1
|
Zhou GL, Su SL, Yu L, Shang EX, Hua YQ, Yu H, Duan JA. Exploring the liver toxicity mechanism of Tripterygium wilfordii extract based on metabolomics, network pharmacological analysis and experimental validation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 337:118888. [PMID: 39368758 DOI: 10.1016/j.jep.2024.118888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/06/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tripterygii wilfordii Radix, (TW) as a toxic herbal medicine, is the root of Tripterygium wilfordii Hook. F. , which commonly used in China for the treatment of rheumatoid arthritis and autoimmune diseases, but its severe toxicity, particularly hepatotoxicity, significantly impacts its clinical application. AIM OF THE STUDY The hepatotoxicity and its molecular mechanism of 70% TW ethanol extract (TWE) on male mice were demonstrated based on metabolomics, network pharmacological analysis and experimental validation. MATERIALS AND METHODS The toxic and bioactive ingredients in TWE were quantitative analyzed by Triple quadrupole (TQ) mass spectrometry method. The liver organ index, as well as the liver function indexes AST and ALT were evaluated after administering different doses of TWE for 24 h, and a pathological change was analyzed in liver tissue. Non-targeted metabolomics using UPLC-QTOF/MS was performed on both the plasma and liver tissue samples in combination with network toxicology to screen for key targets related to TWE toxicity in the liver. These key targets including caspase 3, NF-κB, TLR4, TNF-α, NQO1, and Bcl2 were subsequently verified through Western blotting experiments. RESULTS The six toxic and active ingredients of raphenolactone, ranolactone, triptolide tripterine, wilforlide A, demethylzeylasterain in TWE for the contents of 0.709, 1.408, 0.353, 0.354, 0.882, 0.227 mg g-1, respectively. Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels increased and liver index decreased after administration of TWE for 24 h. Pathological analysis showed that TWE could produce toxicity to mouse liver, and its toxicity was dose-dependent. In the high-dose group, TW-D (11.23 g/kg) and TW-E (22.46 g/kg) caused a large amount of rupture in mouse liver nucleus and a large amount of inflammatory infiltration at the same time. Furthermore, 64 metabolites in plasma and 59 metabolites in the liver tissue were identified. The main metabolic pathways involved glycerol phospholipid metabolism, glycosylphosphatidylinositol-ether lipid metabolism, fatty acid metabolism, sphingomyelin metabolism, and ether lipid metabolism in plasma and liver tissue. Through analysis of the top 10 correlated targets, 6 out of the top 10 selected target proteins exhibited consistent expression patterns with liver injury. The levels of Bcl2 and NQO1 decreased with increasing exposure dose. The expression of Caspase 3, NF-κB, TLR4, and TNF-α increased with increasing dose. These findings suggest that protein expression has a regulatory effect at different doses groups compared to the control group.These findings suggest a regulatory effect of protein expression in different dose groups compared to the control group. CONCLUSION The hepatotoxic effects of TWE can increase ALT and AST levels in plasma, leading to hepatic oxidative damage and inflammatory response. The toxic mechanisms that produce are closely related to the regulating of the abnormal metabolites in plasma and liver tissue. Furthermore, the regulating the expression levels of targeted proteins of TNF-α, NF-κB, Caspase 3, NQO1, and Bcl2 were confirmed by examining the liver tissue. These data clearly elucidate the toxicity mechanism of TW, laying the foundation for ensuring the quality and safety of drugs.
Collapse
Affiliation(s)
- Guo-Liang Zhou
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Department of Pharmacy, School of Life and Health Sciences, Anhui Science and Technology University, Bengbu, 233100, China
| | - Shu-Lan Su
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Li Yu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Er-Xin Shang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yong-Qing Hua
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Hao Yu
- Department of Pharmacy, School of Life and Health Sciences, Anhui Science and Technology University, Bengbu, 233100, China
| | - Jin-Ao Duan
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
2
|
Lin H, Wang L, Jiang X, Wang J. Glutathione dynamics in subcellular compartments and implications for drug development. Curr Opin Chem Biol 2024; 81:102505. [PMID: 39053236 DOI: 10.1016/j.cbpa.2024.102505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/30/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024]
Abstract
Glutathione (GSH) is a pivotal tripeptide antioxidant essential for maintaining cellular redox homeostasis and regulating diverse cellular processes. Subcellular compartmentalization of GSH underscores its multifaceted roles across various organelles including the cytosol, mitochondria, endoplasmic reticulum, and nucleus, each exhibiting distinct regulatory mechanisms. Perturbations in GSH dynamics contribute to pathophysiological conditions, emphasizing the clinical significance of understanding its intricate regulation. This review consolidates current knowledge on subcellular GSH dynamics, highlighting its implications in drug development, particularly in covalent drug design and antitumor strategies targeting intracellular GSH levels. Challenges and future directions in deciphering subcellular GSH dynamics are discussed, advocating for innovative methodologies to advance our comprehension and facilitate the development of precise therapeutic interventions based on GSH modulation.
