1
|
Simon C, Bolton DAE, Meaney JF, Kenny RA, Simon VA, De Looze C, Knight S, Ruddy KL. White matter fibre density in the brain's inhibitory control network is associated with falling in low activity older adults. Eur J Neurosci 2024; 59:3184-3202. [PMID: 38638001 DOI: 10.1111/ejn.16327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/20/2024] [Accepted: 03/09/2024] [Indexed: 04/20/2024]
Abstract
Recent research has indicated that the relationship between age-related cognitive decline and falling may be mediated by the individual's capacity to quickly cancel or inhibit a motor response. This longitudinal investigation demonstrates that higher white matter fibre density in the motor inhibition network paired with low physical activity was associated with falling in elderly participants. We measured the density of white matter fibre tracts connecting key nodes in the inhibitory control network in a large sample (n = 414) of older adults. We modelled their self-reported frequency of falling over a 4-year period with white matter fibre density in pathways corresponding to the direct and hyperdirect cortical-subcortical loops implicated in the inhibitory control network. Only connectivity between right inferior frontal gyrus and right subthalamic nucleus was associated with falling as measured cross-sectionally. The connectivity was not, however, predictive of future falling when measured 2 and 4 years later. Higher white matter fibre density was associated with falling, but only in combination with low levels of physical activity. No such relationship existed for selected control brain regions that are not implicated in the inhibitory control network. Albeit statistically robust, the direction of this effect was counterintuitive (more dense connectivity associated with falling) and warrants further longitudinal investigation into whether white matter fibre density changes over time in a manner correlated with falling, and mediated by physical activity.
Collapse
Affiliation(s)
- Colin Simon
- Trinity College Institute of Neuroscience and School of Psychology, Trinity College Dublin, Dublin, Ireland
| | - David A E Bolton
- Department of Kinesiology and Health Science, Utah State University, Logan, Utah, USA
| | - James F Meaney
- Centre for Advanced Medical Imaging (CAMI), St James's Hospital, Dublin, Ireland
| | - Rose Anne Kenny
- The Irish Longitudinal Study on Ageing (TILDA), Trinity College Dublin, Dublin, Ireland
- Discipline of Medical Gerontology, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Mercer's Institute for Successful Ageing (MISA), St James's Hospital, Dublin, Ireland
| | - Vivienne A Simon
- Trinity College Institute of Neuroscience and School of Psychology, Trinity College Dublin, Dublin, Ireland
| | - Céline De Looze
- The Irish Longitudinal Study on Ageing (TILDA), Trinity College Dublin, Dublin, Ireland
- Discipline of Medical Gerontology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Silvin Knight
- Discipline of Medical Gerontology, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin, Ireland
| | - Kathy L Ruddy
- Trinity College Institute of Neuroscience and School of Psychology, Trinity College Dublin, Dublin, Ireland
- School of Psychology, Queen's University Belfast, Belfast, UK
| |
Collapse
|
2
|
Steff N, Badau D, Badau A. Study on the Impact of Implementing an Exercise Program Using Fitlight Technology for the Development of Upper Limb Coordinative Abilities in Basketball Players. SENSORS (BASEL, SWITZERLAND) 2024; 24:3482. [PMID: 38894272 PMCID: PMC11174618 DOI: 10.3390/s24113482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024]
Abstract
The aim of this study was to evaluate the impact of implementing a basketball-specific exercise program using Fitlight technology on the coordinative abilities (reactive coordination, reactive reaction time, and reactive movement combination capacity) of U14 and U16 junior basketball players. This study included 70 male basketball players, 36 subjects U14 and 34 subjects U16, divided into two equal groups for each age category: the experimental group (EG) and the control group (CG). This study included an initial and a final test, between which, training was conducted over a period of 18 weeks. For the EG, the program aimed to develop coordinative abilities through an experimental program that utilized Fitlight technology, while the control groups underwent an identically timed program, but their training did not include the use of technology. Four tests were adapted and applied: the Reactive Reaction Test, Choice Reactive Reaction Test, Reactive Hand-Eye Coordination Test, and a test to evaluate the reactive capacity for combining movements. The results of this study showed statistically significant progress between the initial and final tests for the experimental group, p < 0.05. The Cohen's d values for the experimental groups were above 0.8, indicating a very large effect size, while for the control group, these values were small to medium. The comparative analysis of the experimental groups U14 and U16 and control groups shows statistically significant differences in favor of the experimental groups U14 and U16. This study highlights the effectiveness of implementing specific training programs that use modern technologies in developing coordinative abilities in the training and evaluation process of junior basketball players.
