1
|
Zhuang Y, Lian W, Tang X, Qi G, Wang D, Chai G, Zhou G. MYB42 inhibits hypocotyl cell elongation by coordinating brassinosteroid homeostasis and signalling in Arabidopsis thaliana. ANNALS OF BOTANY 2022; 129:403-413. [PMID: 34922335 PMCID: PMC8944714 DOI: 10.1093/aob/mcab152] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND AIMS The precise control of brassinosteroid (BR) homeostasis and signalling is a prerequisite for hypocotyl cell elongation in plants. Arabidopsis MYB42 and its paralogue MYB85 were previously identified to be positive regulators of secondary cell wall formation during mature stages. Here, we aim to reveal the role of MYB42 and MYB85 in hypocotyl elongation during the seedling stage and clarify how MYB42 coordinates BR homeostasis and signalling to regulate this process. METHODS Histochemical analysis of proMYB42-GUS transgenic plants was used for determination of the MYB42 expression pattern. The MYB42, 85 overexpression, double mutant and some crossing lines were generated for phenotypic observation and transcriptome analysis. Transcription activation assays, quantitative PCR (qPCR), chromatin immunoprecipitation (ChIP)-qPCR and electrophoretic mobility shift assays (EMSAs) were conducted to determine the relationship of MYB42 and BRASSINAZOLE-RESISTANT 1 (BZR1), a master switch activating BR signalling. KEY RESULTS MYB42 and MYB85 redundantly and negatively regulate hypocotyl cell elongation. They function in hypocotyl elongation by mediating BR signalling. MYB42 transcription was suppressed by BR treatment or in bzr1-1D (a gain-of-function mutant of BZR1), and mutation of both MYB42 and MYB85 enhanced the dwarf phenotype of the BR receptor mutant bri1-5. BZR1 directly repressed MYB42 expression in response to BR. Consistently, hypocotyl length of bzr1-1D was increased by simultaneous mutation of MYB42 and MYB85, but was reduced by overexpression of MYB42. Expression of a number of BR-regulated BZR1 (non-)targets associated with hypocotyl elongation was suppressed by MYB42, 85. Furthermore, MYB42 enlarged its action in BR signalling through feedback repression of BR accumulation and activation of DOGT1/UGT73C5, a BR-inactivating enzyme. CONCLUSIONS MYB42 inhibits hypocotyl elongation by coordinating BR homeostasis and signalling during primary growth. The present study shows an MYB42, 85-mediated multilevel system that contributes to fine regulation of BR-induced hypocotyl elongation.
Collapse
Affiliation(s)
- Yamei Zhuang
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, China
- Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Wenjun Lian
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, China
| | - Xianfeng Tang
- Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Guang Qi
- State Key Laboratory of Wheat and Maize Crop Science and College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Dian Wang
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | | | | |
Collapse
|
2
|
Ji K, Song Q, Yu X, Tan C, Wang L, Chen L, Xiang X, Gong W, Yuan D. Hormone analysis and candidate genes identification associated with seed size in Camellia oleifera. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211138. [PMID: 35360359 PMCID: PMC8965419 DOI: 10.1098/rsos.211138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 03/02/2022] [Indexed: 05/02/2023]
Abstract
Camellia oleifera is an important woody oil species in China. Its seed oil has been widely used as a cooking oil. Seed size is a crucial factor influencing the yield of seed oil. In this study, the horizontal diameter, vertical diameter and volume of C. oleifera seeds showed a rapid growth tendency from 235 days after pollination (DAP) to 258 DAP but had a slight increase at seed maturity. During seed development, the expression of genes related to cell proliferation and expansion differ greatly. Auxin plays an important role in C. oleifera seeds; YUC4 and IAA17 were significantly downregulated. Weighted gene co-expression network analysis screened 21 hub transcription factors for C. oleifera seed horizontal diameter, vertical diameter and volume. Among them, SPL4 was significantly decreased and associated with all these three traits, while ABI4 and YAB1 were significantly increased and associated with horizontal diameter of C. oleifera seeds. Additionally, KLU significantly decreased (2040-fold). Collectively, our data advances the knowledge of factors related to seed size and provides a theoretical basis for improving the yield of C. oleifera seeds.
