1
|
Skerrett-Byrne DA, Anderson AL, Bromfield EG, Bernstein IR, Mulhall JE, Schjenken JE, Dun MD, Humphrey SJ, Nixon B. Global profiling of the proteomic changes associated with the post-testicular maturation of mouse spermatozoa. Cell Rep 2022; 41:111655. [DOI: 10.1016/j.celrep.2022.111655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 06/15/2022] [Accepted: 10/20/2022] [Indexed: 11/17/2022] Open
|
2
|
Balu R, Ramachandran SS, Mathimaran A, Jeyaraman J, Paramasivam SG. Functional significance of mouse seminal vesicle sulfhydryl oxidase on sperm capacitation in vitro. Mol Hum Reprod 2022; 29:6637520. [PMID: 35809071 DOI: 10.1093/molehr/gaac025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 06/06/2022] [Indexed: 11/14/2022] Open
Abstract
During ejaculation, cauda epididymal spermatozoa are suspended in a protein-rich solution of seminal plasma which is composed of proteins mostly secreted from the seminal vesicle. These seminal proteins interact with the sperm cells and bring about changes in their physiology, so that they can become capacitated in order for the fertilization to take place. Sulfhydryl oxidase (SOX) is a member of the QSOX family and its expression is found to be high in the seminal vesicle secretion of mouse. Previously, it has been reported to cross-link thiol containing amino acids among major seminal vesicle secretion (SVS) proteins. However, its role in male reproduction is unclear. In this study, we determined the role of SOX on epididymal sperm maturation and also disclosed the binding effect of SOX on the sperm fertilizing ability in vitro. In order to achieve the above two objectives, we constructed a Sox clone (1.7 kb) using a pET-30a vector. His-tagged recombinant Sox was over expressed in Shuffle Escherichia coli cells and purified using His-Trap column affinity chromatography along with hydrophobic interaction chromatography. The purified SOX was confirmed by Western blot analysis and by its activity with DTT as a substrate. Results obtained from immunocytochemical staining clearly indicated that SOX possesses a binding site on the sperm acrosome. The influence of SOX on oxidation of sperm sulfhydryl to disulfides during epididymal sperm maturation was evaluated by a thiol labelling agent, mBBr. The SOX protein binds on to the sperm cells and increases their progressive motility. The effect of SOX binding on reducing the [Ca2+]i concentration in sperm head, was determined using a calcium probe, Fluo-3 AM. The inhibitory influence of SOX on sperm acrosome reaction was shown by using calcium ionophore A32187 to induce the acrosome reaction. The acrosome-reacted sperm were examined by staining with FITC-conjugated Arachis hypogaea (peanut) lectin. Furthermore, immunocytochemical analysis revealed that SOX remains bound to the sperm cells in the uterus but disappears in the oviduct during their transit in the female reproductive tract. The results from the above experiment revealed that SOX binding on to the sperm acrosome prevents sperm capacitation by affecting the [Ca2+]i concentration in the sperm head and the ionophore-induced acrosome reaction. Thus, the binding of SOX on to the sperm acrosome may possibly serve as a decapacitation factor in the uterus to prevent premature capacitation and acrosome reaction, thus preserving their fertilizing ability.
Collapse
Affiliation(s)
- Rubhadevi Balu
- Department of Biotechnology, BIT-Campus, Anna University, Tiruchirappalli-620024, Tamil Nadu India
| | | | - Amala Mathimaran
- Department of Bioinformatics, Alagappa University, Karaikudi-630 004, Tamil Nadu, India
| | - Jeyakanthan Jeyaraman
- Department of Bioinformatics, Alagappa University, Karaikudi-630 004, Tamil Nadu, India
| | | |
Collapse
|
3
|
WEI YS, LIN WZ, WANG TE, LEE WY, LI SH, LIN FJ, NIXON B, SIPILÄ P, TSAI PS. Polarized epithelium-sperm co-culture system reveals stimulatory factors for the secretion of mouse epididymal quiescin sulfhydryl oxidase 1. J Reprod Dev 2022; 68:198-208. [PMID: 35228412 PMCID: PMC9184822 DOI: 10.1262/jrd.2021-128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Spermatozoa acquire fertilization ability through post-translational modifications. These membrane surface alterations occur in various segments of the epididymis. Quiescin sulfhydryl
oxidases, which catalyze thiol-oxidation reactions, are involved in disulfide bond formation, which is essential for sperm maturation, upon transition and migration in the epididymis. Using
castration and azoospermia transgenic mouse models, in the present study, we showed that quiescin sulfhydryl oxidase 1 (QSOX1) protein expression and secretion are positively correlated with
the presence of testosterone and sperm cells. A two-dimensional in vitro epithelium-sperm co-culture system provided further evidence in support of the notion that both
testosterone and its dominant metabolite, 5α-dihydrotestosterone, promote epididymal QSOX1 secretion. We also demonstrated that immature caput spermatozoa, but not mature cauda sperm cells,
exhibited great potential to stimulate QSOX1 secretion in vitro, suggesting that sperm maturation is a key regulatory factor for mouse epididymal QSOX1 secretion. Proteomic
analysis identified 582 secretory proteins from the co-culture supernatant, of which 258 were sperm-specific and 154 were of epididymal epithelium-origin. Gene Ontology analysis indicated
that these secreted proteins exhibit functions known to facilitate sperm membrane organization, cellular activity, and sperm-egg recognition. Taken together, our data demonstrated that
testosterone and sperm maturation status are key regulators of mouse epididymal QSOX1 protein expression and secretion.