Collapse
Affiliation(s)
- Norbert Steff
- Faculty of Physical Education and Mountain Sports, Transilvania University, 500068 Brasov, Romania (A.B.)
- Petru Maior Faculty of Science and Letters, G.E. Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Mures, Romania
| | - Dana Badau
- Faculty of Physical Education and Mountain Sports, Transilvania University, 500068 Brasov, Romania (A.B.)
| | - Adela Badau
- Faculty of Physical Education and Mountain Sports, Transilvania University, 500068 Brasov, Romania (A.B.)
| |
Collapse
|
3
|
Mathunny JJ, S HK, Devaraj A, Karthik V. Design and Performance Analysis of a Mecanum-Built Perturbation-Based Balance Training Device. Appl Bionics Biomech 2024; 2024:3622556. [PMID: 38586182 PMCID: PMC10997419 DOI: 10.1155/2024/3622556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/26/2024] [Accepted: 03/11/2024] [Indexed: 04/09/2024] Open
Abstract
This study proposes a mecanum-built perturbation-based balance training device aimed at improving motor adaptive skills for fall prevention in individuals with neurological disorders or the elderly. Incorporating multidirectional fall simulations in line with modified constraint-induced movement therapy, the device's efficacy was evaluated by measuring the distance traveled and peak acceleration under different static loads (20, 30, and 40 kg) and input accelerations (1, 2, and 3 m/s2). A pilot study with 10 subjects was conducted to assess device performance, utilizing repeated measures analysis of variance and Bonferroni's post hoc analysis. Results indicated a load-dependent reduction in distance traveled, with an average mean difference of 0.74-1.23 cm between the 20 and 40 kg loads for trials of 9 and 18 cm, respectively. Despite varying loads, the device consistently achieved near-anticipated peak accelerations, suggesting its capability to induce effective perturbations. The study also observed a significant lateral movement preference, suggesting adjustments to pulse width modulation and time period may optimize lateral movement performance.
Collapse
Affiliation(s)
- Jaison Jacob Mathunny
- Department of Biomedical Engineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Hari Krishnan S
- Department of Biomedical Engineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Ashokkumar Devaraj
- Department of Biomedical Engineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Varshini Karthik
- Department of Biomedical Engineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| |
Collapse
|
4
|
Abugu EU, Harper SA, Kim Y, Bolton DAE. Prefrontal activation when suppressing an automatic balance recovery step. Gait Posture 2024; 107:281-286. [PMID: 38349937 DOI: 10.1016/j.gaitpost.2023.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/19/2023] [Accepted: 10/19/2023] [Indexed: 02/15/2024]
Abstract
BACKGROUND The present study investigated neural mechanisms for suppressing a highly automatic balance recovery step. Response inhibition has typically been researched using focal hand reaction tasks performed by seated participants, and this has revealed a neural stopping network including the Inferior Frontal Gyrus (IFG). It is unclear if the same neural networks contribute to suppressing an unwanted balance reaction. RESEARCH QUESTION Is there greater IFG activation when suppressing an automatic balance recovery step? METHODS Functional near-infrared spectroscopy (fNIRS) was used to measure brain activity in 21 young adults as they performed a balance recovery task that demanded rapid step suppression following postural perturbation. The hypothesis was that the IFG would show heightened activity when suppressing an automatic balance recovery step. A lean and-release system was used to impose temporally unpredictable forward perturbations by releasing participants from a supported forward lean. For most trials (80%), participants were told to recover balance by quickly stepping forward (STEP). However, on 20% of trials at random, a high-pitch tone was played immediately after postural perturbation signaling participants to suppress a step and fully relax into a catch harness (STOP). This allowed us to target the ability to cancel an already initiated step in a balance recovery context. Average oxygenated hemoglobin changes were contrasted between STEP and STOP trials, 1-6 s post perturbation. RESULTS The results showed a greater bilateral prefrontal response during STOP trials, supporting the idea that executive brain networks are active when suppressing a balance recovery step. SIGNIFICANCE Our study demonstrates one way in which higher brain processes may help us prevent falls in complex environments where behavioral flexibility is necessary. This study also presents a novel method for assessing response inhibition in an upright postural context where rapid stepping reactions are required.
