1
|
Phoon CK, Aristizábal O, Farhoud M, Turnbull DH, Wadghiri YZ. Mouse Cardiovascular Imaging. Curr Protoc 2024; 4:e1116. [PMID: 39222027 PMCID: PMC11371386 DOI: 10.1002/cpz1.1116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The mouse is the mammalian model of choice for investigating cardiovascular biology, given our ability to manipulate it by genetic, pharmacologic, mechanical, and environmental means. Imaging is an important approach to phenotyping both function and structure of cardiac and vascular components. This review details commonly used imaging approaches, with a focus on echocardiography and magnetic resonance imaging, with brief overviews of other imaging modalities. In this update, we also emphasize the importance of rigor and reproducibility in imaging approaches, experimental design, and documentation. Finally, we briefly outline emerging imaging approaches but caution that reliability and validity data may be lacking. © 2024 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Colin K.L. Phoon
- Division of Pediatric Cardiology, Department of Pediatrics, New York University Grossman School of Medicine, New York, NY
| | - Orlando Aristizábal
- Department of Radiology, Bernard and Irene Schwartz Center for Biomedical Imaging, & Center for Advanced Imaging Innovation and Research, New York University Grossman School of Medicine, New York, NY
- Preclinical Imaging, Division for Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY
| | | | - Daniel H. Turnbull
- Department of Radiology, Bernard and Irene Schwartz Center for Biomedical Imaging, & Center for Advanced Imaging Innovation and Research, New York University Grossman School of Medicine, New York, NY
- Department of Pathology, New York University Grossman School of Medicine, New York, New York
| | - Youssef Z. Wadghiri
- Department of Radiology, Bernard and Irene Schwartz Center for Biomedical Imaging, & Center for Advanced Imaging Innovation and Research, New York University Grossman School of Medicine, New York, NY
- Preclinical Imaging, Division for Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY
| |
Collapse
|
2
|
Raiola M, Sendra M, Torres M. Imaging Approaches and the Quantitative Analysis of Heart Development. J Cardiovasc Dev Dis 2023; 10:145. [PMID: 37103024 PMCID: PMC10144158 DOI: 10.3390/jcdd10040145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 03/25/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Heart morphogenesis is a complex and dynamic process that has captivated researchers for almost a century. This process involves three main stages, during which the heart undergoes growth and folding on itself to form its common chambered shape. However, imaging heart development presents significant challenges due to the rapid and dynamic changes in heart morphology. Researchers have used different model organisms and developed various imaging techniques to obtain high-resolution images of heart development. Advanced imaging techniques have allowed the integration of multiscale live imaging approaches with genetic labeling, enabling the quantitative analysis of cardiac morphogenesis. Here, we discuss the various imaging techniques used to obtain high-resolution images of whole-heart development. We also review the mathematical approaches used to quantify cardiac morphogenesis from 3D and 3D+time images and to model its dynamics at the tissue and cellular levels.
Collapse
Affiliation(s)
- Morena Raiola
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; (M.R.); (M.S.)
- Departamento de Ingeniería Biomedica, ETSI de Telecomunicaciones