1
|
Brown T, Mishra K, Elewa A, Iarovenko S, Subramanian E, Araus AJ, Petzold A, Fromm B, Friedländer MR, Rikk L, Suzuki M, Suzuki KIT, Hayashi T, Toyoda A, Oliveira CR, Osipova E, Leigh ND, Yun MH, Simon A. Chromosome-scale genome assembly reveals how repeat elements shape non-coding RNA landscapes active during newt limb regeneration. CELL GENOMICS 2025:100761. [PMID: 39874962 DOI: 10.1016/j.xgen.2025.100761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/04/2024] [Accepted: 01/03/2025] [Indexed: 01/30/2025]
Abstract
Newts have large genomes harboring many repeat elements. How these elements shape the genome and relate to newts' unique regeneration ability remains unknown. We present here the chromosome-scale assembly of the 20.3 Gb genome of the Iberian ribbed newt, Pleurodeles waltl, with a hitherto unprecedented contiguity and completeness among giant genomes. Utilizing this assembly, we demonstrate conserved synteny as well as genetic rearrangements, such as in the major histocompatibility complex locus. We provide evidence suggesting that intronic repeat elements drive newt-specific circular RNA (circRNA) biogenesis and show their regeneration-specific expression. We also present a comprehensive in-depth annotation and chromosomal mapping of microRNAs, highlighting genomic expansion profiles as well as a distinct regulatory pattern in the regenerating limb. These data reveal links between repeat elements, non-coding RNAs, and adult regeneration and provide key resources for addressing developmental, regenerative, and evolutionary principles.
Collapse
Affiliation(s)
- Thomas Brown
- DRESDEN-concept Genome Center (DcGC), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany; Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Ketan Mishra
- Department of Cell and Molecular Biology, Karolinska Institute, 171 65 Stockholm, Sweden
| | - Ahmed Elewa
- Department of Biology, Augsburg University, Minneapolis, MN 55454, USA
| | - Svetlana Iarovenko
- CRTD Center for Regenerative Therapies Dresden, Technische Universität Dresden, 01307 Dresden, Germany
| | - Elaiyaraja Subramanian
- Department of Cell and Molecular Biology, Karolinska Institute, 171 65 Stockholm, Sweden
| | - Alberto Joven Araus
- Department of Cell and Molecular Biology, Karolinska Institute, 171 65 Stockholm, Sweden
| | - Andreas Petzold
- DRESDEN-concept Genome Center (DcGC), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany
| | - Bastian Fromm
- The Arctic University Museum of Norway, UiT - The Arctic University of Norway, 9006 Tromsø, Norway
| | - Marc R Friedländer
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 114 18 Stockholm, Sweden
| | - Lennart Rikk
- Molecular Medicine and Gene Therapy, Wallenberg Centre for Molecular Medicine, Lund Stem Cell Center, Lund University, 221 84 Lund, Sweden
| | - Miyuki Suzuki
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Ken-Ichi T Suzuki
- Emerging Model Organisms Facility, Trans-scale Biology Center, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan
| | - Toshinori Hayashi
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8511, Japan; Amphibian Research Center, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8511, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Shizuoka 411-0801, Japan
| | - Catarina R Oliveira
- CRTD Center for Regenerative Therapies Dresden, Technische Universität Dresden, 01307 Dresden, Germany
| | - Ekaterina Osipova
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325 Frankfurt, Germany
| | - Nicholas D Leigh
- Molecular Medicine and Gene Therapy, Wallenberg Centre for Molecular Medicine, Lund Stem Cell Center, Lund University, 221 84 Lund, Sweden.
| | - Maximina H Yun
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany; CRTD Center for Regenerative Therapies Dresden, Technische Universität Dresden, 01307 Dresden, Germany; Physics of Life Excellence Cluster Dresden, 01307 Dresden, Germany.
| | - András Simon
- Department of Cell and Molecular Biology, Karolinska Institute, 171 65 Stockholm, Sweden.
| |
Collapse
|
2
|
Weigert N, Schweiger AL, Gross J, Matthes M, Corbacioglu S, Sommer G, Heise T. Detection of a 7SL RNA-derived small non-coding RNA using Molecular Beacons in vitro and in cells. Biol Chem 2023; 404:1123-1136. [PMID: 37632732 DOI: 10.1515/hsz-2023-0185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/11/2023] [Indexed: 08/28/2023]
Abstract
Small non-coding RNAs (sncRNA) are involved in many steps of the gene expression cascade and regulate processing and expression of mRNAs by the formation of ribonucleoprotein complexes (RNP) such as the RNA-induced silencing complex (RISC). By analyzing small RNA Seq data sets, we identified a sncRNA annotated as piR-hsa-1254, which is likely derived from the 3'-end of 7SL RNA2 (RN7SL2), herein referred to as snc7SL RNA. The 7SL RNA is an abundant long non-coding RNA polymerase III transcript and serves as structural component of the cytoplasmic signal recognition particle (SRP). To evaluate a potential functional role of snc7SL RNA, we aimed to define its cellular localization by live cell imaging. Therefore, a Molecular Beacon (MB)-based method was established to compare the subcellular localization of snc7SL RNA with its precursor 7SL RNA. We designed and characterized several MBs in vitro and tested those by live cell fluorescence microscopy. Using a multiplex approach, we show that 7SL RNA localizes mainly to the endoplasmic reticulum (ER), as expected for the SRP, whereas snc7SL RNA predominately localizes to the nucleus. This finding suggests a fundamentally different function of 7SL RNA and its derivate snc7SL RNA.
Collapse
Affiliation(s)
- Nina Weigert
- Department for Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, D-93053 Regensburg, Germany
| | - Anna-Lena Schweiger
- Department for Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, D-93053 Regensburg, Germany
| | - Jonas Gross
- Department for Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, D-93053 Regensburg, Germany
| | - Marie Matthes
- Department for Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, D-93053 Regensburg, Germany
| | - Selim Corbacioglu
- Department for Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, D-93053 Regensburg, Germany
| | - Gunhild Sommer
- Department for Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, D-93053 Regensburg, Germany
| | - Tilman Heise
- Department for Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, D-93053 Regensburg, Germany
| |
Collapse
|
3
|
Gussakovsky D, Booy EP, Brown MJF, McKenna SA. Nuclear SRP9/SRP14 heterodimer transcriptionally regulates 7SL and BC200 RNA expression. RNA (NEW YORK, N.Y.) 2023; 29:1185-1200. [PMID: 37156570 PMCID: PMC10351891 DOI: 10.1261/rna.079649.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/21/2023] [Indexed: 05/10/2023]
Abstract
The SRP9/SRP14 heterodimer is a central component of signal recognition particle (SRP) RNA (7SL) processing and Alu retrotransposition. In this study, we sought to establish the role of nuclear SRP9/SRP14 in the transcriptional regulation of 7SL and BC200 RNA. 7SL and BC200 RNA steady-state levels, rate of decay, and transcriptional activity were evaluated under SRP9/SRP14 knockdown conditions. Immunofluorescent imaging, and subcellular fractionation of MCF-7 cells, revealed a distinct nuclear localization for SRP9/SRP14. The relationship between this localization and transcriptional activity at 7SL and BC200 genes was also examined. These findings demonstrate a novel nuclear function of SRP9/SRP14 establishing that this heterodimer transcriptionally regulates 7SL and BC200 RNA expression. We describe a model in which SRP9/SRP14 cotranscriptionally regulate 7SL and BC200 RNA expression. Our model is also a plausible pathway for regulating Alu RNA transcription and is consistent with the hypothesized roles of SRP9/SRP14 transporting 7SL RNA into the nucleolus for posttranscriptional processing, and trafficking of Alu RNA for retrotransposition.
Collapse
Affiliation(s)
- Daniel Gussakovsky
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Evan P Booy
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Mira J F Brown
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Sean A McKenna
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| |
Collapse
|
4
|
Shao Y, Zhou L, Li F, Zhao L, Zhang BL, Shao F, Chen JW, Chen CY, Bi X, Zhuang XL, Zhu HL, Hu J, Sun Z, Li X, Wang D, Rivas-González I, Wang S, Wang YM, Chen W, Li G, Lu HM, Liu Y, Kuderna LFK, Farh KKH, Fan PF, Yu L, Li M, Liu ZJ, Tiley GP, Yoder AD, Roos C, Hayakawa T, Marques-Bonet T, Rogers J, Stenson PD, Cooper DN, Schierup MH, Yao YG, Zhang YP, Wang W, Qi XG, Zhang G, Wu DD. Phylogenomic analyses provide insights into primate evolution. Science 2023; 380:913-924. [PMID: 37262173 DOI: 10.1126/science.abn6919] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/26/2023] [Indexed: 06/03/2023]
Abstract
Comparative analysis of primate genomes within a phylogenetic context is essential for understanding the evolution of human genetic architecture and primate diversity. We present such a study of 50 primate species spanning 38 genera and 14 families, including 27 genomes first reported here, with many from previously less well represented groups, the New World monkeys and the Strepsirrhini. Our analyses reveal heterogeneous rates of genomic rearrangement and gene evolution across primate lineages. Thousands of genes under positive selection in different lineages play roles in the nervous, skeletal, and digestive systems and may have contributed to primate innovations and adaptations. Our study reveals that many key genomic innovations occurred in the Simiiformes ancestral node and may have had an impact on the adaptive radiation of the Simiiformes and human evolution.
Collapse
Affiliation(s)
- Yong Shao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Long Zhou
- Center of Evolutionary & Organismal Biology, and Women's Hospital at Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Fang Li
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark
- Institute of Animal Sex and Development, ZhejiangWanli University, Ningbo 315100, China
| | - Lan Zhao
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Bao-Lin Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Feng Shao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University School of Life Sciences, Chongqing 400715, China
| | | | - Chun-Yan Chen
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xupeng Bi
- Center of Evolutionary & Organismal Biology, and Women's Hospital at Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiao-Lin Zhuang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming 650204, China
| | | | - Jiang Hu
- Grandomics Biosciences, Beijing 102206, China
| | - Zongyi Sun
- Grandomics Biosciences, Beijing 102206, China
| | - Xin Li
- Grandomics Biosciences, Beijing 102206, China
| | - Depeng Wang
- Grandomics Biosciences, Beijing 102206, China
| | | | - Sheng Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Yun-Mei Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Wu Chen
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou 510070, China
| | - Gang Li
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Hui-Meng Lu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yang Liu
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Lukas F K Kuderna
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, 08003 Barcelona, Spain
- Illumina Artificial Intelligence Laboratory, Illumina Inc, San Diego, CA 92122, USA
| | - Kyle Kai-How Farh
- Illumina Artificial Intelligence Laboratory, Illumina Inc, San Diego, CA 92122, USA
| | - Peng-Fei Fan
- School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Li Yu
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Ming Li
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhi-Jin Liu
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - George P Tiley
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Anne D Yoder
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Christian Roos
- Gene Bank of Primates and Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | - Takashi Hayakawa
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
- Japan Monkey Centre, Inuyama, Aichi 484-0081, Japan
| | - Tomas Marques-Bonet
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, 08003 Barcelona, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), Passeig de Lluís Companys, 23, 08010 Barcelona, Spain
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Jeffrey Rogers
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Peter D Stenson
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | | | - Yong-Gang Yao
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming 650204, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650201, China
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650201, China
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China
| | - Wen Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650201, China
| | - Xiao-Guang Qi
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Guojie Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
- Center of Evolutionary & Organismal Biology, and Women's Hospital at Zhejiang University School of Medicine, Hangzhou 310058, China
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China
| | - Dong-Dong Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650201, China
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650204, China
| |
Collapse
|
5
|
Chen D, Cremona MA, Qi Z, Mitra RD, Chiaromonte F, Makova KD. Human L1 Transposition Dynamics Unraveled with Functional Data Analysis. Mol Biol Evol 2021; 37:3576-3600. [PMID: 32722770 DOI: 10.1093/molbev/msaa194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Long INterspersed Elements-1 (L1s) constitute >17% of the human genome and still actively transpose in it. Characterizing L1 transposition across the genome is critical for understanding genome evolution and somatic mutations. However, to date, L1 insertion and fixation patterns have not been studied comprehensively. To fill this gap, we investigated three genome-wide data sets of L1s that integrated at different evolutionary times: 17,037 de novo L1s (from an L1 insertion cell-line experiment conducted in-house), and 1,212 polymorphic and 1,205 human-specific L1s (from public databases). We characterized 49 genomic features-proxying chromatin accessibility, transcriptional activity, replication, recombination, etc.-in the ±50 kb flanks of these elements. These features were contrasted between the three L1 data sets and L1-free regions using state-of-the-art Functional Data Analysis statistical methods, which treat high-resolution data as mathematical functions. Our results indicate that de novo, polymorphic, and human-specific L1s are surrounded by different genomic features acting at specific locations and scales. This led to an integrative model of L1 transposition, according to which L1s preferentially integrate into open-chromatin regions enriched in non-B DNA motifs, whereas they are fixed in regions largely free of purifying selection-depleted of genes and noncoding most conserved elements. Intriguingly, our results suggest that L1 insertions modify local genomic landscape by extending CpG methylation and increasing mononucleotide microsatellite density. Altogether, our findings substantially facilitate understanding of L1 integration and fixation preferences, pave the way for uncovering their role in aging and cancer, and inform their use as mutagenesis tools in genetic studies.