Collapse
Affiliation(s)
- Ezinne U Abugu
- Department of Kinesiology and Health Science, Utah State University, Logan, UT, USA.
| | - Sara A Harper
- Department of Kinesiology and Health Science, Utah State University, Logan, UT, USA; Sorenson Center for Clinical Excellence, Utah State University, Logan, UT, USA; Kinesiology Department, The University of Alabama in Huntsville, Huntsville, AL, USA.
| | - Youngwook Kim
- Department of Kinesiology and Health Science, Utah State University, Logan, UT, USA; Sorenson Center for Clinical Excellence, Utah State University, Logan, UT, USA; Kyungil University, 50, Gamasil-gil, Hayang-eup, Gyeongsan-si, Gyeongsangbuk-do, Republic of Korea.
| | - David A E Bolton
- Department of Kinesiology and Health Science, Utah State University, Logan, UT, USA; Sorenson Center for Clinical Excellence, Utah State University, Logan, UT, USA.
| |
Collapse
|
5
|
Bolton DAE, Baggett CC, Mitton CA, Harper SA, Richardson JK. Suppressing a Blocked Balance Recovery Step: A Novel Method to Assess an Inhibitory Postural Response. Brain Sci 2023; 13:1488. [PMID: 37891855 PMCID: PMC10605013 DOI: 10.3390/brainsci13101488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Stepping to recover balance is an important way we avoid falling. However, when faced with obstacles in the step path, we must adapt such reactions. Physical obstructions are typically detected through vision, which then cues step modification. The present study describes a novel method to assess visually prompted step inhibition in a reactive balance context. In our task, participants recovered balance by quickly stepping after being released from a supported forward lean. On rare trials, however, an obstacle blocked the stepping path. The timing of vision relative to postural perturbation was controlled using occlusion goggles to regulate task difficulty. Furthermore, we explored step suppression in our balance task related to inhibitory capacity measured at the hand using a clinically feasible handheld device (ReacStick). Our results showed that ReacStick and step outcomes were significantly correlated in terms of successful inhibition (r = 0.57) and overall reaction accuracy (r = 0.76). This study presents a novel method for assessing rapid inhibition in a dynamic postural context, a capacity that appears to be a necessary prerequisite to a subsequent adaptive strategy. Moreover, this capacity is significantly related to ReacStick performance, suggesting a potential clinical translation.
Collapse
Affiliation(s)
- David A. E. Bolton
- Department of Kinesiology and Health Science, Utah State University, Logan, UT 84322, USA; (C.C.B.IV); (C.A.M.); (S.A.H.)
- Sorenson Center for Clinical Excellence, Utah State University, Logan, UT 84322, USA
| | - Charlie C. Baggett
- Department of Kinesiology and Health Science, Utah State University, Logan, UT 84322, USA; (C.C.B.IV); (C.A.M.); (S.A.H.)
| | - Chase A. Mitton
- Department of Kinesiology and Health Science, Utah State University, Logan, UT 84322, USA; (C.C.B.IV); (C.A.M.); (S.A.H.)
| | - Sara A. Harper
- Department of Kinesiology and Health Science, Utah State University, Logan, UT 84322, USA; (C.C.B.IV); (C.A.M.); (S.A.H.)
- Sorenson Center for Clinical Excellence, Utah State University, Logan, UT 84322, USA
- Kinesiology Department, The University of Alabama in Huntsville, Huntsville, AL 35899, USA
| | - James K. Richardson
- Department of Physical Medicine and Rehabilitation, University of Michigan, Ann Arbor, MI 48109, USA;
| |
Collapse
|
6
|
Biomechanical Analysis of Unplanned Gait Termination According to a Stop-Signal Task Performance: A Preliminary Study. Brain Sci 2023; 13:brainsci13020304. [PMID: 36831847 PMCID: PMC9953996 DOI: 10.3390/brainsci13020304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/27/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
There is a correlation between cognitive inhibition and compensatory balance response; however, the correlation between response inhibition and gait termination is not clear. OBJECTIVES The purpose of this study was to investigate the gait parameters of the lower extremity that occurred during unplanned gait termination (UGT) in two groups classified by the stop-signal reaction time (SSRT). METHODS Twenty young adults performed a stop-signal task and an unplanned gait termination separately. UGT required subjects to stop on hearing an auditory cue during randomly selected trials. The spatiotemporal and kinematic gait parameters were compared between the groups during UGT. RESULTS In phase one, the fast group had a significantly greater angle and angular velocity of knee flexion and ankle plantar flexion than the slow group (p < 0.05). Phase two showed that the fast group had a significantly greater angle and angular velocity of knee extension than the slow group (p < 0.05). Concerning the correlation analysis, the angle and angular velocity of knee flexion and ankle plantar flexion showed a negative correlation with the SSRT during UGT in phase one (p < 0.05). Phase two showed that the angle and angular velocity of knee extension was negatively correlated with the SSRT during UGT (p < 0.05). CONCLUSION The shorter the SSRT, the greater the angle and joint angular velocity of the ankle or knee joint that were prepared and adjusted for gait termination. The correlation between the SSRT and UGT suggests that a participant's capacity to inhibit an incipient finger response is associated with their ability to make a corrective gait pattern in a choice-demanding environment.
