1
|
Chaubal A, Pile LA. Same agent, different messages: insight into transcriptional regulation by SIN3 isoforms. Epigenetics Chromatin 2018; 11:17. [PMID: 29665841 PMCID: PMC5902990 DOI: 10.1186/s13072-018-0188-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 04/10/2018] [Indexed: 12/12/2022] Open
Abstract
SIN3 is a global transcriptional coregulator that governs expression of a large repertoire of gene targets. It is an important player in gene regulation, which can repress or activate diverse gene targets in a context-dependent manner. SIN3 is required for several vital biological processes such as cell proliferation, energy metabolism, organ development, and cellular senescence. The functional flexibility of SIN3 arises from its ability to interact with a large variety of partners through protein interaction domains that are conserved across species, ranging from yeast to mammals. Several isoforms of SIN3 are present in these different species that can perform common and specialized functions through interactions with distinct enzymes and DNA-binding partners. Although SIN3 has been well studied due to its wide-ranging functions and highly conserved interaction domains, precise roles of individual SIN3 isoforms have received less attention. In this review, we discuss the differences in structure and function of distinct SIN3 isoforms and provide possible avenues to understand the complete picture of regulation by SIN3.
Collapse
Affiliation(s)
- Ashlesha Chaubal
- Department of Biological Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Lori A Pile
- Department of Biological Sciences, Wayne State University, Detroit, MI, 48202, USA.
| |
Collapse
|
2
|
He N, Dong Z, Zhu B, Nuo M, Bou S, Liu D. Expression of pluripotency markers in Arbas Cashmere goat hair follicle stem cells. In Vitro Cell Dev Biol Anim 2016; 52:782-8. [PMID: 27364919 DOI: 10.1007/s11626-016-0023-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 03/27/2016] [Indexed: 01/01/2023]
Abstract
In our previous work, we found that the Inner Mongolia Arbas Cashmere goat hair follicle stem cells (gHFSCs) can be successfully differentiated into adipocyte, chondrocyte, and osteocyte lineages. In this study, we further examined the expression of the pluripotency and stemness markers Oct4, Nanog, Sox2, AKP, and TERT in gHFSCs by immunocytochemistry, flow cytometry, real-time PCR, and Western blot. Immunofluorescent staining showed that the gHFSCs were positive for all five markers. Fluorescence-activated cell sorting (FACS) further analyzed the positive expression of Oct4, Nanog, and Sox2 in the gHFSCs. Compared with Arbas Cashmere goat adipose-derived stem cells (gADSCs) at the mRNA expression level, Oct4 was relatively highly expressed in gHFSCs, 41.36 times of the gADSCs, and Nanog was 5.61, AKP was 2.74, and TERT was 2.10 times, respectively (p < 0.01). Western blot indicated that all markers are expressed at the protein level in the gHFSCs. When compared with gADSCs, using α-tubulin as a reference protein, gray intensity analysis showed that the expression of Oct4, Nanog, AKP, and TERT were, respectively, 5.94, 10.78, 1.33, and 1.39 times of gADSCs. Additionally, mRNA and protein expression of Sox2 were detected in the gHFSCs but not in the gADSCs. The protein expression pattern of these markers was consistent with the mRNA results.
Collapse
Affiliation(s)
- Nimantana He
- Key Laboratory of Mammalian Reproductive Biology and Biotechnology Ministry of Education, Inner Mongolia University, Hohhot, 010070, Inner Mongolia, China
| | - Zhenguo Dong
- Key Laboratory of Mammalian Reproductive Biology and Biotechnology Ministry of Education, Inner Mongolia University, Hohhot, 010070, Inner Mongolia, China
| | - Bing Zhu
- Key Laboratory of Mammalian Reproductive Biology and Biotechnology Ministry of Education, Inner Mongolia University, Hohhot, 010070, Inner Mongolia, China
| | - Mingtu Nuo
- Key Laboratory of Mammalian Reproductive Biology and Biotechnology Ministry of Education, Inner Mongolia University, Hohhot, 010070, Inner Mongolia, China
| | - Shorgan Bou
- Key Laboratory of Mammalian Reproductive Biology and Biotechnology Ministry of Education, Inner Mongolia University, Hohhot, 010070, Inner Mongolia, China
| | - Dongjun Liu
- Key Laboratory of Mammalian Reproductive Biology and Biotechnology Ministry of Education, Inner Mongolia University, Hohhot, 010070, Inner Mongolia, China.