Collapse
Affiliation(s)
- Yu-Syuan WEI
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan
| | - Wan-Zhen LIN
- Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan
| | - Tse-En WANG
- Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan
| | - Wei-Yun LEE
- Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan
| | - Sheng-Hsiang LI
- Department of Medical Research, Mackay Memorial Hospital, Tamshui 25160, Taiwan
| | - Fu-Jung LIN
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Brett NIXON
- Priority Research Centre for Reproduction, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Petra SIPILÄ
- Department of Physiology, Institute of Biomedicine, University of Turku, Turku 20520, Finland
| | - Pei-Shiue TSAI
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
4
|
Xing K, Chen Y, Wang L, Lv X, Li Z, Qi X, Wang X, Xiao L, Ni H, Guo Y, Sheng X. Epididymal mRNA and miRNA transcriptome analyses reveal important genes and miRNAs related to sperm motility in roosters. Poult Sci 2022; 101:101558. [PMID: 34844112 PMCID: PMC8633681 DOI: 10.1016/j.psj.2021.101558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/27/2021] [Accepted: 10/14/2021] [Indexed: 12/13/2022] Open
Abstract
Sperm motility is a crucial trait in chicken production, and the epididymis is an essential organ in the reproductive system. Currently, the molecular mechanisms underlying sperm motility in the epididymis are unclear. In this study, 8 cDNA libraries and eight miRNA libraries were constructed from roosters (4 chickens per group) with diverse sperm motility. After a comparative analysis of epididymal transcriptomes, we detected 84 differentially expressed genes (DEGs) using the edgeR package. Integrated interpretation of DEGs indicated that MMP9, SLN, WT1, PLIN1, and LRRIQ1 are the most promising candidate genes affecting sperm motility in the epididymis of roosters. MiR-146a, mir-135b, and mir-205 could play important regulatory roles in sperm maturation, capacitation, and motility. Additionally, a comprehensive analysis of the mRNA and miRNAs transcriptomes in silico identified a promising gene-miRNA pair miR-135b-HPS5, which may be a vital regulator of sperm motility in the epididymis. Our findings provide novel integrated information of miRNAs and genes that shed light on the regulatory mechanisms of fertility in roosters.
Collapse
Affiliation(s)
- Kai Xing
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Yu Chen
- Beijing General Station of Animal Husbandry, Beijing 100107, China
| | - Liang Wang
- Beijing General Station of Animal Husbandry, Beijing 100107, China
| | - Xueze Lv
- Beijing General Station of Animal Husbandry, Beijing 100107, China
| | - Zheng Li
- Beijing Institute of Feed Control, Beijing 100107, China
| | - Xiaolong Qi
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Xiangguo Wang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Longfei Xiao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Hemin Ni
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Yong Guo
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Xihui Sheng
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China.
| |
Collapse
|
5
|
Shi J, Fok KL, Dai P, Qiao F, Zhang M, Liu H, Sang M, Ye M, Liu Y, Zhou Y, Wang C, Sun F, Xie G, Chen H. Spatio-temporal landscape of mouse epididymal cells and specific mitochondria-rich segments defined by large-scale single-cell RNA-seq. Cell Discov 2021; 7:34. [PMID: 34001862 PMCID: PMC8129088 DOI: 10.1038/s41421-021-00260-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/08/2021] [Indexed: 02/03/2023] Open
Abstract
Spermatozoa acquire their fertilizing ability and forward motility during epididymal transit, suggesting the importance of the epididymis. Although the cell atlas of the epididymis was reported recently, the heterogeneity of the cells and the gene expression profile in the epididymal tube are still largely unknown. Considering single-cell RNA sequencing results, we thoroughly studied the cell composition, spatio-temporal differences in differentially expressed genes (DEGs) in epididymal segments and mitochondria throughout the epididymis with sufficient cell numbers. In total, 40,623 cells were detected and further clustered into 8 identified cell populations. Focused analyses revealed the subpopulations of principal cells, basal cells, clear/narrow cells, and halo/T cells. Notably, two subtypes of principal cells, the Prc7 and Prc8 subpopulations were enriched as stereocilia-like cells according to GO analysis. Further analysis demonstrated the spatially specific pattern of the DEGs in each cell cluster. Unexpectedly, the abundance of mitochondria and mitochondrial transcription (MT) was found to be higher in the corpus and cauda epididymis than in the caput epididymis by scRNA-seq, immunostaining, and qPCR validation. In addition, the spatio-temporal profile of the DEGs from the P42 and P56 epididymis, including transiting spermatozoa, was depicted. Overall, our study presented the single-cell transcriptome atlas of the mouse epididymis and revealed the novel distribution pattern of mitochondria and key genes that may be linked to sperm functionalities in the first wave and subsequent wave of sperm, providing a roadmap to be emulated in efforts to achieve sperm maturation regulation in the epididymis.
