnosed with spastic CP, aged 3-9 years, fed themselves while feeding was measured using miniature three-dimensional motion capture sensors (trakStar). Kinematic variables associated with different phases of self-feeding cycle (movement time, curvature, time to peak velocity and smoothness) were compared across age-groups in the TD sample and between TD children and those with CP. RESULTS Significant between-age group differences were identified in movement times, time to peak velocity and curvature. Children with CP demonstrated slower, less smooth self-feeding movements, potentially related to activity limitations. CONCLUSIONS The identified kinematic variables form a basis for implementation of self-feeding performance assessment in children of different ages, including those with CP, which can be deployed via an instrumented spoon.
Collapse
|
13
|
Hanssen B, Peeters N, Vandekerckhove I, De Beukelaer N, Bar-On L, Molenaers G, Van Campenhout A, Degelaen M, Van den Broeck C, Calders P, Desloovere K. The Contribution of Decreased Muscle Size to Muscle Weakness in Children With Spastic Cerebral Palsy. Front Neurol 2021; 12:692582. [PMID: 34381414 PMCID: PMC8350776 DOI: 10.3389/fneur.2021.692582] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/15/2021] [Indexed: 12/13/2022] Open
Abstract
Muscle weakness is a common clinical symptom in children with spastic cerebral palsy (SCP). It is caused by impaired neural ability and altered intrinsic capacity of the muscles. To define the contribution of decreased muscle size to muscle weakness, two cohorts were recruited in this cross-sectional investigation: 53 children with SCP [median age, 8.2 (IQR, 4.1) years, 19/34 uni/bilateral] and 31 children with a typical development (TD) [median age, 9.7 (IQR, 2.9) years]. Muscle volume (MV) and muscle belly length for m. rectus femoris, semitendinosus, gastrocnemius medialis, and tibialis anterior were defined from three-dimensional freehand ultrasound acquisitions. A fixed dynamometer was used to assess maximal voluntary isometric contractions for knee extension, knee flexion, plantar flexion, and dorsiflexion from which maximal joint torque (MJT) was calculated. Selective motor control (SMC) was assessed on a 5-point scale for the children with SCP. First, the anthropometrics, strength, and muscle size parameters were compared between the cohorts. Significant differences for all muscle size and strength parameters were found (p ≤ 0.003), except for joint torque per MV for the plantar flexors. Secondly, the associations of anthropometrics, muscle size, gross motor function classification system (GMFCS) level, and SMC with MJT were investigated using univariate and stepwise multiple linear regressions. The associations of MJT with growth-related parameters like age, weight, and height appeared strongest in the TD cohort, whereas for the SCP cohort, these associations were accompanied by associations with SMC and GMFCS. The stepwise regression models resulted in ranges of explained variance in MJT from 29.3 to 66.3% in the TD cohort and from 16.8 to 60.1% in the SCP cohort. Finally, the MJT deficit observed in the SCP cohort was further investigated using the TD regression equations to estimate norm MJT based on height and potential MJT based on MV. From the total MJT deficit, 22.6–57.3% could be explained by deficits in MV. This investigation confirmed the disproportional decrease in muscle size and muscle strength around the knee and ankle joint in children with SCP, but also highlighted the large variability in the contribution of muscle size to muscle weakness.