| |
Collapse
|
3
|
Fuellen G, Struckmann S. Evolution of gene regulation of pluripotency--the case for wiki tracks at genome browsers. Biol Direct 2010; 5:67. [PMID: 21190561 PMCID: PMC3024949 DOI: 10.1186/1745-6150-5-67] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 12/29/2010] [Indexed: 12/23/2022] Open
Abstract
Background Experimentally validated data on gene regulation are hard to obtain. In particular, information about transcription factor binding sites in regulatory regions are scattered around in the literature. This impedes their systematic in-context analysis, e.g. the inference of their conservation in evolutionary history. Results We demonstrate the power of integrative bioinformatics by including curated transcription factor binding site information into the UCSC genome browser, using wiki and custom tracks, which enable easy publication of annotation data. Data integration allows to investigate the evolution of gene regulation of the pluripotency-associated genes Oct4, Sox2 and Nanog. For the first time, experimentally validated transcription factor binding sites in the regulatory regions of all three genes were assembled together based on manual curation of data from 39 publications. Using the UCSC genome browser, these data were then visualized in the context of multi-species conservation based on genomic alignment. We confirm previous hypotheses regarding the evolutionary age of specific regulatory patterns, establishing their "deep homology". We also confirm some other principles of Carroll's "Genetic theory of Morphological Evolution", such as "mosaic pleiotropy", exemplified by the dual role of Sox2 reflected in its regulatory region. Conclusions We were able to elucidate some aspects of the evolution of gene regulation for three genes associated with pluripotency. Based on the expected return on investment for the community, we encourage other scientists to contribute experimental data on gene regulation (original work as well as data collected for reviews) to the UCSC system, to enable studies of the evolution of gene regulation on a large scale, and to report their findings. Reviewers This article was reviewed by Dr. Gustavo Glusman and Dr. Juan Caballero, Institute for Systems Biology, Seattle, USA (nominated by Dr. Doron Lancet, Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel), Dr. Niels Grabe, TIGA Center (BIOQUANT) and Medical Systems Biology Group, Institute of Medical Biometry and Informatics, University Hospital Heidelberg, Germany (nominated by Dr. Mikhail Gelfand, Department of Bioinformatics, Institute of Information Transfer Problems, Russian Academy of Science, Moscow, Russian Federation) and Dr. Franz-Josef Müller, Center for Regenerative Medicine, The Scripps Research Institute, La Jolla, CA, USA and University Hospital for Psychiatry and Psychotherapy (part of ZIP gGmbH), University of Kiel, Germany (nominated by Dr. Trey Ideker, University of California, San Diego, La Jolla CA, United States).
Collapse
Affiliation(s)
- Georg Fuellen
- Institute for Biostatistics and Informatics in Medicine and Ageing Research - IBIMA, University of Rostock, Medical Faculty, Ernst-Heydemann-Str. 8, 18057 Rostock, Germany.
| | | |
Collapse
|
4
|
Tang F, Barbacioru C, Bao S, Lee C, Nordman E, Wang X, Lao K, Surani MA. Tracing the derivation of embryonic stem cells from the inner cell mass by single-cell RNA-Seq analysis. Cell Stem Cell 2010; 6:468-78. [PMID: 20452321 PMCID: PMC2954317 DOI: 10.1016/j.stem.2010.03.015] [Citation(s) in RCA: 402] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 02/05/2010] [Accepted: 03/10/2010] [Indexed: 12/15/2022]
Abstract
During the transition from the inner cell mass (ICM) cells of blastocysts to pluripotent embryonic stem cells (ESCs) in vitro, a normal developmental program is replaced in cells that acquire a capacity for infinite self-renewal and pluripotency. We explored the underlying mechanism of this switch by using RNA-Seq transcriptome analysis at the resolution of single cells. We detected significant molecular transitions and major changes in transcript variants, which include genes for general metabolism. Furthermore, the expression of repressive epigenetic regulators increased with a concomitant decrease in gene activators that might be necessary to sustain the inherent plasticity of ESCs. Furthermore, we detected changes in microRNAs (miRNAs), with one set that targets early differentiation genes while another set targets pluripotency genes to maintain the unique ESC epigenotype. Such genetic and epigenetic events may contribute to a switch from a normal developmental program in adult cells during the formation of diseased tissues, including cancers.
