1
|
Dort EN, Hamelin RC. Heterogeneity in establishment of polyethylene glycol-mediated plasmid transformations for five forest pathogenic Phytophthora species. PLoS One 2024; 19:e0306158. [PMID: 39255283 PMCID: PMC11386421 DOI: 10.1371/journal.pone.0306158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/26/2024] [Indexed: 09/12/2024] Open
Abstract
Plasmid-mediated DNA transformation is a foundational molecular technique and the basis for most CRISPR-Cas9 gene editing systems. While plasmid transformations are well established for many agricultural Phytophthora pathogens, development of this technique in forest Phytophthoras is lacking. Given our long-term research objective to develop CRISPR-Cas9 gene editing in a forest pathogenic Phytophthora species, we sought to establish the functionality of polyethylene glycol (PEG)-mediated plasmid transformation in five species: P. cactorum, P. cinnamomi, P. cryptogea, P. ramorum, and P. syringae. We used the agricultural pathogen P. sojae, a species for which PEG-mediated transformations are well-established, as a transformation control. Using a protocol previously optimized for P. sojae, we tested transformations in the five forest Phytophthoras with three different plasmids: two developed for CRISPR-Cas9 gene editing and one developed for fluorescent protein tagging. Out of the five species tested, successful transformation, as indicated by stable growth of transformants on a high concentration of antibiotic selective growth medium and diagnostic PCR, was achieved only with P. cactorum and P. ramorum. However, while transformations in P. cactorum were consistent and stable, transformations in P. ramorum were highly variable and yielded transformants with very weak mycelial growth and abnormal morphology. Our results indicate that P. cactorum is the best candidate to move forward with CRISPR-Cas9 protocol development and provide insight for future optimization of plasmid transformations in forest Phytophthoras.
Collapse
Affiliation(s)
- Erika N Dort
- Department of Forest & Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Richard C Hamelin
- Department of Forest & Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, British Columbia, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, Québec, Canada
- Département des Sciences du bois et de la Forêt, Faculté de Foresterie et Géographie, Université Laval, Québec City, Québec, Canada
| |
Collapse
|
2
|
Abad Z, Burgess T, Bourret T, Bensch K, Cacciola S, Scanu B, Mathew R, Kasiborski B, Srivastava S, Kageyama K, Bienapfl J, Verkleij G, Broders K, Schena L, Redford A. Phytophthora : taxonomic and phylogenetic revision of the genus. Stud Mycol 2023; 106:259-348. [PMID: 38298569 PMCID: PMC10825748 DOI: 10.3114/sim.2023.106.05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/19/2023] [Indexed: 02/02/2024] Open
Abstract
Many members of the Oomycota genus Phytophthora cause economic and environmental impact diseases in nurseries, horticulture, forest, and natural ecosystems and many are of regulatory concern around the world. At present, there are 223 described species, including eight unculturable and three lost species. Twenty-eight species need to be redescribed or validated. A lectotype, epitype or neotype was selected for 20 species, and a redescription based on the morphological/molecular characters and phylogenetic placement is provided. In addition, the names of five species are validated: P. cajani, P. honggalleglyana (Synonym: P. hydropathica), P. megakarya, P. pisi and P. pseudopolonica for which morphology and phylogeny are given. Two species, P. ×multiformis and P. uniformis are presented as new combinations. Phytophthora palmivora is treated with a representative strain as both lecto- and epitypification are pending. This manuscript provides the updated multigene phylogeny and molecular toolbox with seven genes (ITS rDNA, β-tub, COI, EF1α, HSP90, L10, and YPT1) generated from the type specimens of 212 validly published, and culturable species (including nine hybrid taxa). The genome information of 23 types published to date is also included. Several aspects of the taxonomic revision and phylogenetic re-evaluation of the genus including species concepts, concept and position of the phylogenetic clades recognized within Phytophthora are discussed. Some of the contents of this manuscript, including factsheets for the 212 species, are associated with the "IDphy: molecular and morphological identification of Phytophthora based on the types" online resource (https://idtools.org/tools/1056/index.cfm). The first version of the IDphy online resource released to the public in September 2019 contained 161 species. In conjunction with this publication, we are updating the IDphy online resource to version 2 to include the 51 species recently described. The current status of the 223 described species is provided along with information on type specimens with details of the host (substrate), location, year of collection and publications. Additional information is provided regarding the ex-type culture(s) for the 212 valid culturable species and the diagnostic molecular toolbox with seven genes that includes the two metabarcoding genes (ITS and COI) that are important for Sanger sequencing and also very valuable Molecular Operational Taxonomic Units (MOTU) for second and third generation metabarcoding High-throughput sequencing (HTS) technologies. The IDphy online resource will continue to be updated annually to include new descriptions. This manuscript in conjunction with IDphy represents a monographic study and the most updated revision of the taxonomy and phylogeny of Phytophthora, widely considered one of the most important genera of plant pathogens. Taxonomic novelties: New species: Phytophthora cajani K.S. Amin, Baldev & F.J. Williams ex Abad, Phytophthora honggalleglyana Abad, Phytophthora megakarya Brasier & M.J. Griffin ex Abad, Phytophthora pisi Heyman ex Abad, Phytophthora pseudopolonica W.W. Li, W.X. Huai & W.X. Zhao ex Abad & Kasiborski; New combinations: Phytophthora ×multiformis (Brasier & S.A. Kirk) Abad, Phytophthora uniformis (Brasier & S.A. Kirk) Abad; Epitypifications (basionyms): Peronospora cactorum Lebert & Cohn, Pythiacystis citrophthora R.E. Sm. & E.H. Sm., Phytophthora colocasiae Racib., Phytophthora drechsleri Tucker, Phytophthora erythroseptica Pethybr., Phytophthora fragariae Hickman, Phytophthora hibernalis Carne, Phytophthora ilicis Buddenh. & Roy A. Young, Phytophthora inundata Brasier et al., Phytophthora megasperma Drechsler, Phytophthora mexicana Hotson & Hartge, Phytophthora nicotianae Breda de Haan, Phytophthora phaseoli Thaxt., Phytophthora porri Foister, Phytophthora primulae J.A. Toml., Phytophthora sojae Kaufm. & Gerd., Phytophthora vignae Purss, Pythiomorpha gonapodyides H.E. Petersen; Lectotypifications (basionym): Peronospora cactorum Lebert & Cohn, Pythiacystis citrophthora R.E. Sm. & E.H. Sm., Phytophthora colocasiae Racib., Phytophthora drechsleri Tucker, Phytophthora erythroseptica Pethybr., Phytophthora fragariae Hickman, Phytophthora hibernalis Carne, Phytophthora ilicis Buddenh. & Roy A. Young, Phytophthora megasperma Drechsler, Phytophthora mexicana Hotson & Hartge, Phytophthora nicotianae Breda de Haan, Phytophthora phaseoli Thaxt., Phytophthora porri Foister, Phytophthora primulae J.A. Toml., Phytophthora sojae Kaufm. & Gerd., Phytophthora vignae Purss, Pythiomorpha gonapodyides H.E. Petersen; Neotypifications (basionym): Phloeophthora syringae Kleb., Phytophthora meadii McRae Citation: Abad ZG, Burgess TI, Bourret T, Bensch K, Cacciola S, Scanu B, Mathew R, Kasiborski B, Srivastava S, Kageyama K, Bienapfl JC, Verkleij G, Broders K, Schena L, Redford AJ (2023). Phytophthora: taxonomic and phylogenetic revision of the genus. Studies in Mycology 106: 259-348. doi: 10.3114/sim.2023.106.05.
Collapse
Affiliation(s)
- Z.G. Abad
- USDA APHIS PPQ S&T Plant Pathogen Confirmatory Diagnostics Laboratory, USA;
| | - T.I. Burgess
- Phytophthora Science and Management, Harry Butler Institute, Murdoch University, Perth, WA, Australia;
| | - T. Bourret
- Department of Plant Pathology, University of California, Davis, CA, USA,
| | - K. Bensch
- Westerdijk Fungal Biodiversity Institute Uppsalalaan 8, 3584 CT Utrecht, Netherlands,
| | - S.O. Cacciola
- Department of Agricultural, Food and Environment, University of Catania, Italy;
| | - B. Scanu
- Department of Agricultural Sciences, University of Sassari, Italy;
| | - R. Mathew
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC, USA;
| | - B. Kasiborski
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC, USA;
| | - S. Srivastava
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC, USA;
| | - K. Kageyama
- River Basin Research Center, Gifu University, Japan,
| | - J.C. Bienapfl
- USDA APHIS PPQ S&T Plant Pathogen Confirmatory Diagnostics Laboratory, USA;
| | - G. Verkleij
- Westerdijk Fungal Biodiversity Institute Uppsalalaan 8, 3584 CT Utrecht, Netherlands,
| | - K. Broders
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit, Peoria, IL, 61604, USA;
| | - L. Schena
- Dipartimento di Agraria, Mediterranean University of Reggio Calabria, Italy,
| | - A.J. Redford
- USDA APHIS PPQ S&T Identification Technology Program, USA
| |
Collapse
|
3
|
Phylogeography and population structure of the global, wide host-range hybrid pathogen Phytophthora × cambivora. IMA Fungus 2023; 14:4. [PMID: 36823663 PMCID: PMC9951538 DOI: 10.1186/s43008-023-00109-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/08/2023] [Indexed: 02/25/2023] Open
Abstract
Invasive, exotic plant pathogens pose a major threat to native and agricultural ecosystems. Phytophthora × cambivora is an invasive, destructive pathogen of forest and fruit trees causing severe damage worldwide to chestnuts (Castanea), apricots, peaches, plums, almonds and cherries (Prunus), apples (Malus), oaks (Quercus), and beech (Fagus). It was one of the first damaging invasive Phytophthora species to be introduced to Europe and North America, although its origin is unknown. We determined its population genetic history in Europe, North and South America, Australia and East Asia (mainly Japan) using genotyping-by-sequencing. Populations in Europe and Australia appear clonal, those in North America are highly clonal yet show some degree of sexual reproduction, and those in East Asia are partially sexual. Two clonal lineages, each of opposite mating type, and a hybrid lineage derived from these two lineages, dominated the populations in Europe and were predominantly found on fagaceous forest hosts (Castanea, Quercus, Fagus). Isolates from fruit trees (Prunus and Malus) belonged to a separate lineage found in Australia, North America, Europe and East Asia, indicating the disease on fruit trees could be caused by a distinct lineage of P. × cambivora, which may potentially be a separate sister species and has likely been moved with live plants. The highest genetic diversity was found in Japan, suggesting that East Asia is the centre of origin of the pathogen. Further surveys in unsampled, temperate regions of East Asia are needed to more precisely identify the location and range of the centre of diversity.