Collapse
Affiliation(s)
- Jianwu Shi
- grid.260483.b0000 0000 9530 8833Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu 226019 China
| | - Kin Lam Fok
- grid.10784.3a0000 0004 1937 0482School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR China
| | - Pengyuan Dai
- grid.260483.b0000 0000 9530 8833Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu 226019 China
| | - Feng Qiao
- grid.260483.b0000 0000 9530 8833Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu 226019 China
| | - Mengya Zhang
- grid.260483.b0000 0000 9530 8833Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu 226019 China
| | - Huage Liu
- grid.260483.b0000 0000 9530 8833Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu 226019 China
| | - Mengmeng Sang
- grid.260483.b0000 0000 9530 8833Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu 226019 China
| | - Mei Ye
- grid.260483.b0000 0000 9530 8833Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu 226019 China
| | - Yang Liu
- grid.16821.3c0000 0004 0368 8293Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yiwen Zhou
- grid.16821.3c0000 0004 0368 8293Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Chengniu Wang
- grid.260483.b0000 0000 9530 8833Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu 226019 China
| | - Fei Sun
- grid.260483.b0000 0000 9530 8833Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu 226019 China
| | - Gangcai Xie
- grid.260483.b0000 0000 9530 8833Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu 226019 China
| | - Hao Chen
- grid.260483.b0000 0000 9530 8833Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu 226019 China
| |
Collapse
|
6
|
Abstract
MicroRNA-21 (miR-21) is one of the most abundant microRNAs in cancer tissues and is considered a strong prognostic biomarker. In situ hybridization (ISH) analyses using locked nucleic acid (LNA) probes have shown that miR-21 is expressed in stromal fibroblastic cells and in subsets of cancer cells. Image analysis of the miR-21 ISH signal has shown that increased expression estimate is associated with poor prognosis in colon cancer. However, assessment of the ISH signal by image analysis to obtain quantitative estimates has been done in retrospective studies without normalization of the expression estimates to reference parameters. The ISH signal output is sensitive to several experimental parameters, including hybridization temperature, probe concentration, and pretreatment, and therefore improved standardized procedures are warranted. We considered the use of paraffin-embedded cultured cells (PECCs) as reference standards that potentially can accompany staining of clinical cancer samples. We found that the cancer cell lines HT-29, CACO-2, and HeLa cells express miR-21 when measured by ISH, and used those cell lines to obtain PECCs. In this methods chapter we present a fixation and embedding procedure to obtain PECCs suitable for microRNA ISH and a double-fluorescence protocol to stain microRNAs together with protein markers in the PECCs.
Collapse
|
7
|
Hamad Mohamed ZB, Ibrahim MB, Hamad Alfarisi HA, Abdul Wahab AY, Abd Fuaat AB, Che Mohamad CA. Trihoney ameliorates hypercholesterolemia-induced epididymal histopathological changes in male rabbits. ASIA PACIFIC JOURNAL OF MOLECULAR BIOLOGY AND BIOTECHNOLOGY 2020:90-100. [DOI: 10.35118/apjmbb.2020.028.1.09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Hypercholesterolemia has been linked to weight change and histopathological alteration of male reproductive organs. The epididymis was suggested to be an early target of lipid-related infertility and can be dramatically affected by excess intake of a high cholesterol diet. On the other hand, the interest has been increased towards the use of honey as a prophylactic and therapeutic agent for various diseases. Therefore, the purpose of this study is to investigate the effects of Trihoney (a mixture of Trigona, Mellifera and Tualang) on epididymal weight change and histopathological alterations in hypercholesterolemic male rabbits and compare its effects with atorvastatin. Forty-eight mature male New Zealand white rabbits were divided into 6 groups. Two groups received standard rabbit pellet with 0 and 0.6 g/kg/day of Trihoney respectively while the other four groups received 1% cholesterol diet with 0, 0.3, 0.6 g/kg/day of Trihoney, and 2 mg/kg/day of atorvastatin. After 12 weeks, the rabbits were sacrificed and the epididymides were harvested for evaluation of weight and histopathological changes. Administration of 1% cholesterol diet either alone or in combination with atorvastatin caused a significant reduction in the epididymal weight and epididymal atrophy. Supplementation of Trihoney particularly at the dose of 0.6 g/kg/day improved epididymal weight, regained the normal architecture of the epididymal histology and increased the number of mature sperm inside the tubules of the epididymis. Based on these results, Trihoney exhibited its potential health benefit as a protective agent against epididymal weight reduction and histopathological alterations in hypercholesterolemic rabbits.