Collapse
Affiliation(s)
- Fuchou Tang
- Wellcome Trust/Cancer Research UK Gurdon Institute of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Catalin Barbacioru
- Genetic Systems, Applied Biosystems, part of Life Technologies, 850 Lincoln Centre Drive, Foster City, CA 94404, USA
| | - Siqin Bao
- Wellcome Trust/Cancer Research UK Gurdon Institute of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Caroline Lee
- Wellcome Trust/Cancer Research UK Gurdon Institute of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Ellen Nordman
- Genetic Systems, Applied Biosystems, part of Life Technologies, 850 Lincoln Centre Drive, Foster City, CA 94404, USA
| | - Xiaohui Wang
- Genetic Systems, Applied Biosystems, part of Life Technologies, 850 Lincoln Centre Drive, Foster City, CA 94404, USA
| | - Kaiqin Lao
- Genetic Systems, Applied Biosystems, part of Life Technologies, 850 Lincoln Centre Drive, Foster City, CA 94404, USA
| | - M. Azim Surani
- Wellcome Trust/Cancer Research UK Gurdon Institute of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| |
Collapse
|
5
|
Baltus GA, Kowalski MP, Zhai H, Tutter AV, Quinn D, Wall D, Kadam S. Acetylation of sox2 induces its nuclear export in embryonic stem cells. Stem Cells 2009; 27:2175-84. [PMID: 19591226 DOI: 10.1002/stem.168] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Embryonic stem (ES) cells require a coordinated network of transcription factors to maintain pluripotency or trigger lineage specific differentiation. Central to these processes are the proteins Oct4, Nanog, and Sox2. Although the transcriptional targets of these factors have been extensively studied, very little is known about how the proteins themselves are regulated, especially at the post-translational level. Post-translational modifications are well documented to have broad effects on protein stability, activity, and cellular distribution. Here, we identify a key lysine residue in the nuclear export signal of Sox2 that is acetylated, and demonstrate that blocking acetylation at this site retains Sox2 in the nucleus and sustains expression of its target genes under hyperacetylation or differentiation conditions. Mimicking acetylation at this site promotes association of Sox2 with the nuclear export machinery. In addition, increased cellular acetylation leads to reduction in Sox2 levels by ubiquitination and proteasomal degradation, thus abrogating its ability to drive transcription of its target genes. Acetylation-mediated nuclear export may be a commonly used regulatory mechanism for many Sox family members, as this lysine is conserved across species and in orthologous proteins.
Collapse
Affiliation(s)
- Gretchen A Baltus
- Developmental and Molecular Pathways, Novartis Institute of Biomedical Research,Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Facucho-Oliveira JM, St John JC. The relationship between pluripotency and mitochondrial DNA proliferation during early embryo development and embryonic stem cell differentiation. Stem Cell Rev Rep 2009; 5:140-58. [PMID: 19521804 DOI: 10.1007/s12015-009-9058-0] [Citation(s) in RCA: 172] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Accepted: 02/04/2009] [Indexed: 01/01/2023]
Abstract
Pluripotent blastomeres of mammalian pre-implantation embryos and embryonic stem cells (ESCs) are characterized by limited oxidative capacity and great reliance on anaerobic respiration. Early pre-implantation embryos and undifferentiated ESCs possess small and immature mitochondria located around the nucleus, have low oxygen consumption and express high levels of glycolytic enzymes. However, as embryonic cells and ESCs lose pluripotency and commit to a specific cell fate, the expression of mtDNA transcription and replication factors is upregulated and the number of mitochondria and mtDNA copies/cell increases. Moreover, upon cellular differentiation, mitochondria acquire an elongated morphology with swollen cristae and dense matrices, migrate into wider cytoplasmic areas and increase the levels of oxygen consumption and ATP production as a result of the activation of the more efficient, aerobic metabolism. Since pluripotency seems to be associated with anaerobic metabolism and a poorly developed mitochondrial network and differentiation leads to activation of mitochondrial biogenesis according to the metabolic requirements of the specific cell type, it is hypothesized that reprogramming of somatic cells towards a pluripotent state, by somatic cell nuclear transfer (SCNT), transcription-induced pluripotency or creation of pluripotent cell hybrids, requires acquisition of mitochondrial properties characteristic of pluripotent blastomeres and ESCs.