Collapse
|
4
|
Kronmiller BA, Feau N, Shen D, Tabima JF, Ali SS, Armitage AD, Arredondo F, Bailey BA, Bollmann SR, Dale A, Harrison RJ, Hrywkiw K, Kasuga T, McDougal R, Nellist CF, Panda P, Tripathy S, Williams NM, Ye W, Wang Y, Hamelin RC, Grünwald NJ. Comparative Genomic Analysis of 31 Phytophthora Genomes Reveals Genome Plasticity and Horizontal Gene Transfer. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:26-46. [PMID: 36306437 DOI: 10.1094/mpmi-06-22-0133-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Phytophthora species are oomycete plant pathogens that cause great economic and ecological impacts. The Phytophthora genus includes over 180 known species, infecting a wide range of plant hosts, including crops, trees, and ornamentals. We sequenced the genomes of 31 individual Phytophthora species and 24 individual transcriptomes to study genetic relationships across the genus. De novo genome assemblies revealed variation in genome sizes, numbers of predicted genes, and in repetitive element content across the Phytophthora genus. A genus-wide comparison evaluated orthologous groups of genes. Predicted effector gene counts varied across Phytophthora species by effector family, genome size, and plant host range. Predicted numbers of apoplastic effectors increased as the host range of Phytophthora species increased. Predicted numbers of cytoplasmic effectors also increased with host range but leveled off or decreased in Phytophthora species that have enormous host ranges. With extensive sequencing across the Phytophthora genus, we now have the genomic resources to evaluate horizontal gene transfer events across the oomycetes. Using a machine-learning approach to identify horizontally transferred genes with bacterial or fungal origin, we identified 44 candidates over 36 Phytophthora species genomes. Phylogenetic reconstruction indicates that the transfers of most of these 44 candidates happened in parallel to major advances in the evolution of the oomycetes and Phytophthora spp. We conclude that the 31 genomes presented here are essential for investigating genus-wide genomic associations in genus Phytophthora. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Brent A Kronmiller
- Center for Quantitative Life Sciences, Oregon State University, Corvallis, OR, U.S.A
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, U.S.A
| | - Nicolas Feau
- Department of Forest and Conservation Sciences, The University of British Columbia, Vancouver, Canada
| | - Danyu Shen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Javier F Tabima
- Department of Biology, Clark University, Worcester, MA, U.S.A
| | - Shahin S Ali
- Sustainable Perennial Crops Laboratory, Northeast Area, USDA/ARS, Beltsville Agricultural Research Center-West, Beltsville, MD, U.S.A
| | - Andrew D Armitage
- Natural Resources Institute, University of Greenwich, Chatham Maritime, U.K
| | - Felipe Arredondo
- Center for Quantitative Life Sciences, Oregon State University, Corvallis, OR, U.S.A
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, U.S.A
| | - Bryan A Bailey
- Sustainable Perennial Crops Laboratory, Northeast Area, USDA/ARS, Beltsville Agricultural Research Center-West, Beltsville, MD, U.S.A
| | - Stephanie R Bollmann
- Department of Integrative Biology, Oregon State University, Corvallis, OR, U.S.A
| | - Angela Dale
- Department of Forest and Conservation Sciences, The University of British Columbia, Vancouver, Canada
- SC-New Construction Materials, FPInnovations, Vancouver, V6T 1Z4, Canada
| | | | - Kelly Hrywkiw
- Department of Forest and Conservation Sciences, The University of British Columbia, Vancouver, Canada
| | - Takao Kasuga
- Crops Pathology and Genetics Research Unit, Agricultural Research Service, United States Department of Agriculture, Davis, CA, U.S.A
| | - Rebecca McDougal
- Scion (Zealand Forest Research Institute), 49 Sala Street, Te Papa Tipu Innovation Park, Private Bag 3020, Rotorua, New Zealand
| | | | - Preeti Panda
- The New Zealand Institute for Plant and Food Research Ltd, 74 Gerald Street, Lincoln, 7608, New Zealand
| | | | - Nari M Williams
- Scion (Zealand Forest Research Institute), 49 Sala Street, Te Papa Tipu Innovation Park, Private Bag 3020, Rotorua, New Zealand
- Department of Pathogen Ecology and Control, Plant and Food Research, Private Bag 1401, Havelock North, New Zealand
| | - Wenwu Ye
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Richard C Hamelin
- Department of Forest and Conservation Sciences, The University of British Columbia, Vancouver, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada
- Département des sciences du bois et de la forêt, Faculté de Foresterie et Géographie, Université Laval, Québec, Canada
| | - Niklaus J Grünwald
- Horticultural Crop Research Unit, United States Department of Agriculture, Agricultural Research Service, Corvallis, OR, U.S.A
| |
Collapse
|
5
|
Cox MP, Guo Y, Winter DJ, Sen D, Cauldron NC, Shiller J, Bradley EL, Ganley AR, Gerth ML, Lacey RF, McDougal RL, Panda P, Williams NM, Grunwald NJ, Mesarich CH, Bradshaw RE. Chromosome-level assembly of the Phytophthora agathidicida genome reveals adaptation in effector gene families. Front Microbiol 2022; 13:1038444. [PMID: 36406440 PMCID: PMC9667082 DOI: 10.3389/fmicb.2022.1038444] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/11/2022] [Indexed: 01/25/2023] Open
Abstract
Phytophthora species are notorious plant pathogens, with some causing devastating tree diseases that threaten the survival of their host species. One such example is Phytophthora agathidicida, the causal agent of kauri dieback - a root and trunk rot disease that kills the ancient, iconic and culturally significant tree species, Agathis australis (New Zealand kauri). A deeper understanding of how Phytophthora pathogens infect their hosts and cause disease is critical for the development of effective treatments. Such an understanding can be gained by interrogating pathogen genomes for effector genes, which are involved in virulence or pathogenicity. Although genome sequencing has become more affordable, the complete assembly of Phytophthora genomes has been problematic, particularly for those with a high abundance of repetitive sequences. Therefore, effector genes located in repetitive regions could be truncated or missed in a fragmented genome assembly. Using a combination of long-read PacBio sequences, chromatin conformation capture (Hi-C) and Illumina short reads, we assembled the P. agathidicida genome into ten complete chromosomes, with a genome size of 57 Mb including 34% repeats. This is the first Phytophthora genome assembled to chromosome level and it reveals a high level of syntenic conservation with the complete genome of Peronospora effusa, the only other completely assembled genome sequence of an oomycete. All P. agathidicida chromosomes have clearly defined centromeres and contain candidate effector genes such as RXLRs and CRNs, but in different proportions, reflecting the presence of gene family clusters. Candidate effector genes are predominantly found in gene-poor, repeat-rich regions of the genome, and in some cases showed a high degree of duplication. Analysis of candidate RXLR effector genes that occur in multicopy gene families indicated half of them were not expressed in planta. Candidate CRN effector gene families showed evidence of transposon-mediated recombination leading to new combinations of protein domains, both within and between chromosomes. Further analysis of this complete genome assembly will help inform new methods of disease control against P. agathidicida and other Phytophthora species, ultimately helping decipher how Phytophthora pathogens have evolved to shape their effector repertoires and how they might adapt in the future.