Collapse
Affiliation(s)
- Di Chen
- Intercollege Graduate Degree Program in Genetics, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA
| | - Marzia A Cremona
- Department of Statistics, The Pennsylvania State University, University Park, PA.,Department of Operations and Decision Systems, Université Laval, Québec, Canada
| | - Zongtai Qi
- Department of Genetics and Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO
| | - Robi D Mitra
- Department of Genetics and Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO
| | - Francesca Chiaromonte
- Department of Statistics, The Pennsylvania State University, University Park, PA.,EMbeDS, Sant'Anna School of Advanced Studies, Pisa, Italy.,The Huck Institutes of the Life Sciences, Center for Medical Genomics, The Pennsylvania State University, University Park, PA
| | - Kateryna D Makova
- The Huck Institutes of the Life Sciences, Center for Medical Genomics, The Pennsylvania State University, University Park, PA.,Department of Biology, The Pennsylvania State University, University Park, PA
| |
Collapse
|
6
|
Vogan AA, Ament-Velásquez SL, Bastiaans E, Wallerman O, Saupe SJ, Suh A, Johannesson H. The Enterprise, a massive transposon carrying Spok meiotic drive genes. Genome Res 2021; 31:789-798. [PMID: 33875482 PMCID: PMC8092012 DOI: 10.1101/gr.267609.120] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 03/05/2021] [Indexed: 12/19/2022]
Abstract
The genomes of eukaryotes are full of parasitic sequences known as transposable elements (TEs). Here, we report the discovery of a putative giant tyrosine-recombinase-mobilized DNA transposon, Enterprise, from the model fungus Podospora anserina Previously, we described a large genomic feature called the Spok block which is notable due to the presence of meiotic drive genes of the Spok gene family. The Spok block ranges from 110 kb to 247 kb and can be present in at least four different genomic locations within P. anserina, despite what is an otherwise highly conserved genome structure. We propose that the reason for its varying positions is that the Spok block is not only capable of meiotic drive but is also capable of transposition. More precisely, the Spok block represents a unique case where the Enterprise has captured the Spoks, thereby parasitizing a resident genomic parasite to become a genomic hyperparasite. Furthermore, we demonstrate that Enterprise (without the Spoks) is found in other fungal lineages, where it can be as large as 70 kb. Lastly, we provide experimental evidence that the Spok block is deleterious, with detrimental effects on spore production in strains which carry it. This union of meiotic drivers and a transposon has created a selfish element of impressive size in Podospora, challenging our perception of how TEs influence genome evolution and broadening the horizons in terms of what the upper limit of transposition may be.
Collapse
Affiliation(s)
- Aaron A Vogan
- Systematic Biology, Department of Organismal Biology, Uppsala University, 752 36 Uppsala, Sweden
| | - S Lorena Ament-Velásquez
- Systematic Biology, Department of Organismal Biology, Uppsala University, 752 36 Uppsala, Sweden
| | - Eric Bastiaans
- Systematic Biology, Department of Organismal Biology, Uppsala University, 752 36 Uppsala, Sweden
- Laboratory of Genetics, Wageningen University, 6703 BD, Wageningen, The Netherlands
| | - Ola Wallerman
- Department of Medical Biochemistry and Microbiology, Comparative Genetics and Functional Genomics; Uppsala University, 752 37 Uppsala, Sweden
| | - Sven J Saupe
- IBGC, UMR 5095, CNRS Université de Bordeaux, 33077 Bordeaux Cedex, France
| | - Alexander Suh
- Systematic Biology, Department of Organismal Biology, Uppsala University, 752 36 Uppsala, Sweden
| | - Hanna Johannesson
- Systematic Biology, Department of Organismal Biology, Uppsala University, 752 36 Uppsala, Sweden
| |
Collapse
|
7
|
Galindo LJ, Torruella G, Moreira D, Timpano H, Paskerova G, Smirnov A, Nassonova E, López-García P. Evolutionary Genomics of Metchnikovella incurvata (Metchnikovellidae): An Early Branching Microsporidium. Genome Biol Evol 2018; 10:2736-2748. [PMID: 30239727 PMCID: PMC6190962 DOI: 10.1093/gbe/evy205] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2018] [Indexed: 01/30/2023] Open
Abstract
Metchnikovellids are highly specialized hyperparasites, which infect and reproduce inside gregarines (Apicomplexa) inhabiting marine invertebrates. Their phylogenetic affiliation was under constant discussion until recently, when analysis of the first near-complete metchnikovellid genome, that of Amphiamblys sp., placed it in a basal position with respect to most Microsporidia. Microsporidia are a highly diversified lineage of extremely reduced parasites related to Rozellida (Rozellosporidia = Rozellomycota = Cryptomycota) within the Holomycota clade of Opisthokonta. By sequencing DNA from a single-isolated infected gregarine cell we obtained an almost complete genome of a second metchnikovellid species, and the first one of a taxonomically described and well-documented species, Metchnikovella incurvata. Our phylogenomic analyses show that, despite being considerably divergent from each other, M. incurvata forms a monophyletic group with Amphiamplys sp., and confirm that metchnikovellids are one of the deep branches of Microsporidia. Comparative genomic analysis demonstrates that, like most Microsporidia, metchnikovellids lack mitochondrial genes involved in energy transduction and are thus incapable of synthesizing their own ATP via mitochondrial oxidative phosphorylation. They also lack the horizontally acquired ATP transporters widespread in most Microsporidia. We hypothesize that a family of mitochondrial carrier proteins evolved to transport ATP from the host into the metchnikovellid cell. We observe the progressive reduction of genes involved in DNA repair pathways along the evolutionary path of Microsporidia, which might explain, at least partly, the extremely high evolutionary rate of the most derived species. Our data also suggest that genome reduction and acquisition of novel genes co-occurred during the adaptation of Microsporidia to their hosts.
Collapse
Affiliation(s)
- Luis Javier Galindo
- Ecologie Systématique Evolution, CNRS, Université Paris-Sud, AgroParisTech, Université Paris-Saclay, Orsay, France
| | - Guifré Torruella
- Ecologie Systématique Evolution, CNRS, Université Paris-Sud, AgroParisTech, Université Paris-Saclay, Orsay, France
| | - David Moreira
- Ecologie Systématique Evolution, CNRS, Université Paris-Sud, AgroParisTech, Université Paris-Saclay, Orsay, France
| | - Hélène Timpano
- Ecologie Systématique Evolution, CNRS, Université Paris-Sud, AgroParisTech, Université Paris-Saclay, Orsay, France
| | - Gita Paskerova
- Department of Invertebrate Zoology, Faculty of Biology, St Petersburg State University, Russia
| | - Alexey Smirnov
- Department of Invertebrate Zoology, Faculty of Biology, St Petersburg State University, Russia
| | - Elena Nassonova
- Department of Invertebrate Zoology, Faculty of Biology, St Petersburg State University, Russia.,Laboratory of Cytology of Unicellular Organisms, Institute of Cytology Russian Academy of Sciences, St. Petersburg, Russia
| | - Purificación López-García
- Ecologie Systématique Evolution, CNRS, Université Paris-Sud, AgroParisTech, Université Paris-Saclay, Orsay, France
| |
Collapse
|
8
|
Differential chromosomal organization between Saguinus midas and Saguinus bicolor with accumulation of differences the repetitive sequence DNA. Genetica 2017. [PMID: 28634866 DOI: 10.1007/s10709-017-9971-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Saguinus is the largest and most complex genus of the subfamily Callitrichinae, with 23 species distributed from the south of Central America to the north of South America with Saguinus midas having the largest geographical distribution while Saguinus bicolor has a very restricted one, affected by the population expansion in the state of Amazonas. Considering the phylogenetic proximity of the two species along with evidence on the existence of hybrids between them, as well as cytogenetic studies on Saguinus describing a conserved karyotypic macrostructure, we carried out a physical mapping of DNA repeated sequences in the mitotic chromosome of both species, since these sequences are less susceptible to evolutionary pressure and possibly perform an important function in speciation. Both species presented 2n = 46 chromosomes; in S. midas, chromosome Y is the smallest. Multiple ribosomal sites occur in both species, but chromosome pairs three and four may be regarded as markers that differ the species when subjected to G banding and distribution of retroelement LINE 1, suggesting that it may be cytogenetic marker in which it can contribute to identification of first generation hybrids in contact zone. Saguinus bicolor also presented differences in the LINE 1 distribution pattern for sexual chromosome X in individuals from different urban fragments, probably due to geographical isolation. In this context, cytogenetic analyses reveal a differential genomic organization pattern between species S. midas and S. bicolor, in addition to indicating that individuals from different urban fragments have been accumulating differences because of the isolation between them.
Collapse
|
9
|
Yu S, Lemos B. A Portrait of Ribosomal DNA Contacts with Hi-C Reveals 5S and 45S rDNA Anchoring Points in the Folded Human Genome. Genome Biol Evol 2016; 8:3545-3558. [PMID: 27797956 PMCID: PMC5203791 DOI: 10.1093/gbe/evw257] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Ribosomal RNAs (rRNAs) account for >60% of all RNAs in eukaryotic cells and are encoded in the ribosomal DNA (rDNA) arrays. The rRNAs are produced from two sets of loci: the 5S rDNA array resides exclusively on human chromosome 1, whereas the 45S rDNA array resides on the short arm of five human acrocentric chromosomes. The 45S rDNA gives origin to the nucleolus, the nuclear organelle that is the site of ribosome biogenesis. Intriguingly, 5S and 45S rDNA arrays exhibit correlated copy number variation in lymphoblastoid cells (LCLs). Here we examined the genomic architecture and repeat content of the 5S and 45S rDNA arrays in multiple human genome assemblies (including PacBio MHAP assembly) and ascertained contacts between the rDNA arrays and the rest of the genome using Hi-C datasets from two human cell lines (erythroleukemia K562 and lymphoblastoid cells). Our analyses revealed that 5S and 45S arrays each have thousands of contacts in the folded genome, with rDNA-associated regions and genes dispersed across all chromosomes. The rDNA contact map displayed conserved and disparate features between two cell lines, and pointed to specific chromosomes, genomic regions, and genes with evidence of spatial proximity to the rDNA arrays; the data also showed a lack of direct physical interaction between the 5S and 45S rDNA arrays. Finally, the analysis identified an intriguing organization in the 5S array with Alu and 5S elements adjacent to one another and organized in opposite orientation along the array. Portraits of genome folding centered on the ribosomal DNA array could help understand the emergence of concerted variation, the control of 5S and 45S expression, as well as provide insights into an organelle that contributes to the spatial localization of human chromosomes during interphase.