Collapse
|
7
|
Abdollahi M, Whitton N, Zand R, Dombovy M, Parnianpour M, Khalaf K, Rashedi E. A Systematic Review of Fall Risk Factors in Stroke Survivors: Towards Improved Assessment Platforms and Protocols. Front Bioeng Biotechnol 2022; 10:910698. [PMID: 36003532 PMCID: PMC9394703 DOI: 10.3389/fbioe.2022.910698] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/22/2022] [Indexed: 11/26/2022] Open
Abstract
Background/Purpose: To prevent falling, a common incident with debilitating health consequences among stroke survivors, it is important to identify significant fall risk factors (FRFs) towards developing and implementing predictive and preventive strategies and guidelines. This review provides a systematic approach for identifying the relevant FRFs and shedding light on future directions of research. Methods: A systematic search was conducted in 5 popular research databases. Studies investigating the FRFs in the stroke community were evaluated to identify the commonality and trend of FRFs in the relevant literature. Results: twenty-seven relevant articles were reviewed and analyzed spanning the years 1995-2020. The results confirmed that the most common FRFs were age (21/27, i.e., considered in 21 out of 27 studies), gender (21/27), motion-related measures (19/27), motor function/impairment (17/27), balance-related measures (16/27), and cognitive impairment (11/27). Among these factors, motion-related measures had the highest rate of significance (i.e., 84% or 16/19). Due to the high commonality of balance/motion-related measures, we further analyzed these factors. We identified a trend reflecting that subjective tools are increasingly being replaced by simple objective measures (e.g., 10-m walk), and most recently by quantitative measures based on detailed motion analysis. Conclusion: There remains a gap for a standardized systematic approach for selecting relevant FRFs in stroke fall risk literature. This study provides an evidence-based methodology to identify the relevant risk factors, as well as their commonalities and trends. Three significant areas for future research on post stroke fall risk assessment have been identified: 1) further exploration the efficacy of quantitative detailed motion analysis; 2) implementation of inertial measurement units as a cost-effective and accessible tool in clinics and beyond; and 3) investigation of the capability of cognitive-motor dual-task paradigms and their association with FRFs.