Collapse
Affiliation(s)
- Britta Hanssen
- Department of Rehabilitation Sciences, Katholieke Universiteit (KU) Leuven, Leuven, Belgium.,Department of Rehabilitation Sciences, Ghent University, Ghent, Belgium
| | - Nicky Peeters
- Department of Rehabilitation Sciences, Katholieke Universiteit (KU) Leuven, Leuven, Belgium.,Department of Rehabilitation Sciences, Ghent University, Ghent, Belgium
| | - Ines Vandekerckhove
- Department of Rehabilitation Sciences, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Nathalie De Beukelaer
- Department of Rehabilitation Sciences, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Lynn Bar-On
- Department of Rehabilitation Sciences, Katholieke Universiteit (KU) Leuven, Leuven, Belgium.,Department of Rehabilitation Sciences, Ghent University, Ghent, Belgium.,Department of Rehabilitation Medicine, Amsterdam University Medical Center (UMC), Amsterdam, Netherlands
| | - Guy Molenaers
- Department of Development and Regeneration, Katholieke Universiteit (KU) Leuven, Leuven, Belgium.,Orthopaedic Section, University Hospitals Leuven, Leuven, Belgium
| | - Anja Van Campenhout
- Department of Development and Regeneration, Katholieke Universiteit (KU) Leuven, Leuven, Belgium.,Orthopaedic Section, University Hospitals Leuven, Leuven, Belgium
| | - Marc Degelaen
- Department of Rehabilitation Research, Vrije Universiteit Brussel, Brussels, Belgium.,Inkendaal Rehabilitation Hospital, Vlezenbeek, Belgium.,University Hospital, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Patrick Calders
- Department of Rehabilitation Sciences, Ghent University, Ghent, Belgium
| | - Kaat Desloovere
- Department of Rehabilitation Sciences, Katholieke Universiteit (KU) Leuven, Leuven, Belgium.,Clinical Motion Analysis Laboratory, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
14
|
Williams SA, Stott NS, Valentine J, Elliott C, Reid SL. Measuring skeletal muscle morphology and architecture with imaging modalities in children with cerebral palsy: a scoping review. Dev Med Child Neurol 2021; 63:263-273. [PMID: 33107594 DOI: 10.1111/dmcn.14714] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/21/2020] [Indexed: 12/22/2022]
Abstract
AIM To investigate the use of ultrasound and magnetic resonance imaging (MRI) methodologies to assess muscle morphology and architecture in children with cerebral palsy (CP). METHOD A scoping review was conducted with systematic searches of Medline, Embase, Scopus, Web of Science, PubMed, and PsycInfo for all original articles published up to January 2019 utilizing ultrasound and/or MRI to determine morphological and architectural properties of lower limb skeletal muscle in children with CP. RESULTS Eighty papers used ultrasound (n=44), three-dimensional ultrasound (n=16), or MRI (n=20) to measure at least one muscle parameter in children and adolescents with CP. Most research investigated single muscles, predominantly the medial gastrocnemius muscle, included children classified in Gross Motor Function Classification System levels I (n=62) and II (n=65), and assessed fascicle length (n=35) and/or muscle volume (n=35). Only 21 papers reported reliability of imaging techniques. Forty-six papers assessed measures of Impairment (n=39), Activity (n=24), and Participation (n=3). INTERPRETATION Current research study design, variation in methodology, and preferences towards investigation of isolated muscles may oversimplify the complexities of CP muscle but provide a foundation for the understanding of the changes in muscle parameters in children with CP. WHAT THIS PAPER ADDS Current evidence is biased towards the medial gastrocnemius muscle and more functionally able children with cerebral palsy (CP). Variations in imaging techniques and joint positioning limit comparisons between studies. Clinimetric testing of parameters of CP muscle is not always considered. Assessment of parameter(s) of muscle with measures of participation is sparse.