Collapse
Affiliation(s)
- Shoukai Yu
- Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Bernardo Lemos
- Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| |
Collapse
|
10
|
Specific Alu elements involved in a significant percentage of copy number variations of the STK11 gene in patients with Peutz-Jeghers syndrome. Fam Cancer 2016; 14:455-61. [PMID: 25841653 PMCID: PMC4559094 DOI: 10.1007/s10689-015-9800-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Peutz–Jeghers syndrome (PJS) is a rare hereditary syndrome characterized by the occurrence of hamartomatous polyps in the gastrointestinal tract, mucocutaneous pigmentation and increased risk of cancer in multiple internal organs. PJS is preconditioned by the manifestation of mutations in the STK11 gene. The majority of detected STK11 changes are small scale mutations, however recent studies showed the significant contribution of medium-sized changes commonly known as copy number variations (CNVs). Here we present a novel 7001 bps deletion of STK11 gene fragment, in which we identified the presence of breakpoints (BPs) within the Alu elements. Comparative meta-analysis with the 80 other CNV cases from 12 publications describing STK11 mutations in patients with PJS revealed the participation of specific Alu elements in all deletions of exons 2–3 so far described. Moreover, we have shown their involvement in the two other CNVs, deletion of exon 2 and deletion of exon 1–3 respectively. Deletion of exons 2–3 of the STK11 gene may prove to be the most recurrent large rearrangement causing PJS. In addition, the sequences present in its BPs may be involved in a formation of a significant percentage of the remaining gene CNVs. This gives a new insight into the conditioning of this rare disease and enables improvements in PJS genetic diagnostics.
Collapse
|
11
|
Liu Q, Hesson LB, Nunez AC, Packham D, Williams R, Ward RL, Sloane MA. A cryptic paracentric inversion of MSH2 exons 2-6 causes Lynch syndrome. Carcinogenesis 2015; 37:10-17. [PMID: 26498247 DOI: 10.1093/carcin/bgv154] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 10/19/2015] [Indexed: 12/28/2022] Open
Abstract
Lynch syndrome is an autosomal dominant disorder that predisposes carriers of DNA mismatch repair (MMR) gene mutations to early-onset cancer. Germline testing screens exons and splice sites for mutations, but does not examine introns or RNA transcripts for alterations. Pathogenic mutations have not been detected in ~30% of suspected Lynch syndrome cases with standard screening practices. We present a 38-year-old male with a clinicopathological and family history consistent with Lynch syndrome, including loss of MSH2 expression in his tumor. Germline testing revealed normal MSH2 coding sequence, splice sites and exon copy number, however, cDNA sequencing identified an aberrant MSH2 transcript lacking exons 2-6. An inversion PCR on germline DNA identified an ~18kb unbalanced, paracentric inversion within MSH2, with breakpoints in a long terminal repeat in intron 1 and an Alu repeat in intron 6. The 3' end of the inversion had a 1.2 kb deletion and an 8 bp insertion at the junction with intron 6. Screening of 55 additional Australian patients presenting with MSH2-deficient tumors who were negative in germline genetic tests for MSH2 mutations identified another inversion-positive patient. We propose an Alu-mediated recombination model to explain the origin of the inversion. Our study illustrates the potential value of cDNA screening to identify patients with cryptic MMR gene rearrangements, clarifies why standard testing may not detect some pathogenic alterations, and provides a genetic test for screening individuals with suspected Lynch syndrome that present with unexplained MSH2-deficient tumors.
Collapse
Affiliation(s)
- Qing Liu
- Adult Cancer Program , Lowy Cancer Research Centre and Prince of Wales Clinical School, UNSW Australia , Sydney New South Wales 2052 , Australia
| | - Luke B Hesson
- Adult Cancer Program , Lowy Cancer Research Centre and Prince of Wales Clinical School, UNSW Australia , Sydney New South Wales 2052 , Australia
| | - Andrea C Nunez
- Adult Cancer Program , Lowy Cancer Research Centre and Prince of Wales Clinical School, UNSW Australia , Sydney New South Wales 2052 , Australia
| | - Deborah Packham
- Adult Cancer Program , Lowy Cancer Research Centre and Prince of Wales Clinical School, UNSW Australia , Sydney New South Wales 2052 , Australia
| | - Rachel Williams
- Hereditary Cancer Clinic , Prince of Wales Hospital , Randwick, New South Wales 2031 , Australia and
| | - Robyn L Ward
- Adult Cancer Program, Lowy Cancer Research Centre and Prince of Wales Clinical School, UNSW Australia, Sydney New South Wales 2052, Australia.,Level 3 Brian Wilson Chancellery, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Mathew A Sloane
- Adult Cancer Program , Lowy Cancer Research Centre and Prince of Wales Clinical School, UNSW Australia , Sydney New South Wales 2052 , Australia
| |
Collapse
|
12
|
Kundu S, Ghosh SK. Trend of different molecular markers in the last decades for studying human migrations. Gene 2014; 556:81-90. [PMID: 25510397 DOI: 10.1016/j.gene.2014.12.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Revised: 12/07/2014] [Accepted: 12/11/2014] [Indexed: 12/15/2022]
Abstract
Anatomically modern humans are known to have widely migrated throughout history. Different scientific evidences suggest that the entire human population descended from just several thousand African migrants. About 85,000 years ago, the first wave of human migration was out of Africa, that followed the coasts through the Middle East, into Southern Asia via Sri Lanka, and in due course around Indonesia and into Australia. Another wave of migration between 40,000 and 12,000 years ago brought humans northward into Europe. However, the frozen north limited human expansion in Europe, and created a land bridge, "Bering land bridge", connecting Asia with North America about 25,000 years ago. Although fossil data give the most direct information about our past, it has certain anomalies. So, molecular archeologists are now using different molecular markers to trace the "most recent common ancestor" and also the migration pattern of modern humans. In this study, we have studied the trend of molecular markers and also the methodologies implemented in the last decades (2003-2014). From our observation, we can say that D-loop region of mtDNA and Y chromosome based markers are predominant. Nevertheless, mtDNA, especially the D-loop region, has some unique features, which makes it a more effective marker for tracing prehistoric footprints of modern human populations. Although, natural selection should also be taken into account in studying mtDNA based human migration. As per technology is concerned, Sanger sequencing is the major technique that is being used in almost all studies. But, the emergence of different cost-effective-and-easy-to-handle NGS platforms has increased its popularity over Sanger sequencing in studying human migration.
Collapse
Affiliation(s)
- Sharbadeb Kundu
- Molecular Medicine Laboratory, Department of Biotechnology, Assam University, Silchar, Pin-788011 Assam, India
| | - Sankar Kumar Ghosh
- Molecular Medicine Laboratory, Department of Biotechnology, Assam University, Silchar, Pin-788011 Assam, India.
| |
Collapse
|
13
|
Borchert GM, Holton NW, Williams JD, Hernan WL, Bishop IP, Dembosky JA, Elste JE, Gregoire NS, Kim JA, Koehler WW, Lengerich JC, Medema AA, Nguyen MA, Ower GD, Rarick MA, Strong BN, Tardi NJ, Tasker NM, Wozniak DJ, Gatto C, Larson ED. Comprehensive analysis of microRNA genomic loci identifies pervasive repetitive-element origins. Mob Genet Elements 2014; 1:8-17. [PMID: 22016841 DOI: 10.4161/mge.1.1.15766] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 04/06/2011] [Accepted: 04/06/2011] [Indexed: 11/19/2022] Open
Abstract
MicroRNAs (miRs) are small non-coding RNAs that generally function as negative regulators of target messenger RNAs (mRNAs) at the posttranscriptional level. MiRs bind to the 3'UTR of target mRNAs through complementary base pairing, resulting in target mRNA cleavage or translation repression. To date, over 15,000 distinct miRs have been identified in organisms ranging from viruses to man and interest in miR research continues to intensify. Of note, the most enlightening aspect of miR function-the mRNAs they target-continues to be elusive. Descriptions of the molecular origins of independent miR molecules currently support the hypothesis that miR hairpin generation is based on the adjacent insertion of two related transposable elements (TEs) at one genomic locus. Thus transcription across such TE interfaces establishes many, if not the majority of functional miRs. The implications of these findings are substantial for understanding how TEs confer increased genomic fitness, describing miR transcriptional regulations and making accurate miR target predictions. In this work, we have performed a comprehensive analysis of the genomic events responsible for the formation of all currently annotated miR loci. We find that the connection between miRs and transposable elements is more significant than previously appreciated, and more broadly, supports an important role for repetitive elements in miR origin, expression and regulatory network formation. Further, we demonstrate the utility of these findings in miR target prediction. Our results greatly expand the existing repertoire of defined miR origins, detailing the formation of 2,392 of 15,176 currently recognized miR genomic loci and supporting a mobile genetic element model for the genomic establishment of functional miRs.
Collapse
Affiliation(s)
- Glen M Borchert
- School of Biological Sciences; Illinois State University; Normal, IL USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Kalendar R, Schulman AH. Transposon-based tagging: IRAP, REMAP, and iPBS. Methods Mol Biol 2014; 1115:233-55. [PMID: 24415478 DOI: 10.1007/978-1-62703-767-9_12] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Retrotransposons are a major component of virtually all eukaryotic genomes, which makes them useful as molecular markers. Various molecular marker systems have been developed that exploit the ubiquitous nature of these genetic elements and their property of stable integration into dispersed chromosomal loci that are polymorphic within species. To detect polymorphisms for retrotransposon insertions, marker systems generally rely on PCR amplification between the retrotransposon termini and some component of flanking genomic DNA. The main methods of IRAP, REMAP, RBIP, and SSAP all detect the polymorphic sites at which the retrotransposon DNA is integrated into the genome. Marker systems exploiting these methods can be easily developed and are inexpensively deployed in the absence of extensive genome sequence data. Here, we describe protocols for the IRAP, REMAP, and iPBS techniques, including methods for PCR amplification with a single primer or with two primers, and agarose gel electrophoresis of the product using optimal electrophoresis buffers; we also describe iPBS techniques for the rapid isolation of retrotransposon termini and full-length elements.
Collapse
Affiliation(s)
- Ruslan Kalendar
- MTT/BI Plant Genomics, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | | |
Collapse
|
15
|
Matylla-Kulinska K, Tafer H, Weiss A, Schroeder R. Functional repeat-derived RNAs often originate from retrotransposon-propagated ncRNAs. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 5:591-600. [PMID: 25045147 PMCID: PMC4233971 DOI: 10.1002/wrna.1243] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 04/15/2014] [Accepted: 04/22/2014] [Indexed: 12/19/2022]
Abstract
The human genome is scattered with repetitive sequences, and the ENCODE project revealed that 60–70% of the genomic DNA is transcribed into RNA. As a consequence, the human transcriptome contains a large portion of repeat-derived RNAs (repRNAs). Here, we present a hypothesis for the evolution of novel functional repeat-derived RNAs from non-coding RNAs (ncRNAs) by retrotransposition. Upon amplification, the ncRNAs can diversify in sequence and subsequently evolve new activities, which can result in novel functions. Non-coding transcripts derived from highly repetitive regions can therefore serve as a reservoir for the evolution of novel functional RNAs. We base our hypothetical model on observations reported for short interspersed nuclear elements derived from 7SL RNA and tRNAs, α satellites derived from snoRNAs and SL RNAs derived from U1 small nuclear RNA. Furthermore, we present novel putative human repeat-derived ncRNAs obtained by the comparison of the Dfam and Rfam databases, as well as several examples in other species. We hypothesize that novel functional ncRNAs can derive also from other repetitive regions and propose Genomic SELEX as a tool for their identification.