Collapse
Affiliation(s)
- Masoud Abdollahi
- Industrial and Systems Engineering Department, Rochester Institute of Technology, Rochester, NY, United States
| | - Natalie Whitton
- Industrial and Systems Engineering Department, Rochester Institute of Technology, Rochester, NY, United States
| | - Ramin Zand
- Department of Neurology, Geisinger Neuroscience Institute, Danville, PA, United States
| | - Mary Dombovy
- Department of Rehabilitation and Neurology, Unity Hospital, Rochester, NY, United States
| | - Mohamad Parnianpour
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Kinda Khalaf
- Department of Biomedical Engineering, Khalifa University of Science and Technology, and Health Engineering Innovation Center, Abu Dhabi, United Arab Emirates
| | - Ehsan Rashedi
- Industrial and Systems Engineering Department, Rochester Institute of Technology, Rochester, NY, United States
| |
Collapse
|
8
|
A method to assess response inhibition during a balance recovery step. Gait Posture 2022; 95:56-62. [PMID: 35453084 DOI: 10.1016/j.gaitpost.2022.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/24/2022] [Accepted: 04/11/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND Correlations between falls and individual differences in inhibitory control, suggest the ability to suppress automatic, but unwanted, action is important in fall prevention. Response inhibition has been a topic of considerable interest in the cognitive neuroscience community for many decades, bringing a wealth of techniques that could potentially inform assessment of reactive balance. For example, the stop signal task is a popular method to quantify inhibitory control ability. RESEARCH QUESTION Can we apply the stop signal task to measure response inhibition in a balance recovery task? METHODS Twenty healthy, young adults completed a novel reactive balance test that required occasional suppression of a balance recovery step. Participants were released from a supported lean ('Go' cue) requiring them to quickly step forward to regain balance. On some trials, a tone ('Stop' cue) instructed participants to suppress a step and relax into a harness. Step trials were more frequent (80%) than stop trials (20%) to bias a rapid stepping response. The stop tone was presented at various delays following cable release, to manipulate task difficulty (i.e., longer delays make step suppression difficult). Individual differences in inhibitory control were determined using lift off times from force plates, and by contrasting muscle activation in failed compared to successful stop trials. RESULTS Most participants were able to successfully suppress a balance recovery step on occasion, allowing for accurate estimation of individual differences in inhibitory control. The successful suppression of a balance recovery step was more likely in the group (n = 10) where shorter stop signal delays were used (i.e., the task was easier). SIGNIFICANCE While balance assessments often stress reflexive action, there is a need for methods that evaluate response inhibition. The present study leveraged a well-established cognitive test of inhibitory control to develop a method to quantify stopping ability in a reactive balance context.
Collapse
|
9
|
Longitudinal Study on Sustained Attention to Response Task (SART): Clustering Approach for Mobility and Cognitive Decline. Geriatrics (Basel) 2022; 7:geriatrics7030051. [PMID: 35645274 PMCID: PMC9149848 DOI: 10.3390/geriatrics7030051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/07/2022] [Accepted: 04/20/2022] [Indexed: 11/17/2022] Open
Abstract
The Sustained Attention to Response Task (SART) is a computer-based go/no-go task to measure neurocognitive function in older adults. However, simplified average features of this complex dataset lead to loss of primary information and fail to express associations between test performance and clinically meaningful outcomes. Here, we combine a novel method to visualise individual trial (raw) information obtained from the SART test in a large population-based study of ageing in Ireland and an automatic clustering technique. We employed a thresholding method, based on the individual trial number of mistakes, to identify poorer SART performances and a fuzzy clusters algorithm to partition the dataset into 3 subgroups, based on the evolution of SART performance after 4 years. Raw SART data were available for 3468 participants aged 50 years and over at baseline. The previously reported SART visualisation-derived feature ‘bad performance’, indicating the number of SART trials with at least 4 mistakes, and its evolution over time, combined with the fuzzy c-mean (FCM) algorithm, individuated 3 clusters corresponding to 3 degrees of physiological dysregulation. The biggest cluster (94% of the cohort) was constituted by healthy participants, a smaller cluster (5% of the cohort) by participants who showed improvement in cognitive and psychological status, and the smallest cluster (1% of the cohort) by participants whose mobility and cognitive functions dramatically declined after 4 years. We were able to identify in a cohort of relatively high-functioning community-dwelling adults a very small group of participants who showed clinically significant decline. The selected smallest subset manifested not only mobility deterioration, but also cognitive decline, the latter being usually hard to detect in population-based studies. The employed techniques could identify at-risk participants with more specificity than current methods, and help clinicians better identify and manage the small proportion of community-dwelling older adults who are at significant risk of functional decline and loss of independence.
Collapse
|
10
|
Bolton DAE, Richardson JK. Inhibitory Control and Fall Prevention: Why Stopping Matters. Front Neurol 2022; 13:853787. [PMID: 35432150 PMCID: PMC9005868 DOI: 10.3389/fneur.2022.853787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/11/2022] [Indexed: 11/20/2022] Open
Affiliation(s)
- David A. E. Bolton
- Department of Kinesiology and Health Science, Utah State University, Logan, UT, United States
- *Correspondence: David A. E. Bolton
| | - James K. Richardson
- Department of Physical Medicine and Rehabilitation, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
11
|
Hannah R, Aron AR. Towards real-world generalizability of a circuit for action-stopping. Nat Rev Neurosci 2021; 22:538-552. [PMID: 34326532 PMCID: PMC8972073 DOI: 10.1038/s41583-021-00485-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2021] [Indexed: 02/07/2023]
Abstract
Two decades of cross-species neuroscience research on rapid action-stopping in the laboratory has provided motivation for an underlying prefrontal-basal ganglia circuit. Here we provide an update of key studies from the past few years. We conclude that this basic neural circuit is on increasingly firm ground, and we move on to consider whether the action-stopping function implemented by this circuit applies beyond the simple laboratory stop signal task. We advance through a series of studies of increasing 'real-worldness', starting with laboratory tests of stopping of speech, gait and bodily functions, and then going beyond the laboratory to consider neural recordings and stimulation during moments of control presumably required in everyday activities such as walking and driving. We end by asking whether stopping research has clinical relevance, focusing on movement disorders such as stuttering, tics and freezing of gait. Overall, we conclude there are hints that the prefrontal-basal ganglia action-stopping circuit that is engaged by the basic stop signal task is recruited in myriad scenarios; however, truly proving this for real-world scenarios requires a new generation of studies that will need to overcome substantial technical and inferential challenges.