Collapse
Affiliation(s)
- Zenab B. Hamad Mohamed
- Department of Nutrition Sciences, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia
| | - Muhammad Bin Ibrahim
- Department of Nutrition Sciences, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia
| | - Hamad Abdulsalam Hamad Alfarisi
- Department of Nutrition Sciences, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia
| | - Azantee Yazmie Abdul Wahab
- Department of Obstetrics and Gynaecology, Kulliyyah of Medicine, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia
| | - Azliana binti Abd Fuaat
- Department of Pathology & Laboratory Medicine, International Islamic University Malaysia Medical Centre, 25200 Kuantan, Pahang, Malaysia
| | - Che Anuar Che Mohamad
- Department of Basic Medical Sciences, Kulliyyah of Pharmacy, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia
| |
Collapse
|
8
|
Chan JC, Morgan CP, Adrian Leu N, Shetty A, Cisse YM, Nugent BM, Morrison KE, Jašarević E, Huang W, Kanyuch N, Rodgers AB, Bhanu NV, Berger DS, Garcia BA, Ament S, Kane M, Neill Epperson C, Bale TL. Reproductive tract extracellular vesicles are sufficient to transmit intergenerational stress and program neurodevelopment. Nat Commun 2020; 11:1499. [PMID: 32198406 PMCID: PMC7083921 DOI: 10.1038/s41467-020-15305-w] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 02/27/2020] [Indexed: 12/21/2022] Open
Abstract
Extracellular vesicles (EVs) are a unique mode of intercellular communication capable of incredible specificity in transmitting signals involved in cellular function, including germ cell maturation. Spermatogenesis occurs in the testes, behind a protective barrier to ensure safeguarding of germline DNA from environmental insults. Following DNA compaction, further sperm maturation occurs in the epididymis. Here, we report reproductive tract EVs transmit information regarding stress in the paternal environment to sperm, potentially altering fetal development. Using intracytoplasmic sperm injection, we found that sperm incubated with EVs collected from stress-treated epididymal epithelial cells produced offspring with altered neurodevelopment and adult stress reactivity. Proteomic and transcriptomic assessment of these EVs showed dramatic changes in protein and miRNA content long after stress treatment had ended, supporting a lasting programmatic change in response to chronic stress. Thus, EVs as a normal process in sperm maturation, can also perform roles in intergenerational transmission of paternal environmental experience.
Collapse
Affiliation(s)
- Jennifer C Chan
- Department of Biomedical Sciences, School of Veterinary Medicine and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Christopher P Morgan
- Department of Pharmacology and Center for Epigenetic Research in Child Health and Brain Development, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - N Adrian Leu
- Department of Biomedical Sciences, School of Veterinary Medicine and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Amol Shetty
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Yasmine M Cisse
- Department of Pharmacology and Center for Epigenetic Research in Child Health and Brain Development, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Bridget M Nugent
- Department of Pharmacology and Center for Epigenetic Research in Child Health and Brain Development, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Kathleen E Morrison
- Department of Pharmacology and Center for Epigenetic Research in Child Health and Brain Development, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Eldin Jašarević
- Department of Pharmacology and Center for Epigenetic Research in Child Health and Brain Development, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Weiliang Huang
- Department of Pharmaceutical Science, University of Maryland School of Pharmacy, Baltimore, MD, 21201, USA
| | - Nickole Kanyuch
- Department of Pharmacology and Center for Epigenetic Research in Child Health and Brain Development, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Ali B Rodgers
- Department of Biomedical Sciences, School of Veterinary Medicine and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Natarajan V Bhanu
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Dara S Berger
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Benjamin A Garcia
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Seth Ament
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Maureen Kane
- Department of Pharmaceutical Science, University of Maryland School of Pharmacy, Baltimore, MD, 21201, USA
| | - C Neill Epperson
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Tracy L Bale
- Department of Pharmacology and Center for Epigenetic Research in Child Health and Brain Development, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
9
|
Wang TE, Li SH, Minabe S, Anderson AL, Dun MD, Maeda KI, Matsuda F, Chang HW, Nixon B, Tsai PSJ. Mouse quiescin sulfhydryl oxidases exhibit distinct epididymal luminal distribution with segment-specific sperm surface associations. Biol Reprod 2019; 99:1022-1033. [PMID: 29800099 DOI: 10.1093/biolre/ioy125] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 05/22/2018] [Indexed: 12/19/2022] Open
Abstract
Sulfhydryl oxidation is part of the sperm maturation process essential for the acquisition of sperm fertilization competency and its structural stabilization; however, the specific sulfhydryl oxidases that fulfill these roles have yet to be identified. In this study, we investigate the potential involvement of one atypical thiol oxidase family called quiescin Q6/sulfhydryl oxidase (QSOX) using the mouse epididymis as our model system. With multidisciplinary approaches, we show that QSOX isoform 1 and 2 exhibit complementary distribution throughout the epididymal duct, but that each variant possesses distinct subcellular localization within the epididymal principal cells. While QSOX2 was exclusively present in the Golgi apparatus of the caput and corpus epididymis, QSOX1c, the most profusely express QSOX1 variant, was abundantly present in the cauda luminal fluids. Moreover, immunohistochemistry studies together with proteomic identification in isolated epididymosomes provided evidence substantiating the release of QSOX2, but not QSOX1c, via an apocrine secretory pathway. Furthermore, we demonstrate for the first time, distinct association of QSOX1c and QSOX2 with the sperm acrosome and implantation fossa, during different stages of their epididymal maturation. In conclusion, our study provides the first comprehensive comparisons between QSOX1 and QSOX2 in the mouse epididymis, revealing their distinct epididymal distribution, cellular localization, mechanisms of secretion and sperm membrane association. Together, these data suggest that QSOX1 and QSOX2 have discrete biological functions in male germ cell development.