Collapse
Affiliation(s)
- Katarzyna Matylla-Kulinska
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | | | | | | |
Collapse
|
16
|
Ebert G, Steininger A, Weißmann R, Boldt V, Lind-Thomsen A, Grune J, Badelt S, Heßler M, Peiser M, Hitzler M, Jensen LR, Müller I, Hu H, Arndt PF, Kuss AW, Tebel K, Ullmann R. Distribution of segmental duplications in the context of higher order chromatin organisation of human chromosome 7. BMC Genomics 2014; 15:537. [PMID: 24973960 PMCID: PMC4092221 DOI: 10.1186/1471-2164-15-537] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 06/17/2014] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Segmental duplications (SDs) are not evenly distributed along chromosomes. The reasons for this biased susceptibility to SD insertion are poorly understood. Accumulation of SDs is associated with increased genomic instability, which can lead to structural variants and genomic disorders such as the Williams-Beuren syndrome. Despite these adverse effects, SDs have become fixed in the human genome. Focusing on chromosome 7, which is particularly rich in interstitial SDs, we have investigated the distribution of SDs in the context of evolution and the three dimensional organisation of the chromosome in order to gain insights into the mutual relationship of SDs and chromatin topology. RESULTS Intrachromosomal SDs preferentially accumulate in those segments of chromosome 7 that are homologous to marmoset chromosome 2. Although this formerly compact segment has been re-distributed to three different sites during primate evolution, we can show by means of public data on long distance chromatin interactions that these three intervals, and consequently the paralogous SDs mapping to them, have retained their spatial proximity in the nucleus. Focusing on SD clusters implicated in the aetiology of the Williams-Beuren syndrome locus we demonstrate by cross-species comparison that these SDs have inserted at the borders of a topological domain and that they flank regions with distinct DNA conformation. CONCLUSIONS Our study suggests a link of nuclear architecture and the propagation of SDs across chromosome 7, either by promoting regional SD insertion or by contributing to the establishment of higher order chromatin organisation themselves. The latter could compensate for the high risk of structural rearrangements and thus may have contributed to their evolutionary fixation in the human genome.
Collapse
Affiliation(s)
- Grit Ebert
- />Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
- />Department of Biology, Chemistry and Pharmacy, Free University Berlin, 14195 Berlin, Germany
| | - Anne Steininger
- />Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
- />Department of Biology, Chemistry and Pharmacy, Free University Berlin, 14195 Berlin, Germany
| | - Robert Weißmann
- />Department of Human Genetics, University Medicine Greifswald, and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Fleischmannstraße 42-44, 17475 Greifswald, Germany
| | - Vivien Boldt
- />Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
- />Department of Biology, Chemistry and Pharmacy, Free University Berlin, 14195 Berlin, Germany
| | - Allan Lind-Thomsen
- />Wilhelm Johannsen Centre for Functional Genome Research, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
| | - Jana Grune
- />Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
| | - Stefan Badelt
- />Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
- />Institute for Theoretical Chemistry, University of Vienna, Waehringer Straße 17, A-1090 Vienna, Austria
| | - Melanie Heßler
- />Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
| | - Matthias Peiser
- />Unit Experimental Research, Department of Product Safety, Federal Institute for Bundeswehr Institute of Radiobiology affiliated, the University of Ulm, Neuherbergstraße 11, 80937 Munich, Germany
| | - Manuel Hitzler
- />Unit Experimental Research, Department of Product Safety, Federal Institute for Bundeswehr Institute of Radiobiology affiliated, the University of Ulm, Neuherbergstraße 11, 80937 Munich, Germany
| | - Lars R Jensen
- />Department of Human Genetics, University Medicine Greifswald, and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Fleischmannstraße 42-44, 17475 Greifswald, Germany
| | - Ines Müller
- />Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
| | - Hao Hu
- />Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
| | - Peter F Arndt
- />Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
| | - Andreas W Kuss
- />Department of Human Genetics, University Medicine Greifswald, and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Fleischmannstraße 42-44, 17475 Greifswald, Germany
| | - Katrin Tebel
- />Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
| | - Reinhard Ullmann
- />Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
| |
Collapse
|
17
|
Walters-Conte KB, Johnson DLE, Johnson WE, O’Brien SJ, Pecon-Slattery J. The dynamic proliferation of CanSINEs mirrors the complex evolution of Feliforms. BMC Evol Biol 2014; 14:137. [PMID: 24947429 PMCID: PMC4084570 DOI: 10.1186/1471-2148-14-137] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 06/11/2014] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Repetitive short interspersed elements (SINEs) are retrotransposons ubiquitous in mammalian genomes and are highly informative markers to identify species and phylogenetic associations. Of these, SINEs unique to the order Carnivora (CanSINEs) yield novel insights on genome evolution in domestic dogs and cats, but less is known about their role in related carnivores. In particular, genome-wide assessment of CanSINE evolution has yet to be completed across the Feliformia (cat-like) suborder of Carnivora. Within Feliformia, the cat family Felidae is composed of 37 species and numerous subspecies organized into eight monophyletic lineages that likely arose 10 million years ago. Using the Felidae family as a reference phylogeny, along with representative taxa from other families of Feliformia, the origin, proliferation and evolution of CanSINEs within the suborder were assessed. RESULTS We identified 93 novel intergenic CanSINE loci in Feliformia. Sequence analyses separated Feliform CanSINEs into two subfamilies, each characterized by distinct RNA polymerase binding motifs and phylogenetic associations. Subfamily I CanSINEs arose early within Feliformia but are no longer under active proliferation. Subfamily II loci are more recent, exclusive to Felidae and show evidence for adaptation to extant RNA polymerase activity. Further, presence/absence distributions of CanSINE loci are largely congruent with taxonomic expectations within Feliformia and the less resolved nodes in the Felidae reference phylogeny present equally ambiguous CanSINE data. SINEs are thought to be nearly impervious to excision from the genome. However, we observed a nearly complete excision of a CanSINEs locus in puma (Puma concolor). In addition, we found that CanSINE proliferation in Felidae frequently targeted existing CanSINE loci for insertion sites, resulting in tandem arrays. CONCLUSIONS We demonstrate the existence of at least two SINE families within the Feliformia suborder, one of which is actively involved in insertional mutagenesis. We find SINEs are powerful markers of speciation and conclude that the few inconsistencies with expected patterns of speciation likely represent incomplete lineage sorting, species hybridization and SINE-mediated genome rearrangement.
Collapse
Affiliation(s)
- Kathryn B Walters-Conte
- Department of Biology, American University, 101 Hurst Hall 4440 Massachusetts Ave, Washington, DC 20016, USA
| | - Diana LE Johnson
- Department of Biological Sciences, The George Washington University, 2036 G St, Washington, DC 20009, USA
| | - Warren E Johnson
- Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA 22630, USA
| | - Stephen J O’Brien
- Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, 41 A, Sredniy Avenue St., Petersburg 199034, Russia
| | - Jill Pecon-Slattery
- Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA 22630, USA
| |
Collapse
|
18
|
Kooffreh ME, Anumudu CI, Kumar PL. Insertion/deletion polymorphism of the angiotensin-converting enzyme gene and the risk of hypertension among residents of two cities, South-South Nigeria. Adv Biomed Res 2014; 3:118. [PMID: 24949289 PMCID: PMC4063107 DOI: 10.4103/2277-9175.133184] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 12/04/2013] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Hypertension is a public health challenge due to its high prevalence, and is a major risk factor for cardiovascular diseases. This study was designed to determine the frequency of the I/D polymorphism of the angiotensin-converting enzyme gene and its association with hypertension in a sample population of Calabar and Uyo, South-South Nigeria. MATERIALS AND METHODS A population-based case control design consisting of total of 1224 participants, 612 each of patients and controls, were randomly recruited from hypertension clinics and the general population. The I/D polymorphism was investigated using polymerase chain reaction. Multiple regression and odds ratio (OR) was applied to test whether the ID genotypes were predictors of hypertension. RESULTS The I/D genotype frequencies were 73(12%), 262(43%) and 277(45%); 74(12%), 303(50%) and 235(38%) for the II, ID, DD genotype in patient and control groups, respectively. A higher frequency of the ID genotype was observed in controls of which 208(61%) were females. By multiple regression analysis, age was a predictor for SBP in patients, r = 0.596, and DBP in controls, r = 0.555. Gender, Body mass index, I/D genotypes were not significant predictors for hypertension but the I/D polymorpism was associated with an increased risk for hypertension with an OR of 1.15 95%CI (0.924-1.456). CONCLUSION The I/D polymorphism of the angiotensin-converting enzyme gene was a risk factor for hypertension in the sample population of Calabar and Uyo. This research will form baseline information for subsequent molecular studies in this population.
Collapse
Affiliation(s)
- Mary Esien Kooffreh
- Department of Genetics and Biotechnology, University of Calabar, Calabar, Cross River, Nigeria
| | | | - P Lava Kumar
- Virology Unit, International Institute of Tropical Agriculture, Ibadan, Oyo, Nigeria
| |
Collapse
|
19
|
Roberts JT, Cardin SE, Borchert GM. Burgeoning evidence indicates that microRNAs were initially formed from transposable element sequences. Mob Genet Elements 2014; 4:e29255. [PMID: 25054081 PMCID: PMC4091103 DOI: 10.4161/mge.29255] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 05/15/2014] [Accepted: 05/16/2014] [Indexed: 01/17/2023] Open
Abstract
MicroRNAs (miRNAs) constitute a recently discovered class of noncoding RNAs that play key roles in the regulation of gene expression. Despite being only ~20 nucleotides in length, these highly versatile molecules have been shown to play pivotal roles in development, basic cellular metabolism, apoptosis, and disease. While over 24,000 miRNAs have been characterized since they were first isolated in mammals in 2001, the functions of the majority of these miRNAs remain largely undescribed. That said, many now suggest that characterization of the relationships between miRNAs and transposable elements (TEs) can help elucidate miRNA functionality. Strikingly, over 20 publications have now reported the initial formation of thousands of miRNA loci from TE sequences. In this review we chronicle the findings of these reports, discuss the evolution of the field along with future directions, and examine how this information can be used to ascertain insights into miRNA transcriptional regulation and how it can be exploited to facilitate miRNA target prediction.
Collapse
Affiliation(s)
- Justin T Roberts
- Department of Biological Sciences; University of South Alabama; Mobile, AL USA
| | - Sara E Cardin
- Department of Biological Sciences; University of South Alabama; Mobile, AL USA
| | - Glen M Borchert
- Department of Biological Sciences; University of South Alabama; Mobile, AL USA
| |
Collapse
|
20
|
Guffanti G, Gaudi S, Fallon JH, Sobell J, Potkin SG, Pato C, Macciardi F. Transposable elements and psychiatric disorders. Am J Med Genet B Neuropsychiatr Genet 2014; 165B:201-16. [PMID: 24585726 DOI: 10.1002/ajmg.b.32225] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 01/21/2014] [Indexed: 12/15/2022]
Abstract
Transposable Elements (TEs) or transposons are low-complexity elements (e.g., LINEs, SINEs, SVAs, and HERVs) that make up to two-thirds of the human genome. There is mounting evidence that TEs play an essential role in genomic architecture and regulation related to both normal function and disease states. Recently, the identification of active TEs in several different human brain regions suggests that TEs play a role in normal brain development and adult physiology and quite possibly in psychiatric disorders. TEs have been implicated in hemophilia, neurofibromatosis, and cancer. With the advent of next-generation whole-genome sequencing approaches, our understanding of the relationship between TEs and psychiatric disorders will greatly improve. We will review the biology of TEs and early evidence for TE involvement in psychiatric disorders.