Collapse
Affiliation(s)
- Sîan A Williams
- School of Physiotherapy and Exercise Science, Curtin University, Perth, Western Australia, Australia
- Department of Surgery, The University of Auckland, Auckland, New Zealand
| | - N Susan Stott
- Department of Surgery, The University of Auckland, Auckland, New Zealand
- Starship Child Health, Auckland, New Zealand
| | - Jane Valentine
- Kids Rehab WA, Perth Children's Hospital, Perth, Western Australia, Australia
- School of Paediatrics and Child Health, The University of Western Australia, Perth, Western Australia, Australia
| | - Catherine Elliott
- Kids Rehab WA, Perth Children's Hospital, Perth, Western Australia, Australia
- School of Occupational Therapy, Social Work and Speech Pathology, Curtin University, Perth, Western Australia, Australia
| | - Siobhán L Reid
- School of Sport Science, Exercise and Health, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
15
|
Obst SJ, Bickell R, Florance K, Boyd RN, Read F, Barber L. The size and echogenicity of the tibialis anterior muscle is preserved in both limbs in young children with unilateral spastic cerebral palsy. Disabil Rehabil 2020; 44:3430-3439. [PMID: 33356649 DOI: 10.1080/09638288.2020.1863482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE The primary of this study was to compare the volume, length, echo intensity, and growth rate of the medial gastrocnemius (MG) and tibialis anterior (TA) muscle of both limbs (more-involved and less-involved) in children with unilateral spastic cerebral palsy (USCP), with those of an age-matched typically developing (TD) group. A secondary aim in the USCP group was to explore the associations between these muscle parameters and discrete ankle positions during phase of gait. METHODS Muscle parameters were assessed using 3D ultrasound. Maximal ankle dorsiflexion in stance and swing during walking were determined from 2D video analysis. Group differences in muscle size and echo intensity were assessed using a two-way analysis of covariance (age-by-group), with the interaction term used to compare muscle growth rates. Associations between muscle parameters and maximal ankle dorsiflexion in stance and swing were assessed using backwards multiple linear regression analyses. RESULTS The MG of both limbs in children with USCP had signs of impaired muscle development (smaller volume and length, higher echo intensity and lower growth rate). There was no evidence of impaired muscle development of TA between limbs or compared the TD children. Tibialis anterior volume, length, echo intensity and MG volume explained 66% and 83% of the variance in maximal ankle dorsiflexion position in the stance and swing phases of walking, respectively. CONCLUSIONS Unlike the MG, the TA volume and growth rate in children with USCP are equivalent between limbs and compared to TD children. For the more-involved limb only, TA volume, length, and echo intensity appear associated with maximal ankle dorsiflexion during walking and represent important muscle parameters that could be targeted in with early exercise therapy.Implications for rehabilitationTibialis anterior (TA) size and echogenicity appear normal in both limbs in young children with unilateral spastic cerebral palsy (USCP); findings that could indicate sufficient mechanical stimulus and muscle anabolism to maintain normal muscle growth.Tibialis anterior size and echogenicity are associated with maximal ankle dorsiflexion in both stance and swing phase of walking in young children with USCP; though such relations appear isolated to the more-involved limb.Early therapeutic interventions that target TA are likely to be successful in maintaining muscle size and may offset the negative effects of medial gastrocnemius atrophy in the development of fixed ankle equinus of the more-involved limb and improve ankle positioning during gait.
Collapse
Affiliation(s)
- Steven J Obst
- School of Health, Medical and Applied Sciences, Central Queensland University, Bundaberg, Australia.,Faculty of Medicine, Queensland Cerebral Palsy and Rehabilitation Research Centre, Child Health Research Centre, The University of Queensland, Brisbane, Australia
| | - Reuben Bickell
- School of Health, Medical and Applied Sciences, Central Queensland University, Bundaberg, Australia
| | - Kaysie Florance
- School of Health, Medical and Applied Sciences, Central Queensland University, Bundaberg, Australia
| | - Roslyn N Boyd
- School of Health, Medical and Applied Sciences, Central Queensland University, Bundaberg, Australia
| | - Felicity Read
- School of Health, Medical and Applied Sciences, Central Queensland University, Bundaberg, Australia
| | - Lee Barber
- School of Health, Medical and Applied Sciences, Central Queensland University, Bundaberg, Australia.,Faculty of Medicine, Queensland Cerebral Palsy and Rehabilitation Research Centre, Child Health Research Centre, The University of Queensland, Brisbane, Australia.,School of Allied Health Sciences, Griffith University, Brisbane, Australia
| |
Collapse
|