Collapse
Affiliation(s)
- Tse-En Wang
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Sheng-Hsiang Li
- Department of Medical Research, Mackay Memorial Hospital, Tamshui, Taiwan.,Mackay Junior College of Medicine, Nursing, and Management, Taipei, Taiwan
| | - Shiori Minabe
- Department of Veterinary Medical Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Amanda L Anderson
- Priority Research Centre for Reproduction, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| | - Matthew D Dun
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan, New South Wales, Australia.,Hunter Medical Research Institute, Cancer Research Program, New Lambton Heights, New South Wales, Australia
| | - Kei-Ichiro Maeda
- Department of Veterinary Medical Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Fuko Matsuda
- Department of Veterinary Medical Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hui-Wen Chang
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Brett Nixon
- Priority Research Centre for Reproduction, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| | - Pei-Shiue Jason Tsai
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan.,Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
10
|
Nixon B, De Iuliis GN, Dun MD, Zhou W, Trigg NA, Eamens AL. Profiling of epididymal small non-protein-coding RNAs. Andrology 2019; 7:669-680. [PMID: 31020794 DOI: 10.1111/andr.12640] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/04/2019] [Accepted: 03/30/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Our understanding of epididymal physiology and function has been transformed over the three decades in which the International Meeting Series on the Epididymis has been hosted. This transformation has occurred along many fronts, but among the most significant advances has been the unexpected discovery of the diversity of small non-protein-coding RNAs (sRNAs) expressed in the epididymal epithelium and differentially accumulated in the luminal population of spermatozoa. OBJECTIVES Here we survey recent literature pertaining to profiling the sRNA landscape of the mammalian epididymis with the goal of demonstrating the contribution that these key regulatory elements, and their associated pathways, make to epididymal physiology and sperm maturation. RESULTS AND DISCUSSION High throughput sequencing strategies have fueled an unprecedented advance in our understanding of RNA biology. In the last decade, such high throughput profiling tools have been increasingly applied to study the mammalian epididymis, presaging the discovery of diverse classes of sRNA expressed along the length of the tract. Among the best studied sRNA classes are the microRNAs (miRNA), a sRNA species shown to act in concert with endocrine signals to fine-tune the segmental patterning of epididymal gene expression. In addition to performing this homeostatic role, epithelial cell-derived sRNAs also selectively accumulate into the epididymosomes and spermatozoa that occupy the duct lumen. This exciting discovery alludes to a novel form of intracellular communication that contributes to the establishment of the sperm epigenome and its modification under conditions of paternal stress. CONCLUSION Compelling literature has identified sRNAs as a crucial regulatory tier that allows the epididymis to fulfill its combined roles of sperm transport, maturation, and storage. Continued research in this emerging field will contribute to our growing understanding of the etiology of male factor infertility and potentially allow for the future design of rational therapeutic options for these individuals.
Collapse
Affiliation(s)
- B Nixon
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia.,Reproduction and Pregnancy Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - G N De Iuliis
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia.,Reproduction and Pregnancy Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - M D Dun
- Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW, Australia.,Cancer Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - W Zhou
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia.,Reproduction and Pregnancy Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - N A Trigg
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia.,Reproduction and Pregnancy Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - A L Eamens
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
11
|
Nixon B, De Iuliis GN, Hart HM, Zhou W, Mathe A, Bernstein IR, Anderson AL, Stanger SJ, Skerrett-Byrne DA, Jamaluddin MFB, Almazi JG, Bromfield EG, Larsen MR, Dun MD. Proteomic Profiling of Mouse Epididymosomes Reveals their Contributions to Post-testicular Sperm Maturation. Mol Cell Proteomics 2019; 18:S91-S108. [PMID: 30213844 PMCID: PMC6427233 DOI: 10.1074/mcp.ra118.000946] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 08/28/2018] [Indexed: 01/31/2023] Open
Abstract
The functional maturation of spermatozoa that is necessary to achieve fertilization occurs as these cells transit through the epididymis, a highly specialized region of the male reproductive tract. A defining feature of this maturation process is that it occurs in the complete absence of nuclear gene transcription or de novo, protein translation in the spermatozoa. Rather, it is driven by sequential interactions between spermatozoa and the complex external milieu in which they are bathed within lumen of the epididymal tubule. A feature of this dynamic microenvironment are epididymosomes, small membrane encapsulated vesicles that are secreted from the epididymal soma. Herein, we report comparative proteomic profiling of epididymosomes isolated from different segments of the mouse epididymis using multiplexed tandem mass tag (TMT) based quantification coupled with high resolution LC-MS/MS. A total of 1640 epididymosome proteins were identified and quantified via this proteomic method. Notably, this analysis revealed pronounced segment-to-segment variation in the encapsulated epididymosome proteome. Thus, 146 proteins were identified as being differentially accumulated between caput and corpus epididymosomes, and a further 344 were differentially accumulated between corpus and cauda epididymosomes (i.e., fold change of ≤ -1.5 or ≥ 1.5; p, < 0.05). Application of gene ontology annotation revealed a substantial portion of the epididymosome proteins mapped to the cellular component of extracellular exosome and to the biological processes of transport, oxidation-reduction, and metabolism. Additional annotation of the subset of epididymosome proteins that have not previously been identified in exosomes revealed enrichment of categories associated with the acquisition of sperm function (e.g., fertilization and binding to the zona pellucida). In tandem with our demonstration that epididymosomes are able to convey protein cargo to the head of maturing spermatozoa, these data emphasize the fundamental importance of epididymosomes as key elements of the epididymal microenvironment responsible for coordinating post-testicular sperm maturation.