Collapse
Affiliation(s)
- Hanfeng Lin
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA; Center for NextGen Therapeutics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lingfei Wang
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xiqian Jiang
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Jin Wang
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA; Center for NextGen Therapeutics, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
3
|
Zhao R, Du B, Luo Y, Xue F, Wang H, Qu D, Han S, Heilbronner S, Zhao Y. Antimicrobial and anti-biofilm activity of a thiazolidinone derivative against Staphylococcus aureus in vitro and in vivo. Microbiol Spectr 2024; 12:e0232723. [PMID: 38329365 PMCID: PMC10913468 DOI: 10.1128/spectrum.02327-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 01/11/2024] [Indexed: 02/09/2024] Open
Abstract
Staphylococcus aureus (S. aureus) causes many infections with significant morbidity and mortality. S. aureus can form biofilms, which can cause biofilm-associated diseases and increase resistance to many conventional antibiotics, resulting in chronic infection. It is critical to develop novel antibiotics against staphylococcal infections, particularly those that can kill cells embedded in biofilms. This study aimed to investigate the bacteriocidal and anti-biofilm activities of thiazolidinone derivative (TD-H2-A) against S. aureus. A total of 40 non-duplicate strains were collected, and the minimum inhibitory concentrations (MICs) of TD-H2-A were determined. The effect of TD-H2-A on established S. aureus mature biofilms was examined using a confocal laser scanning microscope (CLSM). The antibacterial effects of the compound on planktonic bacteria and bacteria in mature biofilms were investigated. Other characteristics, such as cytotoxicity and hemolytic activity, were researched. A mouse skin infection model was used, and a routine hematoxylin and eosin (H&E) staining was used for histological examination. The MIC values of TD-H2-A against the different S. aureus strains were 6.3-25.0 µg/mL. The 5 × MIC TD-H2-A killed almost all planktonic S. aureus USA300. The derivative was found to have strong bacteriocidal activity against cells in mature biofilms meanwhile having low cytotoxicity and hemolytic activity against Vero cells and human erythrocytes. TD-H2-A had a good bacteriocidal effect on S. aureus SA113-infected mice. In conclusion, TD-H2-A demonstrated good bacteriocidal and anti-biofilm activities against S. aureus, paving the way for the development of novel agents to combat biofilm infections and multidrug-resistant staphylococcal infections.IMPORTANCEStaphylococcus aureus, a notorious pathogen, can form a stubborn biofilm and develop drug resistance. It is crucial to develop new anti-infective therapies against biofilm-associated infections. The manuscript describes the new antibiotic to effectively combat multidrug-resistant and biofilm-associated diseases.
Collapse
Affiliation(s)
- Rui Zhao
- Laboratory Medicine Center, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Bingyu Du
- Laboratory Medicine Center, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Yue Luo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Fen Xue
- Laboratory Medicine Center, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Huanhuan Wang
- Department of Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Di Qu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shiqing Han
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Simon Heilbronner
- Department of Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Yanfeng Zhao
- Laboratory Medicine Center, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
4
|
Sharma NK, Bahot A, Sekar G, Bansode M, Khunteta K, Sonar PV, Hebale A, Salokhe V, Sinha BK. Understanding Cancer's Defense against Topoisomerase-Active Drugs: A Comprehensive Review. Cancers (Basel) 2024; 16:680. [PMID: 38398072 PMCID: PMC10886629 DOI: 10.3390/cancers16040680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
In recent years, the emergence of cancer drug resistance has been one of the crucial tumor hallmarks that are supported by the level of genetic heterogeneity and complexities at cellular levels. Oxidative stress, immune evasion, metabolic reprogramming, overexpression of ABC transporters, and stemness are among the several key contributing molecular and cellular response mechanisms. Topo-active drugs, e.g., doxorubicin and topotecan, are clinically active and are utilized extensively against a wide variety of human tumors and often result in the development of resistance and failure to therapy. Thus, there is an urgent need for an incremental and comprehensive understanding of mechanisms of cancer drug resistance specifically in the context of topo-active drugs. This review delves into the intricate mechanistic aspects of these intracellular and extracellular topo-active drug resistance mechanisms and explores the use of potential combinatorial approaches by utilizing various topo-active drugs and inhibitors of pathways involved in drug resistance. We believe that this review will help guide basic scientists, pre-clinicians, clinicians, and policymakers toward holistic and interdisciplinary strategies that transcend resistance, renewing optimism in the ongoing battle against cancer.
