1
|
Barman L, Sharma A, Kakati S, Sarma DK, Hussain E, Saikia L. Molecular detection of drug-resistant Plasmodium falciparum mutants in Assam. Indian J Med Res 2023; 158:55-65. [PMID: 37602587 PMCID: PMC10550066 DOI: 10.4103/ijmr.ijmr_2976_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Indexed: 08/22/2023] Open
Abstract
Background & objectives The spread of drug-resistant Plasmodium falciparum (Pf) poses a serious threat to the control and elimination of malaria. The objective of this study was to detect the molecular biomarkers of antimalarial drug resistance in Pf in patients visiting a tertiary care hospital in Assam. Methods Malaria was first detected in fever cases using microscopy and a rapid diagnostic test (RDT), and then confirmed using PCR. Pf chloroquine resistance transporter (Pfcrt), Pf multidrug resistance-1 (Pfmdr-1), and single-nucleotide polymorphisms linked to delayed parasite clearance after treatment with artemisinin MAL 10-688956 and MAL 13-1718319 and Kelch-13 propeller (PfK-13) genes were evaluated by PCR-restriction fragment length polymorphism (RFLP). Results Sixty nine cases of malaria were found among 300 cases of fever. Of these, 54 were positive for Pf, 47 of which were confirmed by PCR. Pfcrt-K76T mutation was seen in 96.6 per cent and Pfmdr1-N86Y mutation in 84.2 per cent of cases. Mutation was not detected in MAL10 and MAL13 genes. Sequence analysis of Kelch-13 gene showed the presence of a novel mutation at amino acid position 675. Statistically, no significant association was found between the molecular biomarkers and demographic profile, clinical presentation and outcome of the cases. Interpretation & conclusions Molecular surveillance is essential to assess the therapeutic efficacy of the drugs against circulating Pf isolates in Assam which are found to be highly resistant to CQ. The role of the new mutation found in the Kelch-13 gene in the development of artemisinin resistance in Assam needs to be thoroughly monitored in future research.
Collapse
Affiliation(s)
- Lipika Barman
- Department of Microbiology, Apollo Excelcare Hospital, Guwahati, India
| | - Ajanta Sharma
- Department of Microbiology, Gauhati Medical College, Guwahati, India
| | - Sanjeeb Kakati
- Department of Medicine, Assam Medical College, Dibrugarh, Assam, India
| | - Devojit Kr. Sarma
- Department of Regional Medical Research Centre, Dibrugarh, Assam, India
| | - Ezaz Hussain
- Department of Statistics, Assam Medical College, Dibrugarh, Assam, India
| | - Lahari Saikia
- Department of Microbiology, Gauhati Medical College, Guwahati, India
| |
Collapse
|
3
|
Chaturvedi R, Chhibber-Goel J, Verma I, Gopinathan S, Parvez S, Sharma A. Geographical spread and structural basis of sulfadoxine-pyrimethamine drug-resistant malaria parasites. Int J Parasitol 2021; 51:505-525. [PMID: 33775670 DOI: 10.1016/j.ijpara.2020.12.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 11/24/2020] [Accepted: 12/03/2020] [Indexed: 12/22/2022]
Abstract
The global spread of sulfadoxine (Sdx, S) and pyrimethamine (Pyr, P) resistance is attributed to increasing number of mutations in DHPS and DHFR enzymes encoded by malaria parasites. The association between drug resistance mutations and SP efficacy is complex. Here we provide an overview of the geographical spread of SP resistance mutations in Plasmodium falciparum (Pf) and Plasmodium vivax (Pv) encoded dhps and dhfr genes. In addition, we have collated the mutation data and mapped it on to the three-dimensional structures of DHPS and DHFR which have become available. Data from genomic databases and 286 studies were collated to provide a comprehensive landscape of mutational data from 2005 to 2019. Our analyses show that the Pyr-resistant double mutations are widespread in Pf/PvDHFR (P. falciparum ∼61% in Asia and the Middle East, and in the Indian sub-continent; in P. vivax ∼33% globally) with triple mutations prevailing in Africa (∼66%) and South America (∼33%). For PfDHPS, triple mutations dominate South America (∼44%), Asia and the Middle East (∼34%) and the Indian sub-continent (∼27%), while single mutations are widespread in Africa (∼45%). Contrary to the status for P. falciparum, Sdx-resistant single point mutations in PvDHPS dominate globally. Alarmingly, highly resistant quintuple and sextuple mutations are rising in Africa (PfDHFR-DHPS) and Asia (Pf/PvDHFR-DHPS). Structural analyses of DHFR and DHPS proteins in complexes with substrates/drugs have revealed that resistance mutations map proximal to Sdx and Pyr binding sites. Thus new studies can focus on discovery of novel inhibitors that target the non-substrate binding grooves in these two validated malaria parasite drug targets.