Collapse
Affiliation(s)
- Ricci Hannah
- Department of Psychology, University of California San Diego, San Diego, CA, USA.
| | - Adam R Aron
- Department of Psychology, University of California San Diego, San Diego, CA, USA
| |
Collapse
|
12
|
Rizzo R, Knight SP, Davis JRC, Newman L, Duggan E, Kenny RA, Romero-Ortuno R. SART and Individual Trial Mistake Thresholds: Predictive Model for Mobility Decline. Geriatrics (Basel) 2021; 6:geriatrics6030085. [PMID: 34562986 PMCID: PMC8482118 DOI: 10.3390/geriatrics6030085] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 11/16/2022] Open
Abstract
The Sustained Attention to Response Task (SART) has been used to measure neurocognitive functions in older adults. However, simplified average features of this complex dataset may result in loss of primary information and fail to express associations between test performance and clinically meaningful outcomes. Here, we describe a new method to visualise individual trial (raw) information obtained from the SART test, vis-à-vis age, and groups based on mobility status in a large population-based study of ageing in Ireland. A thresholding method, based on the individual trial number of mistakes, was employed to better visualise poorer SART performances, and was statistically validated with binary logistic regression models to predict mobility and cognitive decline after 4 years. Raw SART data were available for 4864 participants aged 50 years and over at baseline. The novel visualisation-derived feature bad performance, indicating the number of SART trials with at least 4 mistakes, was the most significant predictor of mobility decline expressed by the transition from Timed Up-and-Go (TUG) < 12 to TUG ≥ 12 s (OR = 1.29; 95% CI 1.14–1.46; p < 0.001), and the only significant predictor of new falls (OR = 1.11; 95% CI 1.03–1.21; p = 0.011), in models adjusted for multiple covariates. However, no SART-related variables resulted significant for the risk of cognitive decline, expressed by a decrease of ≥2 points in the Mini-Mental State Examination (MMSE) score. This novel multimodal visualisation could help clinicians easily develop clinical hypotheses. A threshold approach to the evaluation of SART performance in older adults may better identify subjects at higher risk of future mobility decline.
Collapse
Affiliation(s)
- Rossella Rizzo
- The Irish Longitudinal Study on Ageing, Trinity College Dublin, D02 R590 Dublin, Ireland; (S.P.K.); (J.R.C.D.); (L.N.); (E.D.); (R.A.K.); (R.R.-O.)
- Discipline of Medical Gerontology, School of Medicine, Trinity College Dublin, D02 PN40 Dublin, Ireland
- Correspondence:
| | - Silvin Paul Knight
- The Irish Longitudinal Study on Ageing, Trinity College Dublin, D02 R590 Dublin, Ireland; (S.P.K.); (J.R.C.D.); (L.N.); (E.D.); (R.A.K.); (R.R.-O.)
- Discipline of Medical Gerontology, School of Medicine, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - James R. C. Davis
- The Irish Longitudinal Study on Ageing, Trinity College Dublin, D02 R590 Dublin, Ireland; (S.P.K.); (J.R.C.D.); (L.N.); (E.D.); (R.A.K.); (R.R.-O.)
- Discipline of Medical Gerontology, School of Medicine, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Louise Newman
- The Irish Longitudinal Study on Ageing, Trinity College Dublin, D02 R590 Dublin, Ireland; (S.P.K.); (J.R.C.D.); (L.N.); (E.D.); (R.A.K.); (R.R.-O.)