Collapse
Affiliation(s)
- Nilesh Kumar Sharma
- Cancer and Translational Research Centre Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India; (N.K.S.); (A.B.); (G.S.); (M.B.); (K.K.); (P.V.S.); (A.H.); (V.S.)
| | - Anjali Bahot
- Cancer and Translational Research Centre Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India; (N.K.S.); (A.B.); (G.S.); (M.B.); (K.K.); (P.V.S.); (A.H.); (V.S.)
| | - Gopinath Sekar
- Cancer and Translational Research Centre Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India; (N.K.S.); (A.B.); (G.S.); (M.B.); (K.K.); (P.V.S.); (A.H.); (V.S.)
| | - Mahima Bansode
- Cancer and Translational Research Centre Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India; (N.K.S.); (A.B.); (G.S.); (M.B.); (K.K.); (P.V.S.); (A.H.); (V.S.)
| | - Kratika Khunteta
- Cancer and Translational Research Centre Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India; (N.K.S.); (A.B.); (G.S.); (M.B.); (K.K.); (P.V.S.); (A.H.); (V.S.)
| | - Priyanka Vijay Sonar
- Cancer and Translational Research Centre Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India; (N.K.S.); (A.B.); (G.S.); (M.B.); (K.K.); (P.V.S.); (A.H.); (V.S.)
| | - Ameya Hebale
- Cancer and Translational Research Centre Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India; (N.K.S.); (A.B.); (G.S.); (M.B.); (K.K.); (P.V.S.); (A.H.); (V.S.)
| | - Vaishnavi Salokhe
- Cancer and Translational Research Centre Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India; (N.K.S.); (A.B.); (G.S.); (M.B.); (K.K.); (P.V.S.); (A.H.); (V.S.)
| | - Birandra Kumar Sinha
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA
| |
Collapse
|
5
|
Ruiz de Porras V, Figols M, Font A, Pardina E. Curcumin as a hepatoprotective agent against chemotherapy-induced liver injury. Life Sci 2023; 332:122119. [PMID: 37741319 DOI: 10.1016/j.lfs.2023.122119] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
Despite significant advances in cancer therapeutics, chemotherapy remains the cornerstone of treatment for many tumors. Importantly, however, chemotherapy-induced toxicity, including hepatotoxicity, can lead to the interruption or discontinuation of potentially effective therapy. In recent years, special attention has been paid to the search for complementary therapies to mitigate chemotherapy-induced toxicity. Although there is currently a lack of specific interventions to mitigate or prevent hepatotoxicity in chemotherapy-treated patients, the polyphenol compound curcumin has emerged as a potential strategy to overcome this adverse effect. Here we review, firstly, the molecular and physiological mechanisms and major risk factors of chemotherapy-induced hepatotoxicity. We then present an overview of how curcumin has the potential to mitigate hepatotoxicity by targeting specific molecular mechanisms. Hepatotoxicity is a well-described side effect of cytotoxic drugs that can limit their clinical application. Inflammation and oxidative stress are the most common mechanisms involved in hepatotoxicity. Several studies have shown that curcumin could prevent and/or palliate chemotherapy-induced liver injury, mainly due to its anti-inflammatory, antioxidant, antifibrotic and hypolipidemic properties. Further clinical investigation using bioavailable curcumin formulations is warranted to demonstrate its efficacy as an hepatoprotective agent in cancer patients.