Collapse
Affiliation(s)
- Ke Ji
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of Ministry of Education and the Key Laboratory of Non-Wood Forest Products of Forestry Ministry, Central South University of Forestry and Technology, Changsha, Hunan, 410004, People's Republic of China
| | - Qiling Song
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of Ministry of Education and the Key Laboratory of Non-Wood Forest Products of Forestry Ministry, Central South University of Forestry and Technology, Changsha, Hunan, 410004, People's Republic of China
| | - Xinran Yu
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of Ministry of Education and the Key Laboratory of Non-Wood Forest Products of Forestry Ministry, Central South University of Forestry and Technology, Changsha, Hunan, 410004, People's Republic of China
| | - Chuanbo Tan
- Hunan Great Sanxiang Camellia Oil Co., Ltd, Hengyang, Hunan 421000, People's Republic of China
| | - Linkai Wang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of Ministry of Education and the Key Laboratory of Non-Wood Forest Products of Forestry Ministry, Central South University of Forestry and Technology, Changsha, Hunan, 410004, People's Republic of China
| | - Le Chen
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of Ministry of Education and the Key Laboratory of Non-Wood Forest Products of Forestry Ministry, Central South University of Forestry and Technology, Changsha, Hunan, 410004, People's Republic of China
| | - Xiaofeng Xiang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of Ministry of Education and the Key Laboratory of Non-Wood Forest Products of Forestry Ministry, Central South University of Forestry and Technology, Changsha, Hunan, 410004, People's Republic of China
| | - Wenfang Gong
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of Ministry of Education and the Key Laboratory of Non-Wood Forest Products of Forestry Ministry, Central South University of Forestry and Technology, Changsha, Hunan, 410004, People's Republic of China
| | - Deyi Yuan
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of Ministry of Education and the Key Laboratory of Non-Wood Forest Products of Forestry Ministry, Central South University of Forestry and Technology, Changsha, Hunan, 410004, People's Republic of China
| |
Collapse
|
3
|
Ilias IA, Negishi K, Yasue K, Jomura N, Morohashi K, Baharum SN, Goh HH. Transcriptome-wide effects of expansin gene manipulation in etiolated Arabidopsis seedling. JOURNAL OF PLANT RESEARCH 2019; 132:159-172. [PMID: 30341720 DOI: 10.1007/s10265-018-1067-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 09/19/2018] [Indexed: 05/24/2023]
Abstract
Expansin is a non-enzymatic protein which plays a pivotal role in cell wall loosening by inducing stress relaxation and extension in the plant cell wall. Previous studies on Arabidopsis, Petunia × hybrida, and tomato demonstrated that the suppression of expansin gene expression reduced plant growth but expansin overexpression does not necessarily promotes growth. In this study, both expansin gene suppression and overexpression in dark-grown transgenic Arabidopsis seedlings resulted in reduced hypocotyl length at late growth stages with a more pronounced effect for the overexpression. This defect in hypocotyl elongation raises questions about the molecular effect of expansin gene manipulation. RNA-seq analysis of the transcriptomic changes between day 3 and day 5 seedlings for both transgenic lines found numerous differentially expressed genes (DEGs) including transcription factors and hormone-related genes involved in different aspects of cell wall development. These DEGs imply that the observed hypocotyl growth retardation is a consequence of the concerted effect of regulatory factors and multiple cell-wall related genes, which are important for cell wall remodelling during rapid hypocotyl elongation. This is further supported by co-expression analysis through network-centric approach of differential network cluster analysis. This first transcriptome-wide study of expansin manipulation explains why the effect of expansin overexpression is greater than suppression and provides insights into the dynamic nature of molecular regulation during etiolation.
Collapse
Affiliation(s)
- Iqmal Asyraf Ilias
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, UKM Bangi, 43600, Selangor, Darul Ehsan, Malaysia
| | - Kohei Negishi
- Faculty of Science and Technology, Tokyo University of Science, Chiba-ken, Tokyo, 278-8510, Japan
| | - Keito Yasue
- Faculty of Science and Technology, Tokyo University of Science, Chiba-ken, Tokyo, 278-8510, Japan
| | - Naohiro Jomura
- Faculty of Science and Technology, Tokyo University of Science, Chiba-ken, Tokyo, 278-8510, Japan
| | - Kengo Morohashi
- Faculty of Science and Technology, Tokyo University of Science, Chiba-ken, Tokyo, 278-8510, Japan
| | - Syarul Nataqain Baharum
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, UKM Bangi, 43600, Selangor, Darul Ehsan, Malaysia
| | - Hoe-Han Goh
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, UKM Bangi, 43600, Selangor, Darul Ehsan, Malaysia.