- Discipline of Medical Gerontology, School of Medicine, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Eoin Duggan
- The Irish Longitudinal Study on Ageing, Trinity College Dublin, D02 R590 Dublin, Ireland; (S.P.K.); (J.R.C.D.); (L.N.); (E.D.); (R.A.K.); (R.R.-O.)
- Discipline of Medical Gerontology, School of Medicine, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Rose Anne Kenny
- The Irish Longitudinal Study on Ageing, Trinity College Dublin, D02 R590 Dublin, Ireland; (S.P.K.); (J.R.C.D.); (L.N.); (E.D.); (R.A.K.); (R.R.-O.)
- Discipline of Medical Gerontology, School of Medicine, Trinity College Dublin, D02 PN40 Dublin, Ireland
- Mercer’s Institute for Successful Ageing, St. James’s Hospital, D08 NHY1 Dublin, Ireland
| | - Roman Romero-Ortuno
- The Irish Longitudinal Study on Ageing, Trinity College Dublin, D02 R590 Dublin, Ireland; (S.P.K.); (J.R.C.D.); (L.N.); (E.D.); (R.A.K.); (R.R.-O.)
- Discipline of Medical Gerontology, School of Medicine, Trinity College Dublin, D02 PN40 Dublin, Ireland
- Mercer’s Institute for Successful Ageing, St. James’s Hospital, D08 NHY1 Dublin, Ireland
- Global Brain Health Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| |
Collapse
|
13
|
Relationship between Speed of Response Inhibition and Ability to Suppress a Step in Midlife and Older Adults. Brain Sci 2021; 11:brainsci11050643. [PMID: 34063458 PMCID: PMC8156272 DOI: 10.3390/brainsci11050643] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/03/2021] [Accepted: 05/12/2021] [Indexed: 11/17/2022] Open
Abstract
In young adults, performance on a test of response inhibition was recently found to be correlated with performance on a reactive balance test where automated stepping responses must occasionally be inhibited. The present study aimed to determine whether this relationship holds true in older adults, wherein response inhibition is typically deficient and the control of postural equilibrium presents a greater challenge. Ten participants (50+ years of age) completed a seated cognitive test (stop signal task) followed by a reactive balance test. Reactive balance was assessed using a modified lean-and-release system where participants were required to step to regain balance following perturbation, or suppress a step if an obstacle was present. The stop signal task is a standardized cognitive test that provides a measure of the speed of response inhibition called the Stop Signal Reaction Time (SSRT). Muscle responses in the legs were compared between conditions where a step was allowed or blocked to quantify response inhibition of the step. The SSRT was significantly related to leg muscle suppression during balance recovery in the stance leg. Thus, participants that were better at inhibiting their responses in the stop signal task were also better at inhibiting an unwanted leg response in favor of grasping a supportive handle. The relationship between a seated cognitive test using finger responses and leg muscle suppression when a step was blocked indicates a context-independent, generalized capacity for response inhibition. This suggests that a simple cognitive test such as the stop signal task could be used clinically to predict an individual’s capacity for adapting balance reactions and fall risk. The present results provide support for future studies, with larger samples, to verify this relationship between stop signal reaction time and leg response during balance recovery.
Collapse
|
14
|
Harper SA, Beethe AZ, Dakin CJ, Bolton DAE. Promoting Generalized Learning in Balance Recovery Interventions. Brain Sci 2021; 11:402. [PMID: 33810159 PMCID: PMC8004641 DOI: 10.3390/brainsci11030402] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/12/2021] [Accepted: 03/19/2021] [Indexed: 12/28/2022] Open
Abstract
Recent studies have shown balance recovery can be enhanced via task-specific training, referred to as perturbation-based balance training (PBT). These interventions rely on principles of motor learning where repeated exposure to task-relevant postural perturbations results in more effective compensatory balance responses. Evidence indicates that compensatory responses trained using PBT can be retained for many months and can lead to a reduction in falls in community-dwelling older adults. A notable shortcoming with PBT is that it does not transfer well to similar but contextually different scenarios (e.g., falling sideways versus a forward trip). Given that it is not feasible to train all conditions in which someone could fall, this limited transfer presents a conundrum; namely, how do we best use PBT to appropriately equip people to deal with the enormous variety of fall-inducing scenarios encountered in daily life? In this perspective article, we draw from fields of research that explore how general learning can be promoted. From this, we propose a series of methods, gleaned from parallel streams of research, to inform and hopefully optimize this emerging field where people receive training to specifically improve their balance reactions.