Collapse
Affiliation(s)
- Rini Chaturvedi
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India; Department of Toxicology, Jamia Hamdard, New Delhi, India
| | - Jyoti Chhibber-Goel
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Ishika Verma
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Sreehari Gopinathan
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Suhel Parvez
- Department of Toxicology, Jamia Hamdard, New Delhi, India
| | - Amit Sharma
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India; National Institute of Malaria Research, Dwarka, New Delhi, India.
| |
Collapse
|
4
|
Lin LY, Li J, Huang HY, Liang XY, Jiang TT, Chen JT, Ehapo CS, Eyi UM, Zheng YZ, Zha GC, Xie DD, Wang YL, Chen WZ, Liu XZ, Lin M. Trends in Molecular Markers Associated with Resistance to Sulfadoxine-Pyrimethamine (SP) Among Plasmodium falciparum Isolates on Bioko Island, Equatorial Guinea: 2011-2017. Infect Drug Resist 2020; 13:1203-1212. [PMID: 32431521 PMCID: PMC7197940 DOI: 10.2147/idr.s236898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 03/19/2020] [Indexed: 02/05/2023] Open
Abstract
PURPOSE Antimalarial drug resistance is one of the major challenges in global efforts to control and eliminate malaria. In 2006, sulfadoxine-pyrimethamine (SP) replaced with artemisinin-based combination therapy (ACT) on Bioko Island, Equatorial Guinea, in response to increasing SP resistance, which is associated with mutations in the dihydrofolate reductase (Pfdhfr) and dihydropteroate synthase (Pfdhps) genes. PATIENTS AND METHODS To evaluate the trend of molecular markers associated with SP resistance on Bioko Island from 2011 to 2017, 179 samples collected during active case detection were analysed by PCR and DNA sequencing. RESULTS Pfdhfr and Pfdhps gene sequences were obtained for 90.5% (162/179) and 77.1% (138/179) of the samples, respectively. For Pfdhfr, 97.5% (158/162), 95.7% (155/162) and 98.1% (159/162) of the samples contained N51I, C59R and S108N mutant alleles, respectively. And Pfdhps S436A, A437G, K540E, A581G, and A613S mutations were observed in 25.4% (35/138), 88.4% (122/138), 5.1% (7/138), 1.4% (2/138), and 7.2% (10/138) of the samples, respectively. Two classes of previously described Pfdhfr-Pfdhps haplotypes associated with SP resistance and their frequencies were identified: partial (IRNI-SGKAA, 59.4%) and full (IRNI-SGEAA, 5.5%) resistance. Although no significant difference was observed in different time periods (p>0.05), our study confirmed a slowly increasing trend of the frequencies of these SP-resistance markers in Bioko parasites over the 7 years investigated. CONCLUSION The findings reveal the general existence of SP-resistance markers on Bioko Island even after the replacement of SP as a first-line treatment for uncomplicated malaria. Continuous molecular monitoring and additional control efforts in the region are urgently needed.
Collapse
Affiliation(s)
- Li-Yun Lin
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, Guangdong Province, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, People’s Republic of China
| | - Jian Li
- Department of Human Parasitology, School of Basic Medical Sciences; Department of Infectious Diseases, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei Province, People’s Republic of China
| | - Hui-Ying Huang
- Department of Medical Laboratory, Chaozhou People’s Hospital Affiliated to Shantou University Medical College, Chaozhou, Guangdong Province, People’s Republic of China
- Department of Medical Genetics, Shantou University Medical College, Shantou, Guangdong Province, People’s Republic of China
| | - Xue-Yan Liang
- Department of Medical Laboratory, Chaozhou People’s Hospital Affiliated to Shantou University Medical College, Chaozhou, Guangdong Province, People’s Republic of China
- Department of Medical Genetics, Shantou University Medical College, Shantou, Guangdong Province, People’s Republic of China
| | - Ting-Ting Jiang
- Department of Human Parasitology, School of Basic Medical Sciences; Department of Infectious Diseases, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei Province, People’s Republic of China
| | - Jiang-Tao Chen
- The Chinese Medical Aid Team to the Republic of Equatorial Guinea, Guangzhou, Guangdong Province, People’s Republic of China
- Department of Medical Laboratory, Huizhou Central Hospital, Huizhou, Guangdong Province, People’s Republic of China
| | - Carlos Salas Ehapo
- Department of Medical Laboratory, Malabo Regional Hospital, Malabo, Equatorial Guinea
| | - Urbano Monsuy Eyi
- Department of Medical Laboratory, Malabo Regional Hospital, Malabo, Equatorial Guinea
| | - Yu-Zhong Zheng
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, Guangdong Province, People’s Republic of China
| | - Guang-Cai Zha
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, Guangdong Province, People’s Republic of China
| | - Dong-De Xie
- The Chinese Medical Aid Team to the Republic of Equatorial Guinea, Guangzhou, Guangdong Province, People’s Republic of China
- Department of Medical Laboratory, Huizhou Central Hospital, Huizhou, Guangdong Province, People’s Republic of China
| | - Yu-Ling Wang
- The Chinese Medical Aid Team to the Republic of Equatorial Guinea, Guangzhou, Guangdong Province, People’s Republic of China
- Department of Medical Laboratory, Huizhou Central Hospital, Huizhou, Guangdong Province, People’s Republic of China
| | - Wei-Zhong Chen
- Department of Medical Laboratory, Chaozhou People’s Hospital Affiliated to Shantou University Medical College, Chaozhou, Guangdong Province, People’s Republic of China
- Department of Medical Genetics, Shantou University Medical College, Shantou, Guangdong Province, People’s Republic of China
| | - Xiang-Zhi Liu
- Department of Medical Laboratory, Chaozhou People’s Hospital Affiliated to Shantou University Medical College, Chaozhou, Guangdong Province, People’s Republic of China
- Department of Medical Genetics, Shantou University Medical College, Shantou, Guangdong Province, People’s Republic of China
| | - Min Lin
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, Guangdong Province, People’s Republic of China
- Department of Medical Laboratory, Chaozhou People’s Hospital Affiliated to Shantou University Medical College, Chaozhou, Guangdong Province, People’s Republic of China
- Department of Medical Genetics, Shantou University Medical College, Shantou, Guangdong Province, People’s Republic of China
- Correspondence: Min Lin School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, Guangdong Province, People’s Republic of China Tel/Fax +86 768-2317422 Email
| |
Collapse
|