Collapse
Affiliation(s)
- Vicenç Ruiz de Porras
- Grup de Recerca en Toxicologia (GRET), Unitat de Toxicologia, Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Avda Joan XXIII s/n, 08028 Barcelona, Spain; CARE program, Germans Trias i Pujol Research Institute (IGTP), Camí de les Escoles, s/n, 08916, Badalona, Barcelona, Spain; Catalan Institute of Oncology, Badalona Applied Research Group in Oncology (B·ARGO), Camí de les Escoles, s/n, 08916, Badalona, Barcelona, Spain.
| | - Mariona Figols
- Medical Oncology Department, Althaia Xarxa Assistencial Universitària de Manresa, C/ Dr. Joan Soler, 1-3, 08243, Manresa, Barcelona, Spain
| | - Albert Font
- CARE program, Germans Trias i Pujol Research Institute (IGTP), Camí de les Escoles, s/n, 08916, Badalona, Barcelona, Spain; Catalan Institute of Oncology, Badalona Applied Research Group in Oncology (B·ARGO), Camí de les Escoles, s/n, 08916, Badalona, Barcelona, Spain; Medical Oncology Department, Catalan Institute of Oncology, Camí de les Escoles, s/n, 08916, Badalona, Barcelona, Spain
| | - Eva Pardina
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Diagonal 643, 08028 Barcelona, Spain.
| |
Collapse
|
6
|
Balestrieri E, Corinaldesi E, Fabi M, Cipriani C, Giudice M, Conti A, Minutolo A, Petrone V, Fanelli M, Miele MT, Andreozzi L, Guida F, Filice E, Meli M, Grelli S, Rasi G, Toschi N, Torcetta F, Matteucci C, Lanari M, Sinibaldi-Vallebona P. Preliminary Evidence of the Differential Expression of Human Endogenous Retroviruses in Kawasaki Disease and SARS-CoV-2-Associated Multisystem Inflammatory Syndrome in Children. Int J Mol Sci 2023; 24:15086. [PMID: 37894766 PMCID: PMC10606856 DOI: 10.3390/ijms242015086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023] Open
Abstract
Multisystem inflammatory syndrome in children (MIS-C) is a postinfectious sequela of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with some clinical features overlapping with Kawasaki disease (KD). Our research group and others have highlighted that the spike protein of SARS-CoV-2 can trigger the activation of human endogenous retroviruses (HERVs), which in turn induces inflammatory and immune reactions, suggesting HERVs as contributing factors in COVID-19 immunopathology. With the aim to identify new factors involved in the processes underlying KD and MIS-C, we analysed the transcriptional levels of HERVs, HERV-related genes, and immune mediators in children during the acute and subacute phases compared with COVID-19 paediatric patients and healthy controls. The results showed higher levels of HERV-W, HERV-K, Syn-1, and ASCT-1/2 in KD, MIS-C, and COV patients, while higher levels of Syn-2 and MFSD2A were found only in MIS-C patients. Moreover, KD and MIS-C shared the dysregulation of several inflammatory and regulatory cytokines. Interestingly, in MIS-C patients, negative correlations have been found between HERV-W and IL-10 and between Syn-2 and IL-10, while positive correlations have been found between HERV-K and IL-10. In addition, HERV-W expression positively correlated with the C-reactive protein. This pilot study supports the role of HERVs in inflammatory diseases, suggesting their interplay with the immune system in this setting. The elevated expression of Syn-2 and MFSD2A seems to be a distinctive trait of MIS-C patients, allowing to distinguish them from KD ones. The understanding of pathological mechanisms can lead to the best available treatment for these two diseases, limiting complications and serious outcomes.
Collapse
Affiliation(s)
- Emanuela Balestrieri
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (C.C.); (M.G.); (A.M.); (V.P.); (M.F.); (M.T.M.); (S.G.); (G.R.); (C.M.); (P.S.-V.)
| | - Elena Corinaldesi
- Pediatric Unit, Ramazzini Hospital, 41012 Carpi, Italy; (E.C.); (F.T.)
| | - Marianna Fabi
- Pediatric Emergency Unit, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40126 Bologna, Italy; (L.A.); (F.G.); (E.F.); (M.M.); (M.L.)
| | - Chiara Cipriani
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (C.C.); (M.G.); (A.M.); (V.P.); (M.F.); (M.T.M.); (S.G.); (G.R.); (C.M.); (P.S.-V.)
| | - Martina Giudice
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (C.C.); (M.G.); (A.M.); (V.P.); (M.F.); (M.T.M.); (S.G.); (G.R.); (C.M.); (P.S.-V.)
| | - Allegra Conti
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (A.C.); (N.T.)
| | - Antonella Minutolo
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (C.C.); (M.G.); (A.M.); (V.P.); (M.F.); (M.T.M.); (S.G.); (G.R.); (C.M.); (P.S.-V.)
| | - Vita Petrone
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (C.C.); (M.G.); (A.M.); (V.P.); (M.F.); (M.T.M.); (S.G.); (G.R.); (C.M.); (P.S.-V.)