Collapse
Affiliation(s)
- Sara A. Harper
- Department of Kinesiology and Health Science, Utah State University, Logan, UT 84322, USA; (S.A.H.); (A.Z.B.); (C.J.D.)
- Sorenson Legacy Foundation Center for Clinical Excellence, Utah State University, Logan, UT 84322, USA
| | - Anne Z. Beethe
- Department of Kinesiology and Health Science, Utah State University, Logan, UT 84322, USA; (S.A.H.); (A.Z.B.); (C.J.D.)
- Sorenson Legacy Foundation Center for Clinical Excellence, Utah State University, Logan, UT 84322, USA
| | - Christopher J. Dakin
- Department of Kinesiology and Health Science, Utah State University, Logan, UT 84322, USA; (S.A.H.); (A.Z.B.); (C.J.D.)
- Sorenson Legacy Foundation Center for Clinical Excellence, Utah State University, Logan, UT 84322, USA
| | - David A. E. Bolton
- Department of Kinesiology and Health Science, Utah State University, Logan, UT 84322, USA; (S.A.H.); (A.Z.B.); (C.J.D.)
- Sorenson Legacy Foundation Center for Clinical Excellence, Utah State University, Logan, UT 84322, USA
| |
Collapse
|
15
|
Postural Control during Progressively Increased Balance-Task Difficulty in Athletes with Unilateral Transfemoral Amputation: Effect of Ocular Mobility and Visuomotor Processing. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17176242. [PMID: 32867306 PMCID: PMC7503799 DOI: 10.3390/ijerph17176242] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 11/16/2022]
Abstract
This study examined postural control during single leg stance test with progressively increased balance-task difficulty in soccer players with unilateral transfemoral amputation (n = 11) compared to able-bodied soccer players (n = 11). The overall stability index (OSI), the anterior/posterior stability index, and the medial/lateral stability index during three balance tasks with increasing surface instability were estimated. The oculomotor and visuomotor contribution to postural control in disabled athletes was analyzed. Oculomotor function, simple and choice reaction times, and peripheral perception were assessed in a series of visuomotor tests. The variation in OSI demonstrated significantly greater increases during postural tests with increased balance-task difficulty in the able-bodied soccer players compared to amputees (F(2,40) = 3.336, p < 0.05). Ocular mobility index correlated (p < 0.05) with OSI in conditions of increasing balance-task difficulty. Moreover, speed of eye-foot reaction has positive influence (p < 0.05) on stability indexes in tasks with an unstable surface. Amputee soccer players displayed comparable postural stability to able-bodied soccer players. Disabled athletes had better adaptability in restoring a state of balance in conditions of increased balance-task difficulty than the controls. The speed of visuomotor processing, characterized mainly by speed of eye-foot reaction, significantly contributed to these results.
Collapse
|
16
|
Bolton DAE, Mansour M. A Modified Lean and Release Technique to Emphasize Response Inhibition and Action Selection in Reactive Balance. J Vis Exp 2020. [PMID: 32250359 DOI: 10.3791/60688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Assessment of reactive balance traditionally imposes some type of perturbation to upright stance or gait followed by measurement of the resultant corrective behavior. These measures include muscle responses, limb movements, ground reaction forces, and even direct neurophysiological measures such as electroencephalography. Using this approach, researchers and clinicians can infer some basic principles regarding how the nervous system controls balance to avoid a fall. One limitation with the way in which these assessments are currently used is that they heavily emphasize reflexive actions without any need to revise automatic postural reactions. Such an exclusive focus on these highly stereotypical reactions would fail to adequately address how we can modify these reactions should the need arise (e.g., avoiding an obstacle with a recovery step). This would appear to be a glaring omission when one considers the enormous complexity of the environments we face daily. Overall, the status quo when evaluating the neural control of balance fails to truly expose how higher brain resources contribute to preventing falls in complex settings. The present protocol offers a way to require suppression of automatic, but inappropriate corrective balance reactions, and force a selection among alternative action choices to successfully recover balance following postural perturbation.
Collapse
Affiliation(s)
- David A E Bolton
- Department of Kinesiology & Health Science, Utah State University;
| | - Mahmoud Mansour
- Department of Electrical & Computer Engineering, Utah State University
| |
Collapse
|