Collapse
Affiliation(s)
- Murray P. Cox
- Laboratory of Molecular Plant Pathology/Bioprotection Aotearoa, School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Yanan Guo
- Laboratory of Molecular Plant Pathology/Bioprotection Aotearoa, School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - David J. Winter
- Institute of Environmental Science and Research (ESR), Porirua, New Zealand
| | | | - Nicholas C. Cauldron
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | | | - Ellie L. Bradley
- Laboratory of Molecular Plant Pathology/Bioprotection Aotearoa, School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Austen R. Ganley
- School of Biological Sciences and Digital Life Institute, University of Auckland, Auckland, New Zealand
| | - Monica L. Gerth
- Bioprotection Aotearoa, School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Randy F. Lacey
- Bioprotection Aotearoa, School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | | | | | | - Niklaus J. Grunwald
- Horticultural Crops Disease and Pest Management Research Unit, USDA Agricultural Research Service, Corvallis, OR, United States
| | - Carl H. Mesarich
- Laboratory of Molecular Plant Pathology/Bioprotection Aotearoa, School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Rosie E. Bradshaw
- Laboratory of Molecular Plant Pathology/Bioprotection Aotearoa, School of Natural Sciences, Massey University, Palmerston North, New Zealand
| |
Collapse
|
6
|
Zhou Z, Yang X, Wu C, Chen Z, Dai T. Whole-Genome Sequence Resource of Phytophthora pini, the Causal Pathogen of Foliage Blight and Shoot Dieback of Rhododendron pulchrum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:944-948. [PMID: 36074693 DOI: 10.1094/mpmi-05-22-0106-a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Affiliation(s)
- Ziwei Zhou
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Xiao Yang
- Plant and Pest Diagnostic Clinic, Department of Plant Industry, Clemson University, Pendleton, SC, U.S.A
| | - Cuiping Wu
- Animal, Plant and Food Inspection Center, Nanjing Customs, Nanjing, Jiangsu, China
| | - Zhenpeng Chen
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Tingting Dai
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
7
|
Chen Q, Bakhshi M, Balci Y, Broders K, Cheewangkoon R, Chen S, Fan X, Gramaje D, Halleen F, Jung MH, Jiang N, Jung T, Májek T, Marincowitz S, Milenković I, Mostert L, Nakashima C, Nurul Faziha I, Pan M, Raza M, Scanu B, Spies C, Suhaizan L, Suzuki H, Tian C, Tomšovský M, Úrbez-Torres J, Wang W, Wingfield B, Wingfield M, Yang Q, Yang X, Zare R, Zhao P, Groenewald J, Cai L, Crous P. Genera of phytopathogenic fungi: GOPHY 4. Stud Mycol 2022; 101:417-564. [PMID: 36059898 PMCID: PMC9365048 DOI: 10.3114/sim.2022.101.06] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 05/04/2022] [Indexed: 11/24/2022] Open
Abstract
This paper is the fourth contribution in the Genera of Phytopathogenic Fungi (GOPHY) series. The series provides morphological descriptions and information about the pathology, distribution, hosts and disease symptoms, as well as DNA barcodes for the taxa covered. Moreover, 12 whole-genome sequences for the type or new species in the treated genera are provided. The fourth paper in the GOPHY series covers 19 genera of phytopathogenic fungi and their relatives, including Ascochyta, Cadophora, Celoporthe, Cercospora, Coleophoma, Cytospora, Dendrostoma, Didymella, Endothia, Heterophaeomoniella, Leptosphaerulina, Melampsora, Nigrospora, Pezicula, Phaeomoniella, Pseudocercospora, Pteridopassalora, Zymoseptoria, and one genus of oomycetes, Phytophthora. This study includes two new genera, 30 new species, five new combinations, and 43 typifications of older names. Taxonomic novelties: New genera: Heterophaeomoniella L. Mostert, C.F.J. Spies, Halleen & Gramaje, Pteridopassalora C. Nakash. & Crous; New species: Ascochyta flava Qian Chen & L. Cai, Cadophora domestica L. Mostert, R. van der Merwe, Halleen & Gramaje, Cadophora rotunda L. Mostert, R. van der Merwe, Halleen & Gramaje, Cadophora vinacea J.R. Úrbez-Torres, D.T. O'Gorman & Gramaje, Cadophora vivarii L. Mostert, Havenga, Halleen & Gramaje, Celoporthe foliorum H. Suzuki, Marinc. & M.J. Wingf., Cercospora alyssopsidis M. Bakhshi, Zare & Crous, Dendrostoma elaeocarpi C.M. Tian & Q. Yang, Didymella chlamydospora Qian Chen & L. Cai, Didymella gei Qian Chen & L. Cai, Didymella ligulariae Qian Chen & L. Cai, Didymella qilianensis Qian Chen & L. Cai, Didymella uniseptata Qian Chen & L. Cai, Endothia cerciana W. Wang. & S.F. Chen, Leptosphaerulina miscanthi Qian Chen & L. Cai, Nigrospora covidalis M. Raza, Qian Chen & L. Cai, Nigrospora globospora M. Raza, Qian Chen & L. Cai, Nigrospora philosophiae-doctoris M. Raza, Qian Chen & L. Cai, Phytophthora transitoria I. Milenković, T. Májek & T. Jung, Phytophthora panamensis T. Jung, Y. Balci, K. Broders & I. Milenković, Phytophthora variabilis T. Jung, M. Horta Jung & I. Milenković, Pseudocercospora delonicicola C. Nakash., L. Suhaizan & I. Nurul Faziha, Pseudocercospora farfugii C. Nakash., I. Araki, & Ai Ito, Pseudocercospora hardenbergiae Crous & C. Nakash., Pseudocercospora kenyirana C. Nakash., L. Suhaizan & I. Nurul Faziha, Pseudocercospora perrottetiae Crous, C. Nakash. & C.Y. Chen, Pseudocercospora platyceriicola C. Nakash., Y. Hatt, L. Suhaizan & I. Nurul Faziha, Pseudocercospora stemonicola C. Nakash., Y. Hatt., L. Suhaizan & I. Nurul Faziha, Pseudocercospora terengganuensis C. Nakash., Y. Hatt., L. Suhaizan & I. Nurul Faziha, Pseudocercospora xenopunicae Crous & C. Nakash.; New combinations: Heterophaeomoniella pinifoliorum (Hyang B. Lee et al.) L. Mostert, C.F.J. Spies, Halleen & Gramaje, Pseudocercospora pruni-grayanae (Sawada) C. Nakash. & Motohashi., Pseudocercospora togashiana (K. Ito & Tak. Kobay.) C. Nakash. & Tak. Kobay., Pteridopassalora nephrolepidicola (Crous & R.G. Shivas) C. Nakash. & Crous, Pteridopassalora lygodii (Goh & W.H. Hsieh) C. Nakash. & Crous; Typification: Epitypification: Botrytis infestans Mont., Cercospora abeliae Katsuki, Cercospora ceratoniae Pat. & Trab., Cercospora cladrastidis Jacz., Cercospora cryptomeriicola Sawada, Cercospora dalbergiae S.H. Sun, Cercospora ebulicola W. Yamam., Cercospora formosana W. Yamam., Cercospora fukuii W. Yamam., Cercospora glochidionis Sawada, Cercospora ixorana J.M. Yen & Lim, Cercospora liquidambaricola J.M. Yen, Cercospora pancratii Ellis & Everh., Cercospora pini-densiflorae Hori & Nambu, Cercospora profusa Syd. & P. Syd., Cercospora pyracanthae Katsuki, Cercospora horiana Togashi & Katsuki, Cercospora tabernaemontanae Syd. & P. Syd., Cercospora trinidadensis F. Stevens & Solheim, Melampsora laricis-urbanianae Tak. Matsumoto, Melampsora salicis-cupularis Wang, Phaeoisariopsis pruni-grayanae Sawada, Pseudocercospora angiopteridis Goh & W.H. Hsieh, Pseudocercospora basitruncata Crous, Pseudocercospora boehmeriigena U. Braun, Pseudocercospora coprosmae U. Braun & C.F. Hill, Pseudocercospora cratevicola C. Nakash. & U. Braun, Pseudocercospora cymbidiicola U. Braun & C.F. Hill, Pseudocercospora dodonaeae Boesew., Pseudocercospora euphorbiacearum U. Braun, Pseudocercospora lygodii Goh & W.H. Hsieh, Pseudocercospora metrosideri U. Braun, Pseudocercospora paraexosporioides C. Nakash. & U. Braun, Pseudocercospora symploci Katsuki & Tak. Kobay. ex U. Braun & Crous, Septogloeum punctatum Wakef.; Neotypification: Cercospora aleuritis I. Miyake; Lectotypification: Cercospora dalbergiae S.H. Sun, Cercospora formosana W. Yamam., Cercospora fukuii W. Yamam., Cercospora glochidionis Sawada, Cercospora profusa Syd. & P. Syd., Melampsora laricis-urbanianae Tak. Matsumoto, Phaeoisariopsis pruni-grayanae Sawada, Pseudocercospora symploci Katsuki & Tak. Kobay. ex U. Braun & Crous. Citation: Chen Q, Bakhshi M, Balci Y, Broders KD, Cheewangkoon R, Chen SF, Fan XL, Gramaje D, Halleen F, Horta Jung M, Jiang N, Jung T, Májek T, Marincowitz S, Milenković T, Mostert L, Nakashima C, Nurul Faziha I, Pan M, Raza M, Scanu B, Spies CFJ, Suhaizan L, Suzuki H, Tian CM, Tomšovský M, Úrbez-Torres JR, Wang W, Wingfield BD, Wingfield MJ, Yang Q, Yang X, Zare R, Zhao P, Groenewald JZ, Cai L, Crous PW (2022). Genera of phytopathogenic fungi: GOPHY 4. Studies in Mycology 101: 417-564. doi: 10.3114/sim.2022.101.06.