Collapse
Affiliation(s)
- Guia Guffanti
- Department of Psychiatry, Columbia University, New York, New York
| | | | | | | | | | | | | |
Collapse
|
21
|
Liu YH, Zhang M, Wu C, Huang JJ, Zhang HB. DNA is structured as a linear "jigsaw puzzle" in the genomes of Arabidopsis, rice, and budding yeast. Genome 2014; 57:9-19. [PMID: 24564211 DOI: 10.1139/gen-2013-0099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Knowledge of how a genome is structured and organized from its constituent elements is crucial to understanding its biology and evolution. Here, we report the genome structuring and organization pattern as revealed by systems analysis of the sequences of three model species, Arabidopsis, rice and yeast, at the whole-genome and chromosome levels. We found that all fundamental function elements (FFE) constituting the genomes, including genes (GEN), DNA transposable elements (DTE), retrotransposable elements (RTE), simple sequence repeats (SSR), and (or) low complexity repeats (LCR), are structured in a nonrandom and correlative manner, thus leading to a hypothesis that the DNA of the species is structured as a linear "jigsaw puzzle". Furthermore, we showed that different FFE differ in their importance in the formation and evolution of the DNA jigsaw puzzle structure between species. DTE and RTE play more important roles than GEN, LCR, and SSR in Arabidopsis, whereas GEN and RTE play more important roles than LCR, SSR, and DTE in rice. The genes having multiple recognized functions play more important roles than those having single functions. These results provide useful knowledge necessary for better understanding genome biology and evolution of the species and for effective molecular breeding of rice.
Collapse
Affiliation(s)
- Yun-Hua Liu
- a Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas 77843-2474, USA
| | | | | | | | | |
Collapse
|
22
|
Tutlewska K, Lubinski J, Kurzawski G. Germline deletions in the EPCAM gene as a cause of Lynch syndrome - literature review. Hered Cancer Clin Pract 2013; 11:9. [PMID: 23938213 PMCID: PMC3765447 DOI: 10.1186/1897-4287-11-9] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 08/09/2013] [Indexed: 01/11/2023] Open
Abstract
Lynch syndrome (clinically referred to as HNPCC – Hereditary Non-Polyposis Colorectal Cancer) is a frequent, autosomal, dominantly-inherited cancer predisposition syndrome caused by various germline alterations that affect DNA mismatch repair genes, mainly MLH1 and MSH2. Patients inheriting this predisposition are susceptible to colorectal, endometrial and other extracolonic tumors. It has recently been shown that germline deletions of the last few exons of the EPCAM gene are involved in the etiology of Lynch syndrome. Such constitutional mutations lead to subsequent epigenetic silencing of a neighbouring gene, here, MSH2, causing Lynch syndrome. Thus, deletions of the last few exons of EPCAM constitute a distinct class of mutations associated with HNPCC. Worldwide, several investigators have reported families with EPCAM 3’end deletions. The risk of colorectal cancer in carriers of EPCAM deletions is comparable to situations when patients are MSH2 mutation carriers, and is associated with high expression levels of EPCAM in colorectal cancer stem cells. A lower risk of endometrial cancer was also reported. Until now the standard diagnostic tests for Lynch syndrome have contained analyses such as immunohistochemistry and tests for microsatellite instability of mismatch repair genes. The identification of EPCAM deletions or larger EPCAM-MSH2 deletions should be included in routine mutation screening, as this has implications for cancer predisposition.
Collapse
Affiliation(s)
- Katarzyna Tutlewska
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Połabska 4, 70-115, Szczecin, Poland.
| | | | | |
Collapse
|
23
|
Kim YJ, Jung YD, Kim TO, Kim HS. Alu-related transcript of TJP2 gene as a marker for colorectal cancer. Gene 2013; 524:268-74. [DOI: 10.1016/j.gene.2013.04.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Revised: 04/08/2013] [Accepted: 04/10/2013] [Indexed: 12/30/2022]
|
24
|
Oliver KR, Greene WK. Transposable elements and viruses as factors in adaptation and evolution: an expansion and strengthening of the TE-Thrust hypothesis. Ecol Evol 2012; 2:2912-33. [PMID: 23170223 PMCID: PMC3501640 DOI: 10.1002/ece3.400] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 09/11/2012] [Accepted: 09/17/2012] [Indexed: 12/17/2022] Open
Abstract
In addition to the strong divergent evolution and significant and episodic evolutionary transitions and speciation we previously attributed to TE-Thrust, we have expanded the hypothesis to more fully account for the contribution of viruses to TE-Thrust and evolution. The concept of symbiosis and holobiontic genomes is acknowledged, with particular emphasis placed on the creativity potential of the union of retroviral genomes with vertebrate genomes. Further expansions of the TE-Thrust hypothesis are proposed regarding a fuller account of horizontal transfer of TEs, the life cycle of TEs, and also, in the case of a mammalian innovation, the contributions of retroviruses to the functions of the placenta. The possibility of drift by TE families within isolated demes or disjunct populations, is acknowledged, and in addition, we suggest the possibility of horizontal transposon transfer into such subpopulations. “Adaptive potential” and “evolutionary potential” are proposed as the extremes of a continuum of “intra-genomic potential” due to TE-Thrust. Specific data is given, indicating “adaptive potential” being realized with regard to insecticide resistance, and other insect adaptations. In this regard, there is agreement between TE-Thrust and the concept of adaptation by a change in allele frequencies. Evidence on the realization of “evolutionary potential” is also presented, which is compatible with the known differential survivals, and radiations of lineages. Collectively, these data further suggest the possibility, or likelihood, of punctuated episodes of speciation events and evolutionary transitions, coinciding with, and heavily underpinned by, intermittent bursts of TE activity.
Collapse
Affiliation(s)
- Keith R Oliver
- School of Biological Science and Biotechnology, Faculty of Science and Engineering, Murdoch University Perth, W.A., 6150, Australia
| | | |
Collapse
|
25
|
Ashida H, Asai K, Hamada M. Shape-based alignment of genomic landscapes in multi-scale resolution. Nucleic Acids Res 2012; 40:6435-48. [PMID: 22561376 PMCID: PMC3413149 DOI: 10.1093/nar/gks354] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Due to dramatic advances in DNA technology, quantitative measures of annotation data can now be obtained in continuous coordinates across the entire genome, allowing various heterogeneous ‘genomic landscapes’ to emerge. Although much effort has been devoted to comparing DNA sequences, not much attention has been given to comparing these large quantities of data comprehensively. In this article, we introduce a method for rapidly detecting local regions that show high correlations between genomic landscapes. We overcame the size problem for genome-wide data by converting the data into series of symbols and then carrying out sequence alignment. We also decomposed the oscillation of the landscape data into different frequency bands before analysis, since the real genomic landscape is a mixture of embedded and confounded biological processes working at different scales in the cell nucleus. To verify the usefulness and generality of our method, we applied our approach to well investigated landscapes from the human genome, including several histone modifications. Furthermore, by applying our method to over 20 genomic landscapes in human and 12 in mouse, we found that DNA replication timing and the density of Alu insertions are highly correlated genome-wide in both species, even though the Alu elements have amplified independently in the two genomes. To our knowledge, this is the first method to align genomic landscapes at multiple scales according to their shape.
Collapse
Affiliation(s)
- Hiroki Ashida
- Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8561, Japan.
| | | | | |
Collapse
|
26
|
Abstract
Lynch syndrome is a hereditary cancer predisposition syndrome caused by germline loss of a DNA mismatch repair gene. In a significant proportion of cases, loss of function of the MSH2 mismatch repair gene is caused by large heterogeneous deletions involving MSH2 and/or the adjacent EPCAM gene. These deletions usually result from homologous malrecombination events between Alu elements, a family of short interspersed nuclear elements (SINE). Recent recognition that the extent of these deletions influences phenotypic outcome provided new impetus for fine-mapping the breakpoints. In doing so, Pérez-Cabornero and colleagues uncovered new evidence for Alu-mediated ancestral founder deletions within MSH2 in the Spanish Lynch syndrome population (as reported beginning on pages 1546 and 1556 in this issue of the journal). This is the first such finding to date and prompted a revisitation of the role of Alu elements in the causation of Lynch syndrome. Whether Alu density is a danger sign for genomic regions prone to rearrangement and what additional factors may be required to actuate these events remain to be discovered.
Collapse
Affiliation(s)
- Megan P Hitchins
- Medical Epigenetics Laboratory, Lowy Cancer Research Centre, Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia.
| | | |
Collapse
|
27
|
Hara T, Hirai Y, Baicharoen S, Hayakawa T, Hirai H, Koga A. A novel composite retrotransposon derived from or generated independently of the SVA (SINE/VNTR/ Alu) transposon has undergone proliferation in gibbon genomes. Genes Genet Syst 2012; 87:181-90. [DOI: 10.1266/ggs.87.181] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Toru Hara
- Primate Research Institute, Kyoto University
| | | | | | - Takashi Hayakawa
- Primate Research Institute, Kyoto University
- Japan Society for Promotion of Science
| | | | | |
Collapse
|
28
|
Nuclear receptor HNF4α binding sequences are widespread in Alu repeats. BMC Genomics 2011; 12:560. [PMID: 22085832 PMCID: PMC3252374 DOI: 10.1186/1471-2164-12-560] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Accepted: 11/15/2011] [Indexed: 12/04/2022] Open
Abstract
Background Alu repeats, which account for ~10% of the human genome, were originally considered to be junk DNA. Recent studies, however, suggest that they may contain transcription factor binding sites and hence possibly play a role in regulating gene expression. Results Here, we show that binding sites for a highly conserved member of the nuclear receptor superfamily of ligand-dependent transcription factors, hepatocyte nuclear factor 4alpha (HNF4α, NR2A1), are highly prevalent in Alu repeats. We employ high throughput protein binding microarrays (PBMs) to show that HNF4α binds > 66 unique sequences in Alu repeats that are present in ~1.2 million locations in the human genome. We use chromatin immunoprecipitation (ChIP) to demonstrate that HNF4α binds Alu elements in the promoters of target genes (ABCC3, APOA4, APOM, ATPIF1, CANX, FEMT1A, GSTM4, IL32, IP6K2, PRLR, PRODH2, SOCS2, TTR) and luciferase assays to show that at least some of those Alu elements can modulate HNF4α-mediated transactivation in vivo (APOM, PRODH2, TTR, APOA4). HNF4α-Alu elements are enriched in promoters of genes involved in RNA processing and a sizeable fraction are in regions of accessible chromatin. Comparative genomics analysis suggests that there may have been a gain in HNF4α binding sites in Alu elements during evolution and that non Alu repeats, such as Tiggers, also contain HNF4α sites. Conclusions Our findings suggest that HNF4α, in addition to regulating gene expression via high affinity binding sites, may also modulate transcription via low affinity sites in Alu repeats.