Collapse
Affiliation(s)
- Brett Nixon
- From the ‡Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Geoffry N De Iuliis
- From the ‡Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Hanah M Hart
- From the ‡Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Wei Zhou
- From the ‡Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Andrea Mathe
- From the ‡Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia;; School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Ilana R Bernstein
- From the ‡Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Amanda L Anderson
- From the ‡Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Simone J Stanger
- From the ‡Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - David A Skerrett-Byrne
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - M Fairuz B Jamaluddin
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW 2308, Australia;; Hunter Medical Research Institute, Cancer Research Program, New Lambton Heights, NSW 2305, Australia
| | - Juhura G Almazi
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW 2308, Australia;; Hunter Medical Research Institute, Cancer Research Program, New Lambton Heights, NSW 2305, Australia
| | - Elizabeth G Bromfield
- From the ‡Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Martin R Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Matthew D Dun
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW 2308, Australia;; Hunter Medical Research Institute, Cancer Research Program, New Lambton Heights, NSW 2305, Australia.
| |
Collapse
|
12
|
Zhou W, Sipilä P, De Iuliis GN, Dun MD, Nixon B. Analysis of Epididymal Protein Synthesis and Secretion. J Vis Exp 2018. [PMID: 30199011 DOI: 10.3791/58308] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The mammalian epididymis generates one of the most complex intraluminal fluids of any endocrine gland in order to support the post-testicular maturation and storage of spermatozoa. Such complexity arises due to the combined secretory and absorptive activity of the lining epithelial cells. Here, we describe the techniques for the analysis of epididymal protein synthesis and secretion by focusing on the model protein family of dynamin (DNM) mechanoenzymes; large GTPases that have the potential to regulate bi-directional membrane trafficking events. For the study of protein expression in epididymal tissue, we describe robust methodology for immunofluorescence labeling of target proteins in paraffin-embedded sections and the subsequent detection of the spatial distribution of these proteins via immunofluorescence microscopy. We also describe optimized methodology for the isolation and characterization of exosome like vesicles, known as epididymosomes, which are secreted into the epididymal lumen to participate in intercellular communication with maturing sperm cells. As a complementary approach, we also describe the immunofluorescence detection of target proteins in an SV40-immortalized mouse caput epididymal epithelial (mECap18) cell line. Moreover, we discuss the utility of the mECap18 cell line as a suitable in vitro model with which to explore the regulation of epididymal secretory activity. For this purpose, we describe the culturing requirements for the maintenance of the mECap18 cell line and the use of selective pharmacological inhibition regimens that are capable of influencing their secretory protein profile. The latter are readily assessed via harvesting of conditioned culture medium, concentration of secreted proteins via trichloroacetic acid/acetone precipitation and their subsequent analysis via SDS-PAGE and immunoblotting. We contend that these combined methods are suitable for the analysis of alternative epididymal protein targets as a prelude to determining their functional role in sperm maturation and/or storage.