Collapse
Affiliation(s)
- Q. Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - M. Bakhshi
- Department of Botany, Iranian Research Institute of Plant Protection, P.O. Box 19395-1454, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| | - Y. Balci
- USDA-APHIS Plant Protection and Quarantine, 4700 River Road, Riverdale, Maryland, 20737 USA
| | - K.D. Broders
- Smithsonian Tropical Research Institute, Apartado Panamá, República de Panamá
| | - R. Cheewangkoon
- Entomology and Plant Pathology Department, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand, 50200
| | - S.F. Chen
- China Eucalypt Research Centre (CERC), Chinese Academy of Forestry (CAF), Zhanjiang 524022, Guangdong Province, China
| | - X.L. Fan
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - D. Gramaje
- Instituto de Ciencias de la Vid y del Vino (ICVV). Consejo Superior de Investigaciones Científicas - Universidad de La Rioja - Gobierno de La Rioja. Ctra. LO-20 Salida 13, 26007 Logroño. Spain
| | - F. Halleen
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa
- Plant Protection Division, ARC Infruitec-Nietvoorbij, Private Bag X5026, Stellenboscvh, 7599, South Africa
| | - M. Horta Jung
- Phytophthora Research Centre, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic
| | - N. Jiang
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - T. Jung
- Phytophthora Research Centre, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic
| | - T. Májek
- Phytophthora Research Centre, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic
| | - S. Marincowitz
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria 0002, South Africa
| | - I. Milenković
- Phytophthora Research Centre, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic
| | - L. Mostert
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa
| | - C. Nakashima
- Graduate school of Bioresources, Mie University, Kurima-machiya 1577, Tsu, Mie, 514-8507, Japan
| | - I. Nurul Faziha
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - M. Pan
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - M. Raza
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - B. Scanu
- Department of Agricultural Sciences, University of Sassari, Viale Italia 39, 07100 Sassari, Italy
| | - C.F.J. Spies
- ARC-Plant Health and Protection, Private Bag X5017, Stellenbosch, 7599, South Africa
| | - L. Suhaizan
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - H. Suzuki
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria 0002, South Africa
| | - C.M. Tian
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - M. Tomšovský
- Phytophthora Research Centre, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic
| | - J.R. Úrbez-Torres
- Agriculture and Agri-Food Canada, Summerland Research and Development Centre, Summerland, British Columbia V0H 1Z0, Canada
| | - W. Wang
- China Eucalypt Research Centre (CERC), Chinese Academy of Forestry (CAF), Zhanjiang 524022, Guangdong Province, China
| | - B.D. Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria 0002, South Africa
| | - M.J. Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria 0002, South Africa
| | - Q. Yang
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - X. Yang
- USDA-ARS, Foreign Disease-Weed Science Research Unit, 1301 Ditto Avenue, Fort Detrick, Maryland, 21702 USA
- Oak Ridge Institute for Science and Education, ARS Research Participation Program, P.O. Box 117, Oak Ridge, Tennessee, 37831 USA
| | - R. Zare
- Department of Botany, Iranian Research Institute of Plant Protection, P.O. Box 19395-1454, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| | - P. Zhao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - J.Z. Groenewald
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
| | - L. Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - P.W. Crous
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CT Utrecht, The Netherlands
- Wageningen University and Research Centre (WUR), Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
8
|
Srivastava SK, Knight LM, Nakhla M, Abad ZG. Genome Resources for the Ex-Type of Phytophthora citricola, and Well-Authenticated Isolates of P. hibernalis, P. nicotianae, and P. syringae. PHYTOPATHOLOGY 2022; 112:953-955. [PMID: 34664973 DOI: 10.1094/phyto-04-21-0167-a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Phytophthora is one of the most important genera of plant pathogens, with many members causing high economic losses worldwide. To build robust molecular identification systems, it is very important to have information from well-authenticated specimens and, in preference, the ex-type specimens. The reference genomes of well-authenticated specimens form a critical foundation for genetics, biological research, and diagnostic applications. In this study, we describe four draft Phytophthora genome resources for the ex-type of Phytophthora citricola BL34 (P0716 WPC) (118 contigs for 50 Mb), and well-authenticated specimens of P. syringae BL57G (P10330 WPC) (591 contigs for 75 Mb), P. hibernalis BL41G (P3822 WPC) (404 contigs for 84 Mb), and P. nicotianae BL162 (P6303 WPC) (3,984 contigs for 108 Mb) generated with MinION long-read high-throughput sequencing technology (Oxford Nanopore Technologies). Using the quality reads, we assembled high-coverage genomes of P. citricola with 291× coverage and 16,662 annotated genes; P. nicotianae with 205× coverage and 29,271 annotated genes; P. syringae with 76× coverage and 23,331 annotated genes, and P. hibernalis with 42× coverage and 21,762 annotated genes. With the availability of genome sequences and their annotations, we predict that these draft genomes will be accommodating for various basic and applied research, including diagnostics to protect global agriculture.
Collapse
Affiliation(s)
- Subodh K Srivastava
- United States Department of Agriculture-Animal and Plant Health Inspection Service Plant Protection and Quarantine, S&T, Pathogen Confirmatory Diagnostics Laboratory, Beltsville, MD 20705
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695
| | - Leandra M Knight
- United States Department of Agriculture-Animal and Plant Health Inspection Service Plant Protection and Quarantine, S&T, Pathogen Confirmatory Diagnostics Laboratory, Beltsville, MD 20705
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695
| | - Mark Nakhla
- United States Department of Agriculture-Animal and Plant Health Inspection Service Plant Protection and Quarantine, S&T, Pathogen Confirmatory Diagnostics Laboratory, Beltsville, MD 20705
| | - Z Gloria Abad
- United States Department of Agriculture-Animal and Plant Health Inspection Service Plant Protection and Quarantine, S&T, Pathogen Confirmatory Diagnostics Laboratory, Beltsville, MD 20705
| |
Collapse
|
9
|
Thorpe P, Vetukuri RR, Hedley PE, Morris J, Whisson MA, Welsh LRJ, Whisson SC. Draft genome assemblies for tree pathogens Phytophthora pseudosyringae and Phytophthora boehmeriae. G3 (BETHESDA, MD.) 2021; 11:jkab282. [PMID: 34849788 PMCID: PMC8527500 DOI: 10.1093/g3journal/jkab282] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 07/22/2021] [Indexed: 11/14/2022]
Abstract
Species of Phytophthora, plant pathogenic eukaryotic microbes, can cause disease on many tree species. Genome sequencing of species from this genus has helped to determine components of their pathogenicity arsenal. Here, we sequenced genomes for two widely distributed species, Phytophthora pseudosyringae and Phytophthora boehmeriae, yielding genome assemblies of 49 and 40 Mb, respectively. We identified more than 270 candidate disease promoting RXLR effector coding genes for each species, and hundreds of genes encoding candidate plant cell wall degrading carbohydrate active enzymes (CAZymes). These data boost genome sequence representation across the Phytophthora genus, and form resources for further study of Phytophthora pathogenesis.
Collapse
Affiliation(s)
- Peter Thorpe
- School of Medicine, University of St Andrews, North Haugh, St Andrews KY16 9TF, UK
| | - Ramesh R Vetukuri
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, SE-234 22, Sweden
| | - Pete E Hedley
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Jenny Morris
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | | | - Lydia R J Welsh
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Stephen C Whisson
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| |
Collapse
|
10
|
Wang S, Vetukuri RR, Kushwaha SK, Hedley PE, Morris J, Studholme DJ, Welsh LRJ, Boevink PC, Birch PRJ, Whisson SC. Haustorium formation and a distinct biotrophic transcriptome characterize infection of Nicotiana benthamiana by the tree pathogen Phytophthora kernoviae. MOLECULAR PLANT PATHOLOGY 2021; 22:954-968. [PMID: 34018655 PMCID: PMC8295517 DOI: 10.1111/mpp.13072] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/17/2021] [Accepted: 03/26/2021] [Indexed: 05/29/2023]
Abstract
Phytophthora species cause some of the most serious diseases of trees and threaten forests in many parts of the world. Despite the generation of genome sequence assemblies for over 10 tree-pathogenic Phytophthora species and improved detection methods, there are many gaps in our knowledge of how these pathogens interact with their hosts. To facilitate cell biology studies of the infection cycle we examined whether the tree pathogen Phytophthora kernoviae could infect the model plant Nicotiana benthamiana. We transformed P. kernoviae to express green fluorescent protein (GFP) and demonstrated that it forms haustoria within infected N. benthamiana cells. Haustoria were also formed in infected cells of natural hosts, Rhododendron ponticum and European beech (Fagus sylvatica). We analysed the transcriptome of P. kernoviae in cultured mycelia, spores, and during infection of N. benthamiana, and detected 12,559 transcripts. Of these, 1,052 were predicted to encode secreted proteins, some of which may function as effectors to facilitate disease development. From these, we identified 87 expressed candidate RXLR (Arg-any amino acid-Leu-Arg) effectors. We transiently expressed 12 of these as GFP fusions in N. benthamiana leaves and demonstrated that nine significantly enhanced P. kernoviae disease progression and diversely localized to the cytoplasm, nucleus, nucleolus, and plasma membrane. Our results show that N. benthamiana can be used as a model host plant for studying this tree pathogen, and that the interaction likely involves suppression of host immune responses by RXLR effectors. These results establish a platform to expand the understanding of Phytophthora tree diseases.