Collapse
Affiliation(s)
- J M Facucho-Oliveira
- The Mitochondrial and Reproductive Genetics Group, Clinical Sciences Research Institute, Warwick Medical School, University of Warwick, Warwick CV2 2DX, UK
| | | |
Collapse
|
7
|
Role of chromatin states in transcriptional memory. Biochim Biophys Acta Gen Subj 2009; 1790:445-55. [PMID: 19236904 DOI: 10.1016/j.bbagen.2009.02.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 02/10/2009] [Accepted: 02/11/2009] [Indexed: 12/16/2022]
Abstract
Establishment of cellular memory and its faithful propagation is critical for successful development of multicellular organisms. As pluripotent cells differentiate, choices in cell fate are inherited and maintained by their progeny throughout the lifetime of the organism. A major factor in this process is the epigenetic inheritance of specific transcriptional states or transcriptional memory. In this review, we discuss chromatin transitions and mechanisms by which they are inherited by subsequent generations. We also discuss illuminating cases of cellular memory in budding yeast and evaluate whether transcriptional memory in yeast is nuclear or cytoplasmically inherited.
Collapse
|
8
|
Baltus GA, Kowalski MP, Tutter AV, Kadam S. A positive regulatory role for the mSin3A-HDAC complex in pluripotency through Nanog and Sox2. J Biol Chem 2009; 284:6998-7006. [PMID: 19139101 DOI: 10.1074/jbc.m807670200] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Large networks of proteins govern embryonic stem (ES) cell pluripotency. Recent analysis of the critical pluripotency factors Oct4 and Nanog has identified their interaction with multiple transcriptional repression complexes, including members of the mSin3A-HDAC complex, suggesting that these factors could be involved in the regulation of Oct4/Nanog function. mSin3A is critical for embryonic development, but the mechanism by which the mSin3A-HDAC complex is able to regulate ES cell pluripotency is undefined. Herein we show that the mSin3A-HDAC complex positively regulates Nanog expression in ES cells through Sox2, a critical ES cell transcription factor and regulator of Nanog. We have identified the mSin3A-HDAC complex to be present at the Nanog promoter only under proliferating conditions concurrent with histone acetylation. We find that Sox2 associates with mSin3A-HDAC complex members both in vitro and in vivo, similar to the interactions found between Oct4/Nanog and the mSin3A-HDAC complex. Knockdown of mSin3A-HDAC complex members or HDAC inhibitor treatment reduces Nanog expression, and overexpression of mSin3A-HDAC complex subunits stimulates Nanog expression. Our data demonstrate that the mSin3A-HDAC complex can positively regulate Nanog expression under proliferating conditions and that this activity is complementary to mSin3A-mediated p53-dependent silencing of Nanog during differentiation.
Collapse
Affiliation(s)
- Gretchen A Baltus
- Department of Developmental and Molecular Pathways, Novartis Institute for Biomedical Research, Cambridge, Massachusetts 02139, USA
| | | | | | | |
Collapse
|
9
|
Vigneault C, Gravel C, Vallée M, McGraw S, Sirard MA. Unveiling the bovine embryo transcriptome during the maternal-to-embryonic transition. Reproduction 2008; 137:245-57. [PMID: 18987256 DOI: 10.1530/rep-08-0079] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Bovine early embryos are transcriptionally inactive and subsist through the initial developmental stages by the consumption of the maternal supplies provided by the oocyte until its own genome activation. In bovine, the activation of transcription occurs during the 8- to 16-cell stages and is associated with a phase called the maternal-to-embryonic transition (MET) where maternal mRNA are replaced by embryonic ones. Although the importance of the MET is well accepted, since its inhibition blocks embryonic development, very little is known about the transcripts expressed at this crucial step in embryogenesis. In this study, we generated and characterized a cDNA library enriched in embryonic transcripts expressed at the MET in bovine. Suppression subtractive hybridization followed by microarray hybridization was used to isolate more than 300 different transcripts overexpressed in untreated late eight-cell embryos compared with those treated with the transcriptional inhibitor, alpha-amanitin. Validation by quantitative RT-PCR of 15 genes from this library revealed that they had remarkable consistency with the microarray data. The transcripts isolated in this cDNA library have an interesting composition in terms of molecular functions; the majority is involved in gene transcription, RNA processing, or protein biosynthesis, and some are potentially involved in the maintenance of pluripotency observed in embryos. This collection of genes associated with the MET is a novel and potent tool that will be helpful in the understanding of particular events such as the reprogramming of somatic cells by nuclear transfer or for the improvement of embryonic culture conditions.