Collapse
|
29
|
Costantini M, Auletta F, Bernardi G. The distributions of "new" and "old" Alu sequences in the human genome: the solution of a "mystery". Mol Biol Evol 2011; 29:421-7. [PMID: 22057813 DOI: 10.1093/molbev/msr242] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The distribution in the human genome of the largest family of mobile elements, the Alu sequences, has been investigated for the past 30 years, and the vast majority of Alu sequences were shown to have the highest density in GC-rich isochores. Ten years ago, it was discovered, however, that the small "youngest" (most recently transposed) Alu families had a strikingly different distribution compared with the "old" families. This raised the question as to how this change took place in evolution. We solved what was considered to be a "mystery" by 1) revisiting our previous results on the integration and stability of retroviral sequences, and 2) assessing the densities of acceptor sites TTTT/AA in isochore families. We could conclude 1) that the open state of chromatin structure plays a crucial role in allowing not only the initial integration of retroviral sequences but also that of the youngest Alu sequences, and 2) that the distribution of old Alus can be explained as due to Alu sequences being unstable in the GC-poor isochores but stable in the compositionally matching GC-rich isochores, again in line with what happens in the case of retroviral sequences.
Collapse
Affiliation(s)
- Maria Costantini
- Laboratory of Cellular and Developmental Biology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | | | | |
Collapse
|
30
|
Antonaki A, Demetriades C, Polyzos A, Banos A, Vatsellas G, Lavigne MD, Apostolou E, Mantouvalou E, Papadopoulou D, Mosialos G, Thanos D. Genomic analysis reveals a novel nuclear factor-κB (NF-κB)-binding site in Alu-repetitive elements. J Biol Chem 2011; 286:38768-38782. [PMID: 21896491 DOI: 10.1074/jbc.m111.234161] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The transcription factor NF-κB is a critical regulator of immune responses. To determine how NF-κB builds transcriptional control networks, we need to obtain a topographic map of the factor bound to the genome and correlate it with global gene expression. We used a ChIP cloning technique and identified novel NF-κB target genes in response to virus infection. We discovered that most of the NF-κB-bound genomic sites deviate from the consensus and are located away from conventional promoter regions. Remarkably, we identified a novel abundant NF-κB-binding site residing in specialized Alu-repetitive elements having the potential for long range transcription regulation, thus suggesting that in addition to its known role, NF-κB has a primate-specific function and a role in human evolution. By combining these data with global gene expression profiling of virus-infected cells, we found that most of the sites bound by NF-κB in the human genome do not correlate with changes in gene expression of the nearby genes and they do not appear to function in the context of synthetic promoters. These results demonstrate that repetitive elements interspersed in the human genome function as common target sites for transcription factors and may play an important role in expanding the repertoire of binding sites to engage new genes into regulatory networks.
Collapse
Affiliation(s)
- Athina Antonaki
- Institute of Molecular Biology, Genetics and Biotechnology, Biomedical Research Foundation, Academy of Athens, 4 Soranou Efesiou Street, Athens 11527, Greece
| | - Constantinos Demetriades
- Department of Biology, Aristotle University of Thessaloniki, University Campus, Thessaloniki 54124, Greece
| | - Alexander Polyzos
- Institute of Molecular Biology, Genetics and Biotechnology, Biomedical Research Foundation, Academy of Athens, 4 Soranou Efesiou Street, Athens 11527, Greece
| | - Aggelos Banos
- Institute of Molecular Biology, Genetics and Biotechnology, Biomedical Research Foundation, Academy of Athens, 4 Soranou Efesiou Street, Athens 11527, Greece
| | - Giannis Vatsellas
- Institute of Molecular Biology, Genetics and Biotechnology, Biomedical Research Foundation, Academy of Athens, 4 Soranou Efesiou Street, Athens 11527, Greece
| | - Matthieu D Lavigne
- Institute of Molecular Biology, Genetics and Biotechnology, Biomedical Research Foundation, Academy of Athens, 4 Soranou Efesiou Street, Athens 11527, Greece
| | - Effie Apostolou
- Institute of Molecular Biology, Genetics and Biotechnology, Biomedical Research Foundation, Academy of Athens, 4 Soranou Efesiou Street, Athens 11527, Greece
| | - Eva Mantouvalou
- Institute of Molecular Biology, Genetics and Biotechnology, Biomedical Research Foundation, Academy of Athens, 4 Soranou Efesiou Street, Athens 11527, Greece
| | - Deppie Papadopoulou
- Institute of Molecular Biology, Genetics and Biotechnology, Biomedical Research Foundation, Academy of Athens, 4 Soranou Efesiou Street, Athens 11527, Greece
| | - George Mosialos
- Department of Biology, Aristotle University of Thessaloniki, University Campus, Thessaloniki 54124, Greece.
| | - Dimitris Thanos
- Institute of Molecular Biology, Genetics and Biotechnology, Biomedical Research Foundation, Academy of Athens, 4 Soranou Efesiou Street, Athens 11527, Greece.
| |
Collapse
|
31
|
Zhang W, Edwards A, Fan W, Deininger P, Zhang K. Alu distribution and mutation types of cancer genes. BMC Genomics 2011; 12:157. [PMID: 21429208 PMCID: PMC3074553 DOI: 10.1186/1471-2164-12-157] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 03/23/2011] [Indexed: 12/24/2022] Open
Abstract
Background Alu elements are the most abundant retrotransposable elements comprising ~11% of the human genome. Many studies have highlighted the role that Alu elements have in genetic instability and how their contribution to the assortment of mutagenic events can lead to cancer. As of yet, little has been done to quantitatively assess the association between Alu distribution and genes that are causally implicated in oncogenesis. Results We have investigated the effect of various Alu densities on the mutation type based classifications of cancer genes. In order to establish the direct relationship between Alus and the cancer genes of interest, genome wide Alu-related densities were measured using genes rather than the sliding windows of fixed length as the units. Several novel genomic features, such as the density of the adjacent Alu pairs and the number of Alu-Exon-Alu triplets, were developed in order to extend the investigation via the multivariate statistical analysis toward more advanced biological insight. In addition, we characterized the genome-wide intron Alu distribution with a mixture model that distinguished genes containing Alu elements from those with no Alus, and evaluated the gene-level effect of the 5'-TTAAAA motif associated with Alu insertion sites using a two-step regression analysis method. Conclusions The study resulted in several novel findings worthy of further investigation. They include: (1) Recessive cancer genes (tumor suppressor genes) are enriched with Alu elements (p < 0.01) compared to dominant cancer genes (oncogenes) and the entire set of genes in the human genome; (2) Alu-related genomic features can be used to cluster cancer genes into biological meaningful groups; (3) The retention of exon Alus has been restricted in the human genome development, and an upper limit to the chromosome-level exon Alu densities is suggested by the distribution profile; (4) For the genes with at least one intron Alu repeat in individual chromosomes, the intron Alu densities can be well fitted by a Gamma distribution; (5) The effect of the 5'-TTAAAA motif on Alu densities varies across different chromosomes.
Collapse
Affiliation(s)
- Wensheng Zhang
- Department of Computer Science, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA
| | | | | | | | | |
Collapse
|
32
|
Lee KH, Lee YK, Kwon DN, Chiu S, Chew V, Rah H, Kujawski G, Melhem R, Hsu K, Chung C, Greenhalgh DG, Cho K. Identification of a unique library of complex, but ordered, arrays of repetitive elements in the human genome and implication of their potential involvement in pathobiology. Exp Mol Pathol 2011; 90:300-11. [PMID: 21376035 DOI: 10.1016/j.yexmp.2011.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 02/18/2011] [Indexed: 12/16/2022]
Abstract
Approximately 2% of the human genome is reported to be occupied by genes. Various forms of repetitive elements (REs), both characterized and uncharacterized, are presumed to make up the vast majority of the rest of the genomes of human and other species. In conjunction with a comprehensive annotation of genes, information regarding components of genome biology, such as gene polymorphisms, non-coding RNAs, and certain REs, is found in human genome databases. However, the genome-wide profile of unique RE arrangements formed by different groups of REs has not been fully characterized yet. In this study, the entire human genome was subjected to an unbiased RE survey to establish a whole-genome profile of REs and their arrangements. Due to the limitation in query size within the bl2seq alignment program (National Center for Biotechnology Information [NCBI]) utilized for the RE survey, the entire NCBI reference human genome was fragmented into 6206 units of 0.5M nucleotides. A number of RE arrangements with varying complexities and patterns were identified throughout the genome. Each chromosome had unique profiles of RE arrangements and density, and high levels of RE density were measured near the centromere regions. Subsequently, 175 complex RE arrangements, which were selected throughout the genome, were subjected to a comparison analysis using five different human genome sequences. Interestingly, three of the five human genome databases shared the exactly same arrangement patterns and sequences for all 175 RE arrangement regions (a total of 12,765,625 nucleotides). The findings from this study demonstrate that a substantial fraction of REs in the human genome are clustered into various forms of ordered structures. Further investigations are needed to examine whether some of these ordered RE arrangements contribute to the human pathobiology as a functional genome unit.
Collapse
Affiliation(s)
- Kang-Hoon Lee
- Burn Research, Shriners Hospitals for Children Northern California and Department of Surgery, University of California-Davis, 2425 Stockton Blvd., Sacramento, CA 95817, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Gadzalski M, Sakowicz T. Novel SINEs families in Medicago truncatula and Lotus japonicus: bioinformatic analysis. Gene 2011; 480:21-7. [PMID: 21352903 DOI: 10.1016/j.gene.2011.01.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 12/01/2010] [Accepted: 01/31/2011] [Indexed: 02/02/2023]
Abstract
Although short interspersed elements (SINEs) were discovered nearly 30 years ago, the studies of these genomic repeats were mostly limited to animal genomes. Very little is known about SINEs in legumes--one of the most important plant families. Here we report identification, genomic distribution and molecular features of six novel SINE elements in Lotus japonicus (named LJ_SINE-1, -2, -3) and Medicago truncatula (MT_SINE-1, -2, -3), model species of legume. They possess all the structural features commonly found in short interspersed elements including RNA polymerase III promoter, polyA tail and flanking repeats. SINEs described here are present in low to moderate copy numbers from 150 to 3000. Bioinformatic analyses were used to searched public databases, we have shown that three of new SINE elements from M. truncatula seem to be characteristic of Medicago and Trifolium genera. Two SINE families have been found in L. japonicus and one is present in both M. truncatula and L. japonicus. In addition, we are discussing potential activities of the described elements.
Collapse
Affiliation(s)
- Marek Gadzalski
- Department of General Genetics, Plant Molecular Biology and Biotechnology, University of Lodz, Banacha 12/16, Lodz, Poland.
| | | |
Collapse
|
34
|
Paar V, Gluncic M, Rosandic M, Basar I, Vlahovic I. Intragene Higher Order Repeats in Neuroblastoma BreakPoint Family Genes Distinguish Humans from Chimpanzees. Mol Biol Evol 2011; 28:1877-92. [DOI: 10.1093/molbev/msr009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
35
|
Transposable element insertions have strongly affected human evolution. Proc Natl Acad Sci U S A 2010; 107:19945-8. [PMID: 21041622 DOI: 10.1073/pnas.1014330107] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Comparison of a full collection of the transposable element (TE) sequences of vertebrates with genome sequences shows that the human genome makes 655 perfect full-length matches. The cause is that the human genome contains many active TEs that have caused TE inserts in relatively recent times. These TE inserts in the human genome are several types of young Alus (AluYa5, AluYb8, AluYc1, etc.). Work in many laboratories has shown that such inserts have many effects including changes in gene expression, increases in recombination, and unequal crossover. The time of these very effective changes in the human lineage genome extends back about 4 million years according to these data and very likely much earlier. Rapid human lineage-specific evolution, including brain size is known to have also occurred in the last few million years. Alu insertions likely underlie rapid human lineage evolution. They are known to have many effects. Examples are listed in which TE sequences have influenced human-specific genes. The proposed model is that the many TE insertions created many potentially effective changes and those selected were responsible for a part of the striking human lineage evolution. The combination of the results of these events that were selected during human lineage evolution was apparently effective in producing a successful and rapidly evolving species.