Collapse
Affiliation(s)
- Shumei Wang
- Division of Plant SciencesUniversity of DundeeJames Hutton InstituteInvergowrie, DundeeUK
| | - Ramesh R. Vetukuri
- Department of Plant BreedingSwedish University of Agricultural SciencesAlnarpSweden
| | - Sandeep K. Kushwaha
- Department of Plant BreedingSwedish University of Agricultural SciencesAlnarpSweden
- National Institute of Animal BiotechnologyHyderabadIndia
| | - Pete E. Hedley
- Cell and Molecular SciencesJames Hutton InstituteInvergowrie, DundeeUK
| | - Jenny Morris
- Cell and Molecular SciencesJames Hutton InstituteInvergowrie, DundeeUK
| | - David J. Studholme
- Biosciences, College of Life and Environmental SciencesUniversity of ExeterExeterUK
| | - Lydia R. J. Welsh
- Cell and Molecular SciencesJames Hutton InstituteInvergowrie, DundeeUK
| | - Petra C. Boevink
- Cell and Molecular SciencesJames Hutton InstituteInvergowrie, DundeeUK
| | - Paul R. J. Birch
- Division of Plant SciencesUniversity of DundeeJames Hutton InstituteInvergowrie, DundeeUK
- Cell and Molecular SciencesJames Hutton InstituteInvergowrie, DundeeUK
| | | |
Collapse
|
11
|
McGowan J, O’Hanlon R, Owens RA, Fitzpatrick DA. Comparative Genomic and Proteomic Analyses of Three Widespread Phytophthora Species: Phytophthora chlamydospora, Phytophthora gonapodyides and Phytophthora pseudosyringae. Microorganisms 2020; 8:E653. [PMID: 32365808 PMCID: PMC7285336 DOI: 10.3390/microorganisms8050653] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 12/16/2022] Open
Abstract
The Phytophthora genus includes some of the most devastating plant pathogens. Here we report draft genome sequences for three ubiquitous Phytophthora species-Phytophthora chlamydospora, Phytophthora gonapodyides, and Phytophthora pseudosyringae. Phytophthora pseudosyringae is an important forest pathogen that is abundant in Europe and North America. Phytophthora chlamydospora and Ph. gonapodyides are globally widespread species often associated with aquatic habitats. They are both regarded as opportunistic plant pathogens. The three sequenced genomes range in size from 45 Mb to 61 Mb. Similar to other oomycete species, tandem gene duplication appears to have played an important role in the expansion of effector arsenals. Comparative analysis of carbohydrate-active enzymes (CAZymes) across 44 oomycete genomes indicates that oomycete lifestyles may be linked to CAZyme repertoires. The mitochondrial genome sequence of each species was also determined, and their gene content and genome structure were compared. Using mass spectrometry, we characterised the extracellular proteome of each species and identified large numbers of proteins putatively involved in pathogenicity and osmotrophy. The mycelial proteome of each species was also characterised using mass spectrometry. In total, the expression of approximately 3000 genes per species was validated at the protein level. These genome resources will be valuable for future studies to understand the behaviour of these three widespread Phytophthora species.
Collapse
Affiliation(s)
- Jamie McGowan
- Department of Biology, Maynooth University, Maynooth, W23 F2H6 Co. Kildare, Ireland; (R.A.O.); (D.A.F.)
- Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, W23 F2H6 Co. Kildare, Ireland
| | | | - Rebecca A. Owens
- Department of Biology, Maynooth University, Maynooth, W23 F2H6 Co. Kildare, Ireland; (R.A.O.); (D.A.F.)
- Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, W23 F2H6 Co. Kildare, Ireland
| | - David A. Fitzpatrick
- Department of Biology, Maynooth University, Maynooth, W23 F2H6 Co. Kildare, Ireland; (R.A.O.); (D.A.F.)
- Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, W23 F2H6 Co. Kildare, Ireland
| |
Collapse
|
12
|
Abstract
The oomycetes are a class of ubiquitous, filamentous microorganisms that include some of the biggest threats to global food security and natural ecosystems. Within the oomycete class are highly diverse species that infect a broad range of animals and plants. Some of the most destructive plant pathogens are oomycetes, such as Phytophthora infestans, the agent of potato late blight and the cause of the Irish famine. Recent years have seen a dramatic increase in the number of sequenced oomycete genomes. Here we review the latest developments in oomycete genomics and some of the important insights that have been gained. Coupled with proteomic and transcriptomic analyses, oomycete genome sequences have revealed tremendous insights into oomycete biology, evolution, genome organization, mechanisms of infection, and metabolism. We also present an updated phylogeny of the oomycete class using a phylogenomic approach based on the 65 oomycete genomes that are currently available.
Collapse
Affiliation(s)
- Jamie McGowan
- Genome Evolution Laboratory, Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, County Kildare, Ireland
| | - David A Fitzpatrick
- Genome Evolution Laboratory, Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, County Kildare, Ireland.
| |
Collapse
|
13
|
In Situ Processing and Efficient Environmental Detection (iSPEED) of tree pests and pathogens using point-of-use real-time PCR. PLoS One 2020; 15:e0226863. [PMID: 32240194 PMCID: PMC7117680 DOI: 10.1371/journal.pone.0226863] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 03/16/2020] [Indexed: 11/29/2022] Open
Abstract
Global trade and climate change are responsible for a surge in foreign invasive species and emerging pests and pathogens across the world. Early detection and surveillance activities are essential to monitor the environment and prevent or mitigate future ecosystem impacts. Molecular diagnostics by DNA testing has become an integral part of this process. However, for environmental applications, there is a need for cost-effective and efficient point-of-use DNA testing to obtain accurate results from remote sites in real-time. This requires the development of simple and fast sample processing and DNA extraction, room-temperature stable reagents and a portable instrument. We developed a point-of-use real-time Polymerase Chain Reaction system using a crude buffer-based DNA extraction protocol and lyophilized, pre-made, reactions for on-site applications. We demonstrate the use of this approach with pathogens and pests covering a broad spectrum of known undesirable forest enemies: the fungi Sphaerulina musiva, Cronartium ribicola and Cronartium comandrae, the oomycete Phytophthora ramorum and the insect Lymantria dispar. We obtained positive DNA identification from a variety of different tissues, including infected leaves, pathogen spores, or insect legs and antenna. The assays were accurate and yielded no false positive nor negative. The shelf-life of the lyophilized reactions was confirmed after one year at room temperature. Finally, successful tests conducted with portable thermocyclers and disposable instruments demonstrate the suitability of the method, named in Situ Processing and Efficient Environmental Detection (iSPEED), for field testing. This kit fits in a backpack and can be carried to remote locations for accurate and rapid detection of pests and pathogens.
Collapse
|
14
|
Molecular assays to detect the presence and viability of Phytophthora ramorum and Grosmannia clavigera. PLoS One 2020; 15:e0221742. [PMID: 32023247 PMCID: PMC7001964 DOI: 10.1371/journal.pone.0221742] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/28/2019] [Indexed: 12/18/2022] Open
Abstract
Wood and wood products can harbor microorganisms that can raise phytosanitary concerns in countries importing or exporting these products. To evaluate the efficacy of wood treatment on the survival of microorganisms of phytosanitary concern the method of choice is to grow microbes in petri dishes for subsequent identification. However, some plant pathogens are difficult or impossible to grow in axenic cultures. A molecular methodology capable of detecting living fungi and fungus-like organisms in situ can provide a solution. RNA represents the transcription of genes and can become rapidly unstable after cell death, providing a proxy measure of viability. We designed and used RNA-based molecular diagnostic assays targeting genes essential to vital processes and assessed their presence in wood colonized by fungi and oomycetes through reverse transcription and real-time polymerase chain reaction (PCR). A stability analysis was conducted by comparing the ratio of mRNA to gDNA over time following heat treatment of mycelial cultures of the Oomycete Phytophthora ramorum and the fungus Grosmannia clavigera. The real-time PCR results indicated that the DNA remained stable over a period of 10 days post treatment in heat-treated samples, whereas mRNA could not be detected after 24 hours for P. ramorum or 96 hours for G. clavigera. Therefore, this method provides a reliable way to evaluate the viability of these pathogens and offers a potential way to assess the effectiveness of existing and emerging wood treatments. This can have important phytosanitary impacts on assessing both timber and non-timber forest products of commercial value in international wood trade.