| |
Collapse
|
4
|
Satya P, Chakraborty A, Sarkar D, Karan M, Das D, Mandal NA, Saha D, Datta S, Ray S, Kar CS, Karmakar PG, Mitra J, Singh NK. Transcriptome profiling uncovers β-galactosidases of diverse domain classes influencing hypocotyl development in jute (Corchorus capsularis L.). PHYTOCHEMISTRY 2018; 156:20-32. [PMID: 30172937 DOI: 10.1016/j.phytochem.2018.08.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/21/2018] [Accepted: 08/21/2018] [Indexed: 05/25/2023]
Abstract
Enzyme β-galactosidase (EC 3.2.1.23) is known to influence vascular differentiation during early vegetative growth of plants, but its role in hypocotyl development is not yet fully understood. We generated the hypocotyl transcriptome data of a hypocotyl-defect jute (Corchorus capsularis L.) mutant (52,393 unigenes) and its wild-type (WT) cv. JRC-212 (44,720 unigenes) by paired-end RNA-seq and identified 11 isoforms of β-galactosidase, using a combination of sequence annotation, domain identification and structural-homology modeling. Phylogenetic analysis classified the jute β-galactosidases into six subfamilies of glycoside hydrolase-35 family, which are closely related to homologs from Malvaceous species. We also report here the expression of a β-galactosidase of glycoside hydrolase-2 family that was earlier considered to be absent in higher plants. Comparative analysis of domain structure allowed us to propose a domain-centric evolution of the five classes of plant β-galactosidases. Further, we observed 1.8-12.2-fold higher expression of nine β-galactosidase isoforms in the mutant hypocotyl, which was characterized by slower growth, undulated shape and deformed cell wall. In vitro and in vivo β-galactosidase activities were also higher in the mutant hypocotyl. Phenotypic analysis supported a significant (P ≤ 0.01) positive correlation between enzyme activity and undulated hypocotyl. Taken together, our study identifies the complete set of β-galactosidases expressed in the jute hypocotyl, and provides compelling evidence that they may be involved in cell wall degradation during hypocotyl development.
Collapse
Affiliation(s)
- Pratik Satya
- ICAR-Central Research Institute for Jute and Allied Fibres, Nilganj, Barrackpore, Kolkata, 700 120, West Bengal, India.
| | - Avrajit Chakraborty
- ICAR-Central Research Institute for Jute and Allied Fibres, Nilganj, Barrackpore, Kolkata, 700 120, West Bengal, India
| | - Debabrata Sarkar
- ICAR-Central Research Institute for Jute and Allied Fibres, Nilganj, Barrackpore, Kolkata, 700 120, West Bengal, India
| | - Maya Karan
- ICAR-Central Research Institute for Jute and Allied Fibres, Nilganj, Barrackpore, Kolkata, 700 120, West Bengal, India
| | - Debajeet Das
- ICAR-Central Research Institute for Jute and Allied Fibres, Nilganj, Barrackpore, Kolkata, 700 120, West Bengal, India
| | - Nur Alam Mandal
- ICAR-Central Research Institute for Jute and Allied Fibres, Nilganj, Barrackpore, Kolkata, 700 120, West Bengal, India
| | - Dipnarayan Saha
- ICAR-Central Research Institute for Jute and Allied Fibres, Nilganj, Barrackpore, Kolkata, 700 120, West Bengal, India
| | - Subhojit Datta
- ICAR-Central Research Institute for Jute and Allied Fibres, Nilganj, Barrackpore, Kolkata, 700 120, West Bengal, India
| | - Soham Ray
- ICAR-Central Research Institute for Jute and Allied Fibres, Nilganj, Barrackpore, Kolkata, 700 120, West Bengal, India
| | - Chandan Sourav Kar
- ICAR-Central Research Institute for Jute and Allied Fibres, Nilganj, Barrackpore, Kolkata, 700 120, West Bengal, India
| | - Pran Gobinda Karmakar
- ICAR-Central Research Institute for Jute and Allied Fibres, Nilganj, Barrackpore, Kolkata, 700 120, West Bengal, India
| | - Jiban Mitra
- ICAR-Central Research Institute for Jute and Allied Fibres, Nilganj, Barrackpore, Kolkata, 700 120, West Bengal, India
| | - Nagendra Kumar Singh
- ICAR-National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, 110 012, India
| |
Collapse
|
5
|
Ilias IA, Airianah OB, Baharum SN, Goh HH. Transcriptomic data of Arabidopsis hypocotyl overexpressing a heterologous CsEXPA1 gene. Data Brief 2017; 15:320-323. [PMID: 29214193 PMCID: PMC5712050 DOI: 10.1016/j.dib.2017.09.050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/25/2017] [Accepted: 09/20/2017] [Indexed: 12/01/2022] Open
Abstract
Expansin increases cell wall extensibility to allow cell wall loosening and cell expansion even in the absence of hydrolytic activity. Previous studies showed that excessive overexpression of expansin gene resulted in defective growth (Goh et al., 2014; Rochange et al., 2001) [1,2] and altered cell wall chemical composition (Zenoni et al., 2011) [3]. However, the molecular mechanism on how the overexpression of non-enzymatic cell wall protein expansin can result in widespread effects on plant cell wall and organ growth remains unclear. We acquired transcriptomic data on previously reported transgenic Arabidopsis line (Goh et al., 2014) [1] to investigate the effects of overexpressing a heterologus cucumber expansin gene (CsEXPA1) on the global gene expression pattern during early and late phases of etiolated hypocotyl growth.
Collapse
Affiliation(s)
- Iqmal Asyraf Ilias
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Selangor Darul Ehsan, Malaysia
| | - Othman Babul Airianah
- Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Selangor Darul Ehsan, Malaysia
| | - Syarul Nataqain Baharum
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Selangor Darul Ehsan, Malaysia
| | - Hoe-Han Goh
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Selangor Darul Ehsan, Malaysia
| |
Collapse
|