Collapse
|
36
|
Kalendar R, Antonius K, Smýkal P, Schulman AH. iPBS: a universal method for DNA fingerprinting and retrotransposon isolation. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2010; 121:1419-1430. [PMID: 20623102 DOI: 10.1007/s00122-010-1398-2] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2010] [Accepted: 06/19/2010] [Indexed: 05/29/2023]
Abstract
Molecular markers are essential in plant and animal breeding and biodiversity applications, in human forensics, and for map-based cloning of genes. The long terminal repeat (LTR) retrotransposons are well suited as molecular markers. As dispersed and ubiquitous transposable elements, their "copy and paste" life cycle of replicative transposition leads to new genome insertions without excision of the original element. Both the overall structure of retrotransposons and the domains responsible for the various phases of their replication are highly conserved in all eukaryotes. Nevertheless, up to a year has been required to develop a retrotransposon marker system in a new species, involving cloning and sequencing steps as well as the development of custom primers. Here, we describe a novel PCR-based method useful both as a marker system in its own right and for the rapid isolation of retrotransposon termini and full-length elements, making it ideal for "orphan crops" and other species with underdeveloped marker systems. The method, iPBS amplification, is based on the virtually universal presence of a tRNA complement as a reverse transcriptase primer binding site (PBS) in LTR retrotransposons. The method differs from earlier retrotransposon isolation methods because it is applicable not only to endogenous retroviruses and retroviruses, but also to both Gypsy and Copia LTR retrotransposons, as well as to non-autonomous LARD and TRIM elements, throughout the plant kingdom and to animals. Furthermore, the inter-PBS amplification technique as such has proved to be a powerful DNA fingerprinting technology without the need for prior sequence knowledge.
Collapse
Affiliation(s)
- Ruslan Kalendar
- MTT/BI Plant Genomics Laboratory, Institute of Biotechnology, Viikki Biocenter, University of Helsinki, P.O. Box 65, Helsinki, Finland
| | | | | | | |
Collapse
|
37
|
They-They TP, Hamzi K, Moutawafik MT, Bellayou H, El Messal M, Nadifi S. Prevalence of angiotensin-converting enzyme, methylenetetrahydrofolate reductase, Factor V Leiden, prothrombin and apolipoprotein E gene polymorphisms in Morocco. Ann Hum Biol 2010; 37:767-77. [PMID: 20687780 DOI: 10.3109/03014461003738850] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Evidence of the influence of genetic risk factors on cardiovascular diseases is more or less established. These genetic factors are involved in several pathways affecting blood pressure regulation, blood coagulation, homocysteine and lipid metabolisms. AIM We evaluated frequencies of five genetic polymorphisms to assess their informativeness as markers for prospective clinical studies. SUBJECTS AND METHODS 182 healthy Moroccan subjects were genotyped for ACE I/D by amplification alone and by amplification followed by enzymatic digestion for other polymorphisms. RESULTS Allele frequencies of ACE ID, MTHFR C677T were 76.6%, 26.9% for D and T alleles, respectively. APOE polymorphism showed 11.3%, 78.6% and 10.2% for the alleles E2, E3 and E4, respectively. The frequency for FII G20210A polymorphism was around 2.7% for A allele. Our data showed an absence of FVL mutation. Using allele frequencies, genetic distances between Moroccan and other populations revealed an independent variability of these polymorphisms. CONCLUSION These values appear to be influenced by findings in European and African peoples, and may be considered in assessing the clinical significance of a predisposition to cardiovascular disease.
Collapse
Affiliation(s)
- Thierry Paluku They-They
- Laboratoire de Génétique Médicale et Pathologie Moléculaire (LGPM), Faculté de Médecine et de Pharmacie-Casablanca, 19 rue Tarik-Ibn-Ziad, Casablanca, Morocco
| | | | | | | | | | | |
Collapse
|
38
|
Kalendar R, Flavell AJ, Ellis THN, Sjakste T, Moisy C, Schulman AH. Analysis of plant diversity with retrotransposon-based molecular markers. Heredity (Edinb) 2010; 106:520-30. [PMID: 20683483 DOI: 10.1038/hdy.2010.93] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Retrotransposons are both major generators of genetic diversity and tools for detecting the genomic changes associated with their activity because they create large and stable insertions in the genome. After the demonstration that retrotransposons are ubiquitous, active and abundant in plant genomes, various marker systems were developed to exploit polymorphisms in retrotransposon insertion patterns. These have found applications ranging from the mapping of genes responsible for particular traits and the management of backcrossing programs to analysis of population structure and diversity of wild species. This review provides an insight into the spectrum of retrotransposon-based marker systems developed for plant species and evaluates the contributions of retrotransposon markers to the analysis of population diversity in plants.
Collapse
Affiliation(s)
- R Kalendar
- MTT/BI Plant Genomics Laboratory, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
39
|
Mason CE, Shu FJ, Wang C, Session RM, Kallen RG, Sidell N, Yu T, Liu MH, Cheung E, Kallen CB. Location analysis for the estrogen receptor-alpha reveals binding to diverse ERE sequences and widespread binding within repetitive DNA elements. Nucleic Acids Res 2010; 38:2355-68. [PMID: 20047966 PMCID: PMC2853111 DOI: 10.1093/nar/gkp1188] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Location analysis for estrogen receptor-α (ERα)-bound cis-regulatory elements was determined in MCF7 cells using chromatin immunoprecipitation (ChIP)-on-chip. Here, we present the estrogen response element (ERE) sequences that were identified at ERα-bound loci and quantify the incidence of ERE sequences under two stringencies of detection: <10% and 10–20% nucleotide deviation from the canonical ERE sequence. We demonstrate that ∼50% of all ERα-bound loci do not have a discernable ERE and show that most ERα-bound EREs are not perfect consensus EREs. Approximately one-third of all ERα-bound ERE sequences reside within repetitive DNA sequences, most commonly of the AluS family. In addition, the 3-bp spacer between the inverted ERE half-sites, rather than being random nucleotides, is C(A/T)G-enriched at bona fide receptor targets. Diverse ERα-bound loci were validated using electrophoretic mobility shift assay and ChIP-polymerase chain reaction (PCR). The functional significance of receptor-bound loci was demonstrated using luciferase reporter assays which proved that repetitive element ERE sequences contribute to enhancer function. ChIP-PCR demonstrated estrogen-dependent recruitment of the coactivator SRC3 to these loci in vivo. Our data demonstrate that ERα binds to widely variant EREs with less sequence specificity than had previously been suspected and that binding at repetitive and nonrepetitive genomic targets is favored by specific trinucleotide spacers.
Collapse
Affiliation(s)
- Christopher E Mason
- Department of Human Genetics and the Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
|
41
|
Carbone L, Harris RA, Vessere GM, Mootnick AR, Humphray S, Rogers J, Kim SK, Wall JD, Martin D, Jurka J, Milosavljevic A, de Jong PJ. Evolutionary breakpoints in the gibbon suggest association between cytosine methylation and karyotype evolution. PLoS Genet 2009; 5:e1000538. [PMID: 19557196 PMCID: PMC2695003 DOI: 10.1371/journal.pgen.1000538] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Accepted: 05/26/2009] [Indexed: 01/30/2023] Open
Abstract
Gibbon species have accumulated an unusually high number of chromosomal changes since diverging from the common hominoid ancestor 15-18 million years ago. The cause of this increased rate of chromosomal rearrangements is not known, nor is it known if genome architecture has a role. To address this question, we analyzed sequences spanning 57 breaks of synteny between northern white-cheeked gibbons (Nomascus l. leucogenys) and humans. We find that the breakpoint regions are enriched in segmental duplications and repeats, with Alu elements being the most abundant. Alus located near the gibbon breakpoints (<150 bp) have a higher CpG content than other Alus. Bisulphite allelic sequencing reveals that these gibbon Alus have a lower average density of methylated cytosine that their human orthologues. The finding of higher CpG content and lower average CpG methylation suggests that the gibbon Alu elements are epigenetically distinct from their human orthologues. The association between undermethylation and chromosomal rearrangement in gibbons suggests a correlation between epigenetic state and structural genome variation in evolution.
Collapse
Affiliation(s)
- Lucia Carbone
- Children's Hospital and Research Center Oakland, Oakland, California, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Costantini M, Bernardi G. Mapping insertions, deletions and SNPs on Venter's chromosomes. PLoS One 2009; 4:e5972. [PMID: 19543403 PMCID: PMC2696090 DOI: 10.1371/journal.pone.0005972] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 05/19/2009] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The very recent availability of fully sequenced individual human genomes is a major revolution in biology which is certainly going to provide new insights into genetic diseases and genomic rearrangements. RESULTS We mapped the insertions, deletions and SNPs (single nucleotide polymorphisms) that are present in Craig Venter's genome, more precisely on chromosomes 17 to 22, and compared them with the human reference genome hg17. Our results show that insertions and deletions are almost absent in L1 and generally scarce in L2 isochore families (GC-poor L1+L2 isochores represent slightly over half of the human genome), whereas they increase in GC-rich isochores, largely paralleling the densities of genes, retroviral integrations and Alu sequences. The distributions of insertions/deletions are in striking contrast with those of SNPs which exhibit almost the same density across all isochore families with, however, a trend for lower concentrations in gene-rich regions. CONCLUSIONS Our study strongly suggests that the distribution of insertions/deletions is due to the structure of chromatin which is mostly open in gene-rich, GC-rich isochores, and largely closed in gene-poor, GC-poor isochores. The different distributions of insertions/deletions and SNPs are clearly related to the two different responsible mechanisms, namely recombination and point mutations.
Collapse
Affiliation(s)
- Maria Costantini
- Stazione Zoologica Anton Dohrn, Naples, Italy
- * E-mail: (MC); (GB)
| | - Giorgio Bernardi
- Stazione Zoologica Anton Dohrn, Naples, Italy
- * E-mail: (MC); (GB)
| |
Collapse
|
43
|
The regulated retrotransposon transcriptome of mammalian cells. Nat Genet 2009; 41:563-71. [PMID: 19377475 DOI: 10.1038/ng.368] [Citation(s) in RCA: 592] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Accepted: 03/05/2009] [Indexed: 12/14/2022]
Abstract
Although repetitive elements pervade mammalian genomes, their overall contribution to transcriptional activity is poorly defined. Here, as part of the FANTOM4 project, we report that 6-30% of cap-selected mouse and human RNA transcripts initiate within repetitive elements. Analysis of approximately 250,000 retrotransposon-derived transcription start sites shows that the associated transcripts are generally tissue specific, coincide with gene-dense regions and form pronounced clusters when aligned to full-length retrotransposon sequences. Retrotransposons located immediately 5' of protein-coding loci frequently function as alternative promoters and/or express noncoding RNAs. More than a quarter of RefSeqs possess a retrotransposon in their 3' UTR, with strong evidence for the reduced expression of these transcripts relative to retrotransposon-free transcripts. Finally, a genome-wide screen identifies 23,000 candidate regulatory regions derived from retrotransposons, in addition to more than 2,000 examples of bidirectional transcription. We conclude that retrotransposon transcription has a key influence upon the transcriptional output of the mammalian genome.