Collapse
|
15
|
Hamelin RC, Roe AD. Genomic biosurveillance of forest invasive alien enemies: A story written in code. Evol Appl 2020; 13:95-115. [PMID: 31892946 PMCID: PMC6935587 DOI: 10.1111/eva.12853] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 06/30/2019] [Accepted: 07/19/2019] [Indexed: 12/15/2022] Open
Abstract
The world's forests face unprecedented threats from invasive insects and pathogens that can cause large irreversible damage to the ecosystems. This threatens the world's capacity to provide long-term fiber supply and ecosystem services that range from carbon storage, nutrient cycling, and water and air purification, to soil preservation and maintenance of wildlife habitat. Reducing the threat of forest invasive alien species requires vigilant biosurveillance, the process of gathering, integrating, interpreting, and communicating essential information about pest and pathogen threats to achieve early detection and warning and to enable better decision-making. This process is challenging due to the diversity of invasive pests and pathogens that need to be identified, the diverse pathways of introduction, and the difficulty in assessing the risk of establishment. Genomics can provide powerful new solutions to biosurveillance. The process of invasion is a story written in four chapters: transport, introduction, establishment, and spread. The series of processes that lead to a successful invasion can leave behind a DNA signature that tells the story of an invasion. This signature can help us understand the dynamic, multistep process of invasion and inform management of current and future introductions. This review describes current and future application of genomic tools and pipelines that will provide accurate identification of pests and pathogens, assign outbreak or survey samples to putative sources to identify pathways of spread, and assess risk based on traits that impact the outbreak outcome.
Collapse
Affiliation(s)
- Richard C. Hamelin
- Department of Forest and Conservation SciencesThe University of British ColumbiaVancouverBCCanada
- Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQCCanada
- Département des sciences du bois et de la forêt, Faculté de Foresterie et GéographieUniversité LavalQuébecQCCanada
| | - Amanda D. Roe
- Great Lakes Forestry CenterNatural Resources CanadaSault Ste. MarieONCanada
| |
Collapse
|
16
|
Grünwald NJ, LeBoldus JM, Hamelin RC. Ecology and Evolution of the Sudden Oak Death Pathogen Phytophthora ramorum. ANNUAL REVIEW OF PHYTOPATHOLOGY 2019; 57:301-321. [PMID: 31226018 DOI: 10.1146/annurev-phyto-082718-100117] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The sudden oak and sudden larch death pathogen Phytophthora ramorum emerged simultaneously in the United States on oak and in Europe on Rhododendron in the 1990s. This pathogen has had a devastating impact on larch plantations in the United Kingdom as well as mixed conifer and oak forests in the Western United States. Since the discovery of this pathogen, a large body of research has provided novel insights into the emergence, epidemiology, and genetics of this pandemic. Genetic and genomic resources developed for P. ramorum have been instrumental in improving our understanding of the epidemiology, evolution, and ecology of this disease. The recent reemergence of EU1 in the United States and EU2 in Europe and the discovery of P. ramorum in Asia provide renewed impetus for research on the sudden oak death pathogen.
Collapse
Affiliation(s)
- Niklaus J Grünwald
- Horticultural Crops Research Laboratory, USDA Agricultural Research Service, Corvallis, Oregon 97330, USA;
| | - Jared M LeBoldus
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331, USA
- Department of Forest Engineering, Resources, and Management, Oregon State University, Corvallis, OR 97331-5704, USA
| | - Richard C Hamelin
- Department of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Faculté de Foresterie et de Géomatique, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec G1V 0A6, Canada
| |
Collapse
|
17
|
Dale AL, Feau N, Everhart SE, Dhillon B, Wong B, Sheppard J, Bilodeau GJ, Brar A, Tabima JF, Shen D, Brasier CM, Tyler BM, Grünwald NJ, Hamelin RC. Mitotic Recombination and Rapid Genome Evolution in the Invasive Forest Pathogen Phytophthora ramorum. mBio 2019; 10:e02452-18. [PMID: 30862749 PMCID: PMC6414701 DOI: 10.1128/mbio.02452-18] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 01/29/2019] [Indexed: 12/21/2022] Open
Abstract
Invasive alien species often have reduced genetic diversity and must adapt to new environments. Given the success of many invasions, this is sometimes called the genetic paradox of invasion. Phytophthora ramorum is invasive, limited to asexual reproduction within four lineages, and presumed clonal. It is responsible for sudden oak death in the United States, sudden larch death in Europe, and ramorum blight in North America and Europe. We sequenced the genomes of 107 isolates to determine how this pathogen can overcome the invasion paradox. Mitotic recombination (MR) associated with transposons and low gene density has generated runs of homozygosity (ROH) affecting 2,698 genes, resulting in novel genotypic diversity within the lineages. One ROH enriched in effectors was fixed in the NA1 lineage. An independent ROH affected the same scaffold in the EU1 lineage, suggesting an MR hot spot and a selection target. Differences in host infection between EU1 isolates with and without the ROH suggest that they may differ in aggressiveness. Non-core regions (not shared by all lineages) had signatures of accelerated evolution and were enriched in putative pathogenicity genes and transposons. There was a striking pattern of gene loss, including all effectors, in the non-core EU2 genome. Positive selection was observed in 8.0% of RxLR and 18.8% of Crinkler effector genes compared with 0.9% of the core eukaryotic gene set. We conclude that the P. ramorum lineages are diverging via a rapidly evolving non-core genome and that the invasive asexual lineages are not clonal, but display genotypic diversity caused by MR.IMPORTANCE Alien species are often successful invaders in new environments, despite the introduction of a few isolates with a reduced genetic pool. This is called the genetic paradox of invasion. We found two mechanisms by which the invasive forest pathogen causing sudden oak and sudden larch death can evolve. Extensive mitotic recombination producing runs of homozygosity generates genotypic diversity even in the absence of sexual reproduction, and rapid turnover of genes in the non-core, or nonessential portion of genome not shared by all isolates, allows pathogenicity genes to evolve rapidly or be eliminated while retaining essential genes. Mitotic recombination events occur in genomic hot spots, resulting in similar ROH patterns in different isolates or groups; one ROH, independently generated in two different groups, was enriched in pathogenicity genes and may be a target for selection. This provides important insights into the evolution of invasive alien pathogens and their potential for adaptation and future persistence.
Collapse
Affiliation(s)
- Angela L Dale
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- GC-New Construction Materials, FPInnovations, Vancouver, British Columbia, Canada
| | - Nicolas Feau
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sydney E Everhart
- Department of Plant Pathology, University of Nebraska, Lincoln, Nebraska, USA
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Braham Dhillon
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Barbara Wong
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Faculté de Foresterie et Géomatique, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Quebec, Canada
| | - Julie Sheppard
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Guillaume J Bilodeau
- Ottawa Plant Laboratory, Canadian Food Inspection Agency, Ottawa, Ontario, Canada
| | - Avneet Brar
- Ottawa Plant Laboratory, Canadian Food Inspection Agency, Ottawa, Ontario, Canada
| | - Javier F Tabima
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Danyu Shen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Clive M Brasier
- Forest Research, Alice Holt Lodge, Farnham, Surrey, United Kingdom
| | - Brett M Tyler
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon, USA
| | - Niklaus J Grünwald
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
- Horticultural Crops Research Laboratory, USDA Agricultural Research Service, Corvallis, Oregon, USA
| | - Richard C Hamelin
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Faculté de Foresterie et Géomatique, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Quebec, Canada
| |
Collapse
|
18
|
Studholme DJ, Panda P, Sanfuentes Von Stowasser E, González M, Hill R, Sambles C, Grant M, Williams NM, McDougal RL. Genome sequencing of oomycete isolates from Chile supports the New Zealand origin of Phytophthora kernoviae and makes available the first Nothophytophthora sp. genome. MOLECULAR PLANT PATHOLOGY 2019; 20:423-431. [PMID: 30390404 PMCID: PMC6637878 DOI: 10.1111/mpp.12765] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Genome sequences were generated for six oomycete isolates collected from forests in Valdivia, Chile. Three of the isolates were identified morphologically as Phytophthora kernoviae, whereas two were similar to other clade 10 Phytophthora species. One isolate was tentatively identified as Nothophytophthora valdiviana based on nucleotide sequence similarity in the cytochrome oxidase 1 gene. This is the first genome sequence for this recently described genus. The genome assembly was more fragmented and contained many duplicated genes when compared with the other Phytophthora sequences. Comparative analyses were performed with genomic sequences of the P. kernoviae isolates from the UK and New Zealand. Although the potential New Zealand origin of P. kernoviae has been suggested, new isolations from Chile had cast doubt on this hypothesis. We present evidence supporting P. kernoviae as having originated in New Zealand. However, investigation of the diversity of oomycete species in Chile has been limited and warrants further exploration. We demonstrate the expediency of genomic analyses in determining phylogenetic relationships between isolates within new and often scantly represented taxonomic groups, such as Phytophthora clade 10 and Nothophytophthora. Data are available on GenBank via BioProject accession number PRJNA352331.