| | - Marialaura Fanelli
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (C.C.); (M.G.); (A.M.); (V.P.); (M.F.); (M.T.M.); (S.G.); (G.R.); (C.M.); (P.S.-V.)
| | - Martino Tony Miele
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (C.C.); (M.G.); (A.M.); (V.P.); (M.F.); (M.T.M.); (S.G.); (G.R.); (C.M.); (P.S.-V.)
| | - Laura Andreozzi
- Pediatric Emergency Unit, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40126 Bologna, Italy; (L.A.); (F.G.); (E.F.); (M.M.); (M.L.)
| | - Fiorentina Guida
- Pediatric Emergency Unit, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40126 Bologna, Italy; (L.A.); (F.G.); (E.F.); (M.M.); (M.L.)
| | - Emanuele Filice
- Pediatric Emergency Unit, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40126 Bologna, Italy; (L.A.); (F.G.); (E.F.); (M.M.); (M.L.)
| | - Matteo Meli
- Pediatric Emergency Unit, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40126 Bologna, Italy; (L.A.); (F.G.); (E.F.); (M.M.); (M.L.)
| | - Sandro Grelli
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (C.C.); (M.G.); (A.M.); (V.P.); (M.F.); (M.T.M.); (S.G.); (G.R.); (C.M.); (P.S.-V.)
| | - Guido Rasi
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (C.C.); (M.G.); (A.M.); (V.P.); (M.F.); (M.T.M.); (S.G.); (G.R.); (C.M.); (P.S.-V.)
| | - Nicola Toschi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (A.C.); (N.T.)
- Martinos Center for Biomedical Imaging and Harvard Medical School, Boston, MA 02129, USA
| | | | - Claudia Matteucci
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (C.C.); (M.G.); (A.M.); (V.P.); (M.F.); (M.T.M.); (S.G.); (G.R.); (C.M.); (P.S.-V.)
| | - Marcello Lanari
- Pediatric Emergency Unit, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40126 Bologna, Italy; (L.A.); (F.G.); (E.F.); (M.M.); (M.L.)
| | - Paola Sinibaldi-Vallebona
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (C.C.); (M.G.); (A.M.); (V.P.); (M.F.); (M.T.M.); (S.G.); (G.R.); (C.M.); (P.S.-V.)
- National Research Council, Institute of Translational Pharmacology, 00133 Rome, Italy
| |
Collapse
|
7
|
Deciphering the Molecular Mechanism of Red Raspberry in Apoptosis of Liver Cancer Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2026865. [PMID: 35529935 PMCID: PMC9068284 DOI: 10.1155/2022/2026865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/15/2022] [Indexed: 11/28/2022]
Abstract
Red raspberry contains a variety of bioactive ingredients and has high edible and medicinal value. Red raspberry extractions (RREs) have strong antioxidant capacity and anticancer ability in vivo and in vitro. This study was to explore the specific mechanism of RREs inhibiting the proliferation of liver cancer HepG2 cells and provide a theoretical basis for the prevention and treatment of liver cancer by RREs. HepG2 cells were cultured in vitro, and MTT assay was adopted to detect the effect of RREs on HepG2 cell activity. Colony formation assay was applied to detect the growth and proliferation of cells, cell apoptosis was detected by flow cytometry, and dichloro-dihydro-fluorescein diacetate (DCFH-DA) assay was adopted to detect the effect of RREs on the production of reactive oxygen species (ROS) in cells. The effect of RREs on cell mitochondrial membrane potential was evaluated by mitochondrial membrane potential assay kit with JC-1 (JC-1 assay), and western blot was used to detect the expression of apoptosis-related proteins (B-cell lymphoma-2 (Bcl-2), Bcl-2-associated x (Bax), and Caspase-3), thus investigating the effect of RREs on the molecular mechanism of HepG2 cell apoptosis. The results showed that RREs could inhibit the proliferation activity of HepG2 cells and promote their apoptosis in a concentration-dependent manner. The level of ROS in HepG2 cells interfered by RREs increased markedly, while the cell mitochondrial membrane potential decreased sharply. As the concentration of HepG2 increased, the mitochondrial membrane potential reduced steeply. Western blot results showed that the expression of apoptosis-related protein Bcl-2 in the RREs treatment group dropped, but the expression of Bax and Caspase-3 rose. In summary, RREs could inhibit the proliferation of liver cancer HepG2 cells and promote their apoptosis. This inhibition might be executed by inducing HepG2 cells to produce ROS, a decrease in Bcl-2/Bax protein ratio, and an obvious reduction in mitochondrial membrane potential.
Collapse
|