Collapse
|
44
|
Wilson GR, Sim MLJ, Brody KM, Taylor JM, McLachlan RI, O'Bryan MK, Delatycki MB, Lockhart PJ. Molecular analysis of the PArkin co-regulated gene and association with male infertility. Fertil Steril 2009; 93:2262-8. [PMID: 19268936 DOI: 10.1016/j.fertnstert.2009.01.079] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 01/15/2009] [Accepted: 01/16/2009] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To investigate the potential role of PArkin co-regulated gene (PACRG) in human male infertility. DESIGN Case-control study. SETTING Academic reproductive biology department. PATIENT(S) Blood samples were obtained from 610 patients and 156 normal control subjects. INTERVENTION(S) Genomic DNA was used as template for polymerase chain reaction amplification of the PACRG promoter and coding exons. The amplified fragments were tested for DNA sequence variations by direct sequencing and restriction enzyme analysis. MAIN OUTCOME MEASURE(S) Gene structure and sequence alterations of PACRG in infertile male patients. RESULT(S) The structure of PACRG was determined to comprise 5 coding exons, generating a single transcript in the testis which encoded a predicted protein of 257 amino acids. No pathogenic mutations were identified; however, a variant in the promoter of PACRG was shown to be significantly associated with azoospermia, but not oligospermia, in the case-control cohort. CONCLUSION(S) Mutation of PACRG was not identified as a cause of male infertility, but variation in the promoter was demonstrated to be a risk factor associated with azoospermia.
Collapse
Affiliation(s)
- Gabrielle R Wilson
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Melbourne, 3052, Victoria, Australia
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
We are in the midst of a revolution in the genomic sciences that will forever change the way we view biology and medicine, particularly with respect to brain form, function, development, evolution, plasticity, neurological disease pathogenesis and neural regenerative potential. The application of epigenetic principles has already begun to identify and characterize previously unrecognized molecular signatures of disease latency, onset and progression, mechanisms underlying disease pathogenesis, and responses to new and evolving therapeutic modalities. Moreover, epigenomic medicine promises to usher in a new era of neurological therapeutics designed to promote disease prevention and recovery of seemingly lost neurological function via reprogramming of stem cells, redirecting cell fate decisions and dynamically modulating neural network plasticity and connectivity.
Collapse
Affiliation(s)
- Mark F Mehler
- Institute for Brain Disorders and Neural Regeneration, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
46
|
Hirakawa M, Nishihara H, Kanehisa M, Okada N. Characterization and evolutionary landscape of AmnSINE1 in Amniota genomes. Gene 2008; 441:100-10. [PMID: 19166919 DOI: 10.1016/j.gene.2008.12.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 11/29/2008] [Accepted: 12/04/2008] [Indexed: 11/18/2022]
Abstract
Discovery of a large number of conserved non-coding elements (CNEs) in vertebrate genomes provides a cornerstone to elucidate molecular mechanisms of macroevolution. Extensive comparative genomics has proven that transposons such as short interspersed elements (SINEs) were an important source of CNEs. We recently characterized AmnSINE1, a SINE family in Amniota genomes, some of which are present in CNEs, and demonstrated that two AmnSINE1 loci play an important role in mammalian-specific brain development by functioning as an enhancer (Sasaki et al. Proc. Natl. Acad. Sci. USA 2008). To get more information about AmnSINE1s, we here performed a multi-species search for AmnSINE1, and revealed the distribution and evolutionary history of these SINEs in amniote genomes. The number of AmnSINE1 regions in amniotes ranged from 160 to 1200; the number in the eutherians were under 500 and the largest was that in chicken. Phylogenetic analysis established that each AmnSINE1 locus has evolved uniquely, primarily since the divergence of mammals from reptiles. These results support the notion that AmnSINE1s were amplified as an ancient retroposon in a common ancestor of Amniota and subsequently have survived for 300 Myr because of functions acquired by mutation-coupled exaptation prior mammalian radiation. On the basis of sequence homology and conserved synteny, we detected the orthologs of AmnSINE1 for candidates of further enhancer analysis, which are more conserved than two loci that were shown to have been involved in mammalian brain development. The present work provides a comprehensive data set to test the role of AmnSINE1s, many of which were exapted and contributed to mammalian macroevolution.
Collapse
Affiliation(s)
- Mika Hirakawa
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | | | | | | |
Collapse
|
47
|
Bae YA, Ahn JS, Kim SH, Rhyu MG, Kong Y, Cho SY. PwRn1, a novel Ty3/gypsy-like retrotransposon of Paragonimus westermani: molecular characters and its differentially preserved mobile potential according to host chromosomal polyploidy. BMC Genomics 2008; 9:482. [PMID: 18851759 PMCID: PMC2582038 DOI: 10.1186/1471-2164-9-482] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Accepted: 10/14/2008] [Indexed: 11/25/2022] Open
Abstract
Background Retrotransposons have been known to involve in the remodeling and evolution of host genome. These reverse transcribing elements, which show a complex evolutionary pathway with diverse intermediate forms, have been comprehensively analyzed from a wide range of host genomes, while the information remains limited to only a few species in the phylum Platyhelminthes. Results A LTR retrotransposon and its homologs with a strong phylogenetic affinity toward CsRn1 of Clonorchis sinensis were isolated from a trematode parasite Paragonimus westermani via a degenerate PCR method and from an insect species Anopheles gambiae by in silico analysis of the whole mosquito genome, respectively. These elements, designated PwRn1 and AgCR-1 – AgCR-14 conserved unique features including a t-RNATrp primer binding site and the unusual CHCC signature of Gag proteins. Their flanking LTRs displayed >97% nucleotide identities and thus, these elements were likely to have expanded recently in the trematode and insect genomes. They evolved heterogeneous expression strategies: a single fused ORF, two separate ORFs with an identical reading frame and two ORFs overlapped by -1 frameshifting. Phylogenetic analyses suggested that the elements with the separate ORFs had evolved from an ancestral form(s) with the overlapped ORFs. The mobile potential of PwRn1 was likely to be maintained differentially in association with the karyotype of host genomes, as was examined by the presence/absence of intergenomic polymorphism and mRNA transcripts. Conclusion Our results on the structural diversity of CsRn1-like elements can provide a molecular tool to dissect a more detailed evolutionary episode of LTR retrotransposons. The PwRn1-associated genomic polymorphism, which is substantial in diploids, will also be informative in addressing genomic diversification following inter-/intra-specific hybridization in P. westermani populations.
Collapse
Affiliation(s)
- Young-An Bae
- Department of Molecular Parasitology and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi-do 440-746, Korea.
| | | | | | | | | | | |
Collapse
|
48
|
Kim PM, Lam HYK, Urban AE, Korbel JO, Affourtit J, Grubert F, Chen X, Weissman S, Snyder M, Gerstein MB. Analysis of copy number variants and segmental duplications in the human genome: Evidence for a change in the process of formation in recent evolutionary history. Genome Res 2008; 18:1865-74. [PMID: 18842824 DOI: 10.1101/gr.081422.108] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Segmental duplications (SDs) are operationally defined as >1 kb stretches of duplicated DNA with high sequence identity. They arise from copy number variants (CNVs) fixed in the population. To investigate the formation of SDs and CNVs, we examine their large-scale patterns of co-occurrence with different repeats. Alu elements, a major class of genomic repeats, had previously been identified as prime drivers of SD formation. We also observe this association; however, we find that it sharply decreases for younger SDs. Continuing this trend, we find only weak associations of CNVs with Alus. Similarly, we find an association of SDs with processed pseudogenes, which is decreasing for younger SDs and absent entirely for CNVs. Next, we find that SDs are significantly co-localized with each other, resulting in a highly skewed "power-law" distribution and chromosomal hotspots. We also observe a significant association of CNVs with SDs, but find that an SD-mediated mechanism only accounts for some CNVs (<28%). Overall, our results imply that a shift in predominant formation mechanism occurred in recent history: approximately 40 million years ago, during the "Alu burst" in retrotransposition activity, non-allelic homologous recombination, first mediated by Alus and then the by newly formed CNVs themselves, was the main driver of genome rearrangements; however, its relative importance has decreased markedly since then, with proportionally more events now stemming from other repeats and from non-homologous end-joining. In addition to a coarse-grained analysis, we performed targeted sequencing of 67 CNVs and then analyzed a combined set of 270 CNVs (540 breakpoints) to verify our conclusions.
Collapse
Affiliation(s)
- Philip M Kim
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Analysis of transposon interruptions suggests selection for L1 elements on the X chromosome. PLoS Genet 2008; 4:e1000172. [PMID: 18769724 PMCID: PMC2517846 DOI: 10.1371/journal.pgen.1000172] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Accepted: 07/17/2008] [Indexed: 01/02/2023] Open
Abstract
It has been hypothesised that the massive accumulation of L1 transposable elements on the X chromosome is due to their function in X inactivation, and that the accumulation of Alu elements near genes is adaptive. We tested the possible selective advantage of these two transposable element (TE) families with a novel method, interruption analysis. In mammalian genomes, a large number of TEs interrupt other TEs due to the high overall abundance and age of repeats, and these interruptions can be used to test whether TEs are selectively neutral. Interruptions of TEs, which are beneficial for the host, are expected to be deleterious and underrepresented compared with neutral ones. We found that L1 elements in the regions of the X chromosome that contain the majority of the inactivated genes are significantly less frequently interrupted than on the autosomes, while L1s near genes that escape inactivation are interrupted with higher frequency, supporting the hypothesis that L1s on the X chromosome play a role in its inactivation. In addition, we show that TEs are less frequently interrupted in introns than in intergenic regions, probably due to selection against the expansion of introns, but the insertion pattern of Alus is comparable to other repeats. Recent experimental findings (for example the ENCODE project) show that many functional non-coding regions of genomes are not conserved across species, making the in-silico discovery of such regions challenging. Transposable elements (TEs), which represent 45 percent of the human genome and typically show no sequence conservation, are particularly intriguing from this point of view, because the highly nonrandom genomic distribution of many TE families in genomes has led to hypotheses that their presence is adaptive and have an epigenetic (regulatory) function. We use a novel approach based on the analysis of interrupted TEs to investigate if repeats are under selection that does not rely on sequence conservation. L1 elements, the most active transposable elements of the human genome, are highly overrepresented on the X-chromosome and were suggested to enhance its inactivation in mammals. We find that the interruption pattern of L1 repeats indicates a function for L1 elements in the inactivation of the mammalian X chromosome. Additionally, we show that a considerable fraction of TEs in introns are under selection for integrity, possibly due to selection on intron size or on TEs themselves.
Collapse
|
50
|
Simple detection of large InDeLS by DHPLC: the ACE gene as a model. J Biomed Biotechnol 2008; 2008:562183. [PMID: 18475319 PMCID: PMC2358980 DOI: 10.1155/2008/562183] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2007] [Revised: 12/23/2007] [Accepted: 02/02/2008] [Indexed: 11/18/2022] Open
Abstract
Insertion-deletion polymorphism (InDeL) is the second most frequent type of genetic variation in the human genome. For the detection of large InDeLs, researchers usually resort to either PCR gel analysis or RFLP, but these are time consuming and dependent on human interpretation. Therefore, a more efficient method for genotyping this kind of genetic variation is needed. In this report, we describe a method that can detect large InDeLs by DHPLC (denaturating high-performance liquid chromatography) using the angiotensin-converting enzyme (ACE) gene I/D polymorphism as a model. The InDeL targeted in this study is characterized by a 288 bp Alu element insertion (I). We used DHPLC at nondenaturating conditions to analyze the PCR product with a flow through the chromatographic column under two different gradients based on the differences between D and I sequences. The analysis described is quick and easy, making this technique a suitable and efficient means for DHPLC users to screen InDeLs in genetic epidemiological studies.
Collapse
|