Collapse
Affiliation(s)
- Wei Zhou
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, University of Newcastle; Hunter Medical Research Institute
| | - Petra Sipilä
- Department of Physiology, Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku
| | - Geoffry N De Iuliis
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, University of Newcastle; Hunter Medical Research Institute
| | - Matthew D Dun
- Hunter Medical Research Institute; School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, University of Newcastle; Hunter Medical Research Institute;
| |
Collapse
|
13
|
Chromogenic In Situ Hybridization Methods for microRNA Biomarker Monitoring of Drug Safety and Efficacy. Methods Mol Biol 2018; 1641:399-412. [PMID: 28748477 DOI: 10.1007/978-1-4939-7172-5_22] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Disease research and treatment development have turned to the impact and utility of microRNA. The dynamic and highly specific expression of these molecular regulators can be used to predict and monitor disease progression as well as therapeutic treatment efficacy and safety, thus aiding decisions in patient care. In situ hybridization (ISH) of biopsy material has become a routine clinical pathology procedure for monitoring gene structure, expression, and sample characterization. For ribonucleic acid (RNA), determining cell source and level of expression of these biomarkers gives insight into the cellular function and physiopathology. Identification and monitoring of microRNA biomarkers are made possible through locked nucleic acid (LNA)™-based detection probes. LNA™ enhances the sensitivity and specificity of target binding, most profoundly so for the short, highly similar, microRNA sequences. We present a robust 1-day ISH protocol for formalin-fixed, paraffin-embedded (FFPE) tissue sections based on microRNA-specific LNA™ detection probes which can be labeled with digoxigenin (DIG) or 6-carboxyfluorescein (FAM) and detected through enzyme-linked specific antibodies that catalyze substrates into deposited chromogen products at the target RNA site. The variety of haptens and detection reagents in combination with LNA™ chemistry offer flexibility and ease to multiple target assessment of therapeutic response.
Collapse
|
14
|
Hutcheon K, McLaughlin EA, Stanger SJ, Bernstein IR, Dun MD, Eamens AL, Nixon B. Analysis of the small non-protein-coding RNA profile of mouse spermatozoa reveals specific enrichment of piRNAs within mature spermatozoa. RNA Biol 2017; 14:1776-1790. [PMID: 28816603 DOI: 10.1080/15476286.2017.1356569] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Post-testicular sperm maturation and storage within the epididymis is a key determinant of gamete quality and fertilization competence. Here we demonstrate that mouse spermatozoa possess a complex small non-protein-coding RNA (sRNA) profile, the composition of which is markedly influenced by their epididymal transit. Thus, although microRNAs (miRNAs) are highly represented in the spermatozoa of the proximal epididymis, this sRNA class is largely diminished in mature spermatozoa of the distal epididymis. Coincident with this, a substantial enrichment in Piwi-interacting RNA (piRNA) abundance in cauda spermatozoa was detected. Further, features of cauda piRNAs, including; predominantly 29-31 nts in length; preference for uracil at their 5' terminus; no adenine enrichment at piRNA nt 10, and; predominantly mapping to intergenic regions of the mouse genome, indicate that these piRNAs are generated by the PIWIL1-directed primary piRNA production pathway. Accordingly, PIWIL1 was detected via immunoblotting and mass spectrometry in epididymal spermatozoa. These data provide insight into the complexity and dynamic nature of the sRNA profile of spermatozoa and raise the intriguing prospect that piRNAs are generated in situ in maturing spermatozoa. Such information is of particular interest in view of the potential role for paternal sRNAs in influencing conception, embryo development and intergenerational inheritance.
Collapse
Affiliation(s)
- Kate Hutcheon
- a School of Environmental and Life Sciences , The University of Newcastle , Callaghan , NSW , Australia
| | - Eileen A McLaughlin
- a School of Environmental and Life Sciences , The University of Newcastle , Callaghan , NSW , Australia.,b Priority Research Centre for Reproductive Biology , The University of Newcastle , Callaghan , NSW , Australia.,c School of Biological Sciences , University of Auckland , Auckland , New Zealand
| | - Simone J Stanger
- a School of Environmental and Life Sciences , The University of Newcastle , Callaghan , NSW , Australia.,b Priority Research Centre for Reproductive Biology , The University of Newcastle , Callaghan , NSW , Australia
| | - Ilana R Bernstein
- a School of Environmental and Life Sciences , The University of Newcastle , Callaghan , NSW , Australia.,b Priority Research Centre for Reproductive Biology , The University of Newcastle , Callaghan , NSW , Australia
| | - Matthew D Dun
- d Priority Research Centre for Cancer Research, Innovation and Translation , Hunter Medical Research Institute, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle , Callaghan , NSW , Australia
| | - Andrew L Eamens
- a School of Environmental and Life Sciences , The University of Newcastle , Callaghan , NSW , Australia
| | - Brett Nixon
- a School of Environmental and Life Sciences , The University of Newcastle , Callaghan , NSW , Australia.,b Priority Research Centre for Reproductive Biology , The University of Newcastle , Callaghan , NSW , Australia
| |
Collapse
|
15
|
Katen AL, Sipilä P, Mitchell LA, Stanger SJ, Nixon B, Roman SD. Epididymal CYP2E1 plays a critical role in acrylamide-induced DNA damage in spermatozoa and paternally mediated embryonic resorptions†. Biol Reprod 2017; 96:921-935. [DOI: 10.1093/biolre/iox021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/28/2017] [Indexed: 01/21/2023] Open
|
16
|
Characterisation of mouse epididymosomes reveals a complex profile of microRNAs and a potential mechanism for modification of the sperm epigenome. Sci Rep 2016; 6:31794. [PMID: 27549865 PMCID: PMC4994100 DOI: 10.1038/srep31794] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 07/26/2016] [Indexed: 12/18/2022] Open
Abstract
Recent evidence has shown that the sperm epigenome is vulnerable to dynamic modifications arising from a variety of paternal environment exposures and that this legacy can serve as an important determinant of intergenerational inheritance. It has been postulated that such exchange is communicated to maturing spermatozoa via the transfer of small non-protein-coding RNAs (sRNAs) in a mechanism mediated by epididymosomes; small membrane bound vesicles released by the soma of the male reproductive tract (epididymis). Here we confirm that mouse epididymosomes encapsulate an impressive cargo of >350 microRNAs (miRNAs), a developmentally important sRNA class, the majority (~60%) of which are also represented by the miRNA signature of spermatozoa. This includes >50 miRNAs that were found exclusively in epididymal sperm and epididymosomes, but not in the surrounding soma. We also documented substantial changes in the epididymosome miRNA cargo, including significant fold changes in almost half of the miRNAs along the length of the epididymis. Finally, we provide the first direct evidence for the transfer of several prominent miRNA species between mouse epididymosomes and spermatozoa to afford novel insight into a mechanism of intercellular communication by which the sRNA payload of sperm can be selectively modified during their post-testicular maturation.
Collapse
|
17
|
Chang Y, Dai DH, Li Y, Zhang Y, Zhang M, Zhou GB, Zeng CJ. Differences in the expression of microRNAs and their predicted gene targets between cauda epididymal and ejaculated boar sperm. Theriogenology 2016; 86:2162-2171. [PMID: 27527406 DOI: 10.1016/j.theriogenology.2016.07.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 07/12/2016] [Accepted: 07/12/2016] [Indexed: 01/27/2023]
Abstract
Mammalian spermatozoa gradually mature and acquire fertility during the transition from the testis to the caput and cauda epididymis, after which they are stored at the tail of the epididymis and the ampulla of vas deferens. During ejaculation, mixing of spermatozoa with the secretions of accessory sex glands leads to their dilution and changes in their function. Although remarkable progress has been made toward the understanding of changes in spermatozoa biochemistry and function before and after ejaculation, it is unknown whether microRNAs (miRNAs) are involved in regulating the function of spermatozoa during the transition between the cauda epididymis and ejaculation. In this study, 48 miRNAs were selected for analysis on the basis of their potential involvement in spermatogenesis, sperm maturation, and quality parameters markers. The differential expression levels of these 48 miRNAs between the caudal epididymis and fresh ejaculates of boar spermatozoa were determined. We found that 15 miRNAs were significantly differentially expressed (eight downregulated and seven upregulated) between boar cauda epididymal and fresh spermatozoa. Five miRNAs hypothesized to be involved in sperm apoptosis were further tested to demonstrate their influence over the expression of their target mRNAs using quantitative reverse-transcription polymerase chain reaction. Together, our findings suggest that these differentially expressed miRNAs are associated with the functional regulation of spermatozoa between cauda epididymis and ejaculation.
Collapse
Affiliation(s)
- Yu Chang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan Province, P. R. China
| | - Ding-Hui Dai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan Province, P. R. China
| | - Yuan Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan Province, P. R. China
| | - Yan Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan Province, P. R. China
| | - Ming Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan Province, P. R. China
| | - Guang-Bin Zhou
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan Province, P. R. China
| | - Chang-Jun Zeng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan Province, P. R. China.
| |
Collapse
|
18
|
Domeniconi RF, Souza ACF, Xu B, Washington AM, Hinton BT. Is the Epididymis a Series of Organs Placed Side By Side? Biol Reprod 2016; 95:10. [PMID: 27122633 PMCID: PMC5029429 DOI: 10.1095/biolreprod.116.138768] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 04/15/2016] [Indexed: 12/13/2022] Open
Abstract
The mammalian epididymis is more than a highly convoluted tube divided into four regions: initial segment, caput, corpus and cauda. It is a highly segmented structure with each segment expressing its own and overlapping genes, proteins, and signal transduction pathways. Therefore, the epididymis may be viewed as a series of organs placed side by side. In this review we discuss the contributions of septa that divide the epididymis into segments and present hypotheses as to the mechanism by which septa form. The mechanisms of Wolffian duct segmentation are likened to the mechanisms of segmentation of the renal nephron and somites. The renal nephron may provide valuable clues as to how the Wolffian duct is patterned during development, whereas somitogenesis may provide clues as to the timing of the development of each segment. Emphasis is also placed upon how segments are differentially regulated, in support of the idea that the epididymis can be considered a series of multiple organs placed side by side. One region in particular, the initial segment, which consists of 2 or 4 segments in mice and rats, respectively, is unique with respect to its regulation and vascularity compared to other segments; loss of development of these segments leads to male infertility. Different ways of thinking about how the epididymis functions may provide new directions and ideas as to how sperm maturation takes place.
Collapse
Affiliation(s)
- Raquel F Domeniconi
- Department of Cell Biology, University of Virginia Health System, Charlottesville, Virginia
| | | | | | | | | |
Collapse
|