Collapse
Affiliation(s)
- Christian Vigneault
- Department of Animal Sciences, Centre de Recherche en Biologie de la Reproduction, Pavillon Paul-Comtois, Laval University, Quebec, Canada
| | | | | | | | | |
Collapse
|
10
|
Chickarmane V, Peterson C. A computational model for understanding stem cell, trophectoderm and endoderm lineage determination. PLoS One 2008; 3:e3478. [PMID: 18941526 PMCID: PMC2566811 DOI: 10.1371/journal.pone.0003478] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Accepted: 09/11/2008] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Recent studies have associated the transcription factors, Oct4, Sox2 and Nanog as parts of a self-regulating network which is responsible for maintaining embryonic stem cell properties: self renewal and pluripotency. In addition, mutual antagonism between two of these and other master regulators have been shown to regulate lineage determination. In particular, an excess of Cdx2 over Oct4 determines the trophectoderm lineage whereas an excess of Gata-6 over Nanog determines differentiation into the endoderm lineage. Also, under/over-expression studies of the master regulator Oct4 have revealed that some self-renewal/pluripotency as well as differentiation genes are expressed in a biphasic manner with respect to the concentration of Oct4. METHODOLOGY/PRINCIPAL FINDINGS We construct a dynamical model of a minimalistic network, extracted from ChIP-on-chip and microarray data as well as literature studies. The model is based upon differential equations and makes two plausible assumptions; activation of Gata-6 by Oct4 and repression of Nanog by an Oct4-Gata-6 heterodimer. With these assumptions, the results of simulations successfully describe the biphasic behavior as well as lineage commitment. The model also predicts that reprogramming the network from a differentiated state, in particular the endoderm state, into a stem cell state, is best achieved by over-expressing Nanog, rather than by suppression of differentiation genes such as Gata-6. CONCLUSIONS The computational model provides a mechanistic understanding of how different lineages arise from the dynamics of the underlying regulatory network. It provides a framework to explore strategies of reprogramming a cell from a differentiated state to a stem cell state through directed perturbations. Such an approach is highly relevant to regenerative medicine since it allows for a rapid search over the host of possibilities for reprogramming to a stem cell state.
Collapse
Affiliation(s)
- Vijay Chickarmane
- Division of Biology, California Institute of Technology, Pasadena, California, United States of America
| | - Carsten Peterson
- Computational Biology and Biological Physics, Department of Theoretical Physics, Lund University, Lund, Sweden
- Lund Strategic Research Center for Stem Cell Biology and Cell Therapy, Lund University, Lund, Sweden
- * E-mail:
| |
Collapse
|
11
|
Kermani AJ, Fathi F, Mowla SJ. Characterization and Genetic Manipulation of Human Umbilical Cord Vein Mesenchymal Stem Cells: Potential Application in Cell-Based Gene Therapy. Rejuvenation Res 2008; 11:379-86. [DOI: 10.1089/rej.2008.0674] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Abbas Jafari Kermani
- Department of Genetics, Faculty of Basic Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fardin Fathi
- KDRC, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Seyed Javad Mowla
- Department of Genetics, Faculty of Basic Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
12
|
Abstract
Pluripotent stem cells, similar to more restricted stem cells, are able to both self-renew and generate differentiated progeny. Although this dual functionality has been much studied, the search for molecular signatures of 'stemness' and pluripotency is only now beginning to gather momentum. While the focus of much of this work has been on the transcriptional features of embryonic stem cells, recent studies have indicated the importance of unique epigenetic profiles that keep key developmental genes 'poised' in a repressed but activatable state. Determining how these epigenetic features relate to the transcriptional signatures of ES cells, and whether they are also important in other types of stem cell, is a key challenge for the future.
Collapse
Affiliation(s)
- Mikhail Spivakov
- Lymphocyte Development Group, MRC Clinical Sciences Centre, Imperial College School of Medicine, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | | |
Collapse
|