Collapse
Affiliation(s)
| | - Preeti Panda
- Scion (New Zealand Forest Research Institute, Ltd.)Rotorua3015New Zealand
| | - Eugenio Sanfuentes Von Stowasser
- Laboratorio de Patología Forestal, Facultad Ciencias Forestales y Centro de BiotecnologíaUniversidad de ConcepciónConcepción4070386Chile
| | - Mariela González
- Laboratorio de Patología Forestal, Facultad Ciencias Forestales y Centro de BiotecnologíaUniversidad de ConcepciónConcepción4070386Chile
| | - Rowena Hill
- Biosciences, University of ExeterStocker RoadExeterEX4 4QDUK
- Jodrell LaboratoryRoyal Botanic GardensKewTW9 3DSUK
| | | | - Murray Grant
- Biosciences, University of ExeterStocker RoadExeterEX4 4QDUK
- Life SciencesUniversity of WarwickCoventryCV4 7ALUK
| | - Nari M. Williams
- Scion (New Zealand Forest Research Institute, Ltd.)Rotorua3015New Zealand
| | | |
Collapse
|
19
|
Boccardo NA, Segretin ME, Hernandez I, Mirkin FG, Chacón O, Lopez Y, Borrás-Hidalgo O, Bravo-Almonacid FF. Expression of pathogenesis-related proteins in transplastomic tobacco plants confers resistance to filamentous pathogens under field trials. Sci Rep 2019; 9:2791. [PMID: 30808937 PMCID: PMC6391382 DOI: 10.1038/s41598-019-39568-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 01/25/2019] [Indexed: 01/18/2023] Open
Abstract
Plants are continuously challenged by pathogens, affecting most staple crops compromising food security. They have evolved different mechanisms to counterattack pathogen infection, including the accumulation of pathogenesis-related (PR) proteins. These proteins have been implicated in active defense, and their overexpression has led to enhanced resistance in nuclear transgenic plants, although in many cases constitutive expression resulted in lesion-mimic phenotypes. We decided to evaluate plastid transformation as an alternative to overcome limitations observed for nuclear transgenic technologies. The advantages include the possibilities to express polycistronic RNAs, to obtain higher protein expression levels, and the impeded gene flow due to the maternal inheritance of the plastome. We transformed Nicotiana tabacum plastids to co-express the tobacco PR proteins AP24 and β-1,3-glucanase. Transplastomic tobacco lines were characterized and subsequently challenged with Rhizoctonia solani, Peronospora hyoscyami f.sp. tabacina and Phytophthora nicotianae. Results showed that transplastomic plants expressing AP24 and β-1,3-glucanase are resistant to R. solani in greenhouse conditions and, furthermore, they are protected against P.hyoscyami f.sp. tabacina and P. nicotianae in field conditions under high inoculum pressure. Our results suggest that plastid co- expression of PR proteins AP24 and β-1,3-glucanase resulted in enhanced resistance against filamentous pathogens.
Collapse
Affiliation(s)
- Noelia Ayelen Boccardo
- Laboratorio de Biotecnología Vegetal, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI-CONICET), (C1428ADN), Ciudad Autónoma de Buenos Aires, Argentina
| | - María Eugenia Segretin
- Laboratorio de Biotecnología Vegetal, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI-CONICET), (C1428ADN), Ciudad Autónoma de Buenos Aires, Argentina.
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, (C1428EGA), Ciudad Autónoma de Buenos Aires, Argentina.
| | - Ingrid Hernandez
- Centro de Ingeniería Genética y Biotecnología (CIGB), (10600), La Habana, Cuba
| | - Federico Gabriel Mirkin
- Laboratorio de Biotecnología Vegetal, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI-CONICET), (C1428ADN), Ciudad Autónoma de Buenos Aires, Argentina
| | - Osmani Chacón
- Centro de Ingeniería Genética y Biotecnología (CIGB), (10600), La Habana, Cuba
| | - Yunior Lopez
- Centro de Ingeniería Genética y Biotecnología (CIGB), (10600), La Habana, Cuba
| | - Orlando Borrás-Hidalgo
- Centro de Ingeniería Genética y Biotecnología (CIGB), (10600), La Habana, Cuba
- Shandong Provincial Key Laboratory of Microbial Engineering, School of Biotechnology, Qi Lu University of Technology, Jinan, (250353), P.R. China
| | - Fernando Félix Bravo-Almonacid
- Laboratorio de Biotecnología Vegetal, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI-CONICET), (C1428ADN), Ciudad Autónoma de Buenos Aires, Argentina.
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, (B1876BXD), Argentina.
| |
Collapse
|
20
|
Feau N, Beauseigle S, Bergeron MJ, Bilodeau GJ, Birol I, Cervantes-Arango S, Dhillon B, Dale AL, Herath P, Jones SJ, Lamarche J, Ojeda DI, Sakalidis ML, Taylor G, Tsui CK, Uzunovic A, Yueh H, Tanguay P, Hamelin RC. Genome-Enhanced Detection and Identification (GEDI) of plant pathogens. PeerJ 2018; 6:e4392. [PMID: 29492338 PMCID: PMC5825881 DOI: 10.7717/peerj.4392] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/29/2018] [Indexed: 12/17/2022] Open
Abstract
Plant diseases caused by fungi and Oomycetes represent worldwide threats to crops and forest ecosystems. Effective prevention and appropriate management of emerging diseases rely on rapid detection and identification of the causal pathogens. The increase in genomic resources makes it possible to generate novel genome-enhanced DNA detection assays that can exploit whole genomes to discover candidate genes for pathogen detection. A pipeline was developed to identify genome regions that discriminate taxa or groups of taxa and can be converted into PCR assays. The modular pipeline is comprised of four components: (1) selection and genome sequencing of phylogenetically related taxa, (2) identification of clusters of orthologous genes, (3) elimination of false positives by filtering, and (4) assay design. This pipeline was applied to some of the most important plant pathogens across three broad taxonomic groups: Phytophthoras (Stramenopiles, Oomycota), Dothideomycetes (Fungi, Ascomycota) and Pucciniales (Fungi, Basidiomycota). Comparison of 73 fungal and Oomycete genomes led the discovery of 5,939 gene clusters that were unique to the targeted taxa and an additional 535 that were common at higher taxonomic levels. Approximately 28% of the 299 tested were converted into qPCR assays that met our set of specificity criteria. This work demonstrates that a genome-wide approach can efficiently identify multiple taxon-specific genome regions that can be converted into highly specific PCR assays. The possibility to easily obtain multiple alternative regions to design highly specific qPCR assays should be of great help in tackling challenging cases for which higher taxon-resolution is needed.
Collapse
Affiliation(s)
- Nicolas Feau
- Department of Forest and Conservation Sciences, Forest Sciences Centre, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | - Inanc Birol
- BC Cancer agency, Genome Sciences Centre, Vancouver, BC, Canada
| | - Sandra Cervantes-Arango
- Department of Forest and Conservation Sciences, Forest Sciences Centre, University of British Columbia, Vancouver, BC, Canada
| | - Braham Dhillon
- Department of Plant Pathology, University of Arkansas at Fayetteville, Fayetteville, AR, United States of America
| | - Angela L. Dale
- Department of Forest and Conservation Sciences, Forest Sciences Centre, University of British Columbia, Vancouver, BC, Canada
- FPInnovations, Vancouver, BC, Canada
| | - Padmini Herath
- Department of Forest and Conservation Sciences, Forest Sciences Centre, University of British Columbia, Vancouver, BC, Canada
| | - Steven J.M. Jones
- BC Cancer agency, Genome Sciences Centre, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Josyanne Lamarche
- Canadian Forest Service, Natural Resources Canada, Quebec city, Quebec, Canada
| | - Dario I. Ojeda
- Department of Biology Unit of Ecology and Genetics, University of Oulu, Oulu, Finland
| | - Monique L. Sakalidis
- Department of Plant, Soil & Microbial Sciences and Department of Forestry, Michigan State University, East Lansing, MI, United States of America
| | - Greg Taylor
- BC Cancer agency, Genome Sciences Centre, Vancouver, BC, Canada
| | - Clement K.M. Tsui
- Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | - Hesther Yueh
- Department of Forest and Conservation Sciences, Forest Sciences Centre, University of British Columbia, Vancouver, BC, Canada
| | - Philippe Tanguay
- Canadian Forest Service, Natural Resources Canada, Quebec city, Quebec, Canada
| | - Richard C. Hamelin
- Department of Forest and Conservation Sciences, Forest Sciences Centre, University of British Columbia, Vancouver, BC, Canada
- Foresterie et géomatique, Institut de Biologie Intégrative des Systèmes, Laval University, Quebec city, Quebec, Canada
| |
Collapse
|
21
|
Genomic, Network, and Phylogenetic Analysis of the Oomycete Effector Arsenal. mSphere 2017; 2:mSphere00408-17. [PMID: 29202039 PMCID: PMC5700374 DOI: 10.1128/msphere.00408-17] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 11/02/2017] [Indexed: 02/07/2023] Open
Abstract
The oomycetes are a class of microscopic, filamentous eukaryotes and include ecologically significant animal and plant pathogens. Oomycetes secrete large arsenals of effector proteins that degrade host cell components, manipulate host immune responses, and induce necrosis, enabling parasitic colonization. In this study, we catalogued the number and evolution of effectors in 37 oomycete species whose genomes have been completely sequenced. Large expansions of effector protein families in Phytophthora species, including glycoside hydrolases, pectinases, and necrosis-inducing proteins, were observed. Species-specific expansions were detected, including chitinases in Aphanomyces astaci and Pythium oligandrum. Novel effectors which may be involved in suppressing animal immune responses were identified in Ap. astaci and Py. oligandrum. Type 2 necrosis-inducing proteins with an unusual phylogenetic history were also located. This work represents an up-to-date in silico catalogue of the effector arsenal of the oomycetes based on the 37 genomes currently available. The oomycetes are a class of microscopic, filamentous eukaryotes within the stramenopiles-alveolate-Rhizaria (SAR) supergroup and include ecologically significant animal and plant pathogens. Oomycetes secrete large arsenals of effector proteins that degrade host cell components, manipulate host immune responses, and induce necrosis, enabling parasitic colonization. This study investigated the expansion and evolution of effectors in 37 oomycete species in 4 oomycete orders, including Albuginales, Peronosporales, Pythiales, and Saprolegniales species. Our results highlight the large expansions of effector protein families, including glycoside hydrolases, pectinases, and necrosis-inducing proteins, in Phytophthora species. Species-specific expansions, including expansions of chitinases in Aphanomyces astaci and Pythium oligandrum, were detected. Novel effectors which may be involved in suppressing animal immune responses in Ap. astaci and Py. insidiosum were also identified. Type 2 necrosis-inducing proteins with an unusual phylogenetic history were also located in a number of oomycete species. We also investigated the "RxLR" effector complement of all 37 species and, as expected, observed large expansions in Phytophthora species numbers. Our results provide in-depth sequence information on all putative RxLR effectors from all 37 species. This work represents an up-to-date in silico catalogue of the effector arsenal of the oomycetes based on the 37 genomes currently available. IMPORTANCE The oomycetes are a class of microscopic, filamentous eukaryotes and include ecologically significant animal and plant pathogens. Oomycetes secrete large arsenals of effector proteins that degrade host cell components, manipulate host immune responses, and induce necrosis, enabling parasitic colonization. In this study, we catalogued the number and evolution of effectors in 37 oomycete species whose genomes have been completely sequenced. Large expansions of effector protein families in Phytophthora species, including glycoside hydrolases, pectinases, and necrosis-inducing proteins, were observed. Species-specific expansions were detected, including chitinases in Aphanomyces astaci and Pythium oligandrum. Novel effectors which may be involved in suppressing animal immune responses were identified in Ap. astaci and Py. oligandrum. Type 2 necrosis-inducing proteins with an unusual phylogenetic history were also located. This work represents an up-to-date in silico catalogue of the effector arsenal of the oomycetes based on the 37 genomes currently available.
Collapse
|
22
|
Turner J, O'Neill P, Grant M, Mumford RA, Thwaites R, Studholme DJ. Genome sequences of 12 isolates of the EU1 lineage of Phytophthora ramorum, a fungus-like pathogen that causes extensive damage and mortality to a wide range of trees and other plants. GENOMICS DATA 2017; 12:17-21. [PMID: 28243575 PMCID: PMC5320048 DOI: 10.1016/j.gdata.2017.02.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 02/05/2017] [Indexed: 11/24/2022]
Abstract
Here we present genome sequences for twelve isolates of the invasive pathogen Phytophthora ramorum EU1. The assembled genome sequences and raw sequence data are available via BioProject accession number PRJNA177509. These data will be useful in developing molecular tools for specific detection and identification of this pathogen.
Collapse
Affiliation(s)
- Judith Turner
- Fera Science Ltd (Fera), National Agri-Food Innovation Campus, Sand Hutton, York YO41 1LZ, United Kingdom
| | - Paul O'Neill
- Biosciences, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom
| | - Murray Grant
- Biosciences, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom
| | - Rick A. Mumford
- Fera Science Ltd (Fera), National Agri-Food Innovation Campus, Sand Hutton, York YO41 1LZ, United Kingdom
| | - Richard Thwaites
- Fera Science Ltd (Fera), National Agri-Food Innovation Campus, Sand Hutton, York YO41 1LZ, United Kingdom
| | - David J. Studholme
- Biosciences, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom
| |
Collapse
|
23
|
Grenville-Briggs LJ, Kushwaha SK, Cleary MR, Witzell J, Savenkov EI, Whisson SC, Chawade A, Vetukuri RR. Draft genome of the oomycete pathogen Phytophthora cactorum strain LV007 isolated from European beech ( Fagus sylvatica). GENOMICS DATA 2017; 12:155-156. [PMID: 28560165 PMCID: PMC5435576 DOI: 10.1016/j.gdata.2017.05.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 05/11/2017] [Accepted: 05/12/2017] [Indexed: 11/06/2022]
Abstract
Phytophthora cactorum is a broad host range phytopathogenic oomycete. P. cactorum strain LV007 was isolated from a diseased European Beech (Fagus sylvatica) in Malmö, Sweden in 2016. The draft genome of P. cactorum strain LV007 is 67.81 Mb. It contains 15,567 contigs and 21,876 predicted protein-coding genes. As reported for other phytopathogenic Phytophthora species, cytoplasmic effector proteins including RxLR and CRN families were identified. The genome sequence has been deposited at DDBJ/ENA/GenBank under the accession NBIJ00000000. The version described in this paper is version NBIJ01000000.
Collapse
Affiliation(s)
- Laura J Grenville-Briggs
- Department of Plant Protection biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Sandeep K Kushwaha
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden.,National Bioinformatics Infrastructure Sweden (NBIS), Department of Biology, Lund University, Lund, Sweden
| | - Michelle R Cleary
- Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Johanna Witzell
- Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Eugene I Savenkov
- Department of Plant Biology, Uppsala BioCenter, Linnean Centre of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Stephen C Whisson
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, United Kingdom
| | - Aakash Chawade
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Ramesh R Vetukuri
- Department of Plant Protection biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| |
Collapse
|
24
|
Phylogenomic Reconstruction of the Oomycete Phylogeny Derived from 37 Genomes. mSphere 2017; 2:mSphere00095-17. [PMID: 28435885 PMCID: PMC5390094 DOI: 10.1128/msphere.00095-17] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 03/24/2017] [Indexed: 12/17/2022] Open
Abstract
The oomycetes are a class of eukaryotes and include ecologically significant animal and plant pathogens. Single-gene and multigene phylogenetic studies of individual oomycete genera and of members of the larger classes have resulted in conflicting conclusions concerning interspecies relationships among these species, particularly for the Phytophthora genus. The onset of next-generation sequencing techniques now means that a wealth of oomycete genomic data is available. For the first time, we have used genome-scale phylogenetic methods to resolve oomycete phylogenetic relationships. We used supertree methods to generate single-gene and multigene species phylogenies. Overall, our supertree analyses utilized phylogenetic data from 8,355 oomycete gene families. We have also complemented our analyses with superalignment phylogenies derived from 131 single-copy ubiquitous gene families. Our results show that a genome-scale approach to oomycete phylogeny resolves oomycete classes and clades. Our analysis represents an important first step in large-scale phylogenomic analysis of the oomycetes. The oomycetes are a class of microscopic, filamentous eukaryotes within the Stramenopiles-Alveolata-Rhizaria (SAR) supergroup which includes ecologically significant animal and plant pathogens, most infamously the causative agent of potato blight Phytophthora infestans. Single-gene and concatenated phylogenetic studies both of individual oomycete genera and of members of the larger class have resulted in conflicting conclusions concerning species phylogenies within the oomycetes, particularly for the large Phytophthora genus. Genome-scale phylogenetic studies have successfully resolved many eukaryotic relationships by using supertree methods, which combine large numbers of potentially disparate trees to determine evolutionary relationships that cannot be inferred from individual phylogenies alone. With a sufficient amount of genomic data now available, we have undertaken the first whole-genome phylogenetic analysis of the oomycetes using data from 37 oomycete species and 6 SAR species. In our analysis, we used established supertree methods to generate phylogenies from 8,355 homologous oomycete and SAR gene families and have complemented those analyses with both phylogenomic network and concatenated supermatrix analyses. Our results show that a genome-scale approach to oomycete phylogeny resolves oomycete classes and individual clades within the problematic Phytophthora genus. Support for the resolution of the inferred relationships between individual Phytophthora clades varies depending on the methodology used. Our analysis represents an important first step in large-scale phylogenomic analysis of the oomycetes. IMPORTANCE The oomycetes are a class of eukaryotes and include ecologically significant animal and plant pathogens. Single-gene and multigene phylogenetic studies of individual oomycete genera and of members of the larger classes have resulted in conflicting conclusions concerning interspecies relationships among these species, particularly for the Phytophthora genus. The onset of next-generation sequencing techniques now means that a wealth of oomycete genomic data is available. For the first time, we have used genome-scale phylogenetic methods to resolve oomycete phylogenetic relationships. We used supertree methods to generate single-gene and multigene species phylogenies. Overall, our supertree analyses utilized phylogenetic data from 8,355 oomycete gene families. We have also complemented our analyses with superalignment phylogenies derived from 131 single-copy ubiquitous gene families. Our results show that a genome-scale approach to oomycete phylogeny resolves oomycete classes and clades. Our analysis represents an important first step in large-scale phylogenomic analysis of the oomycetes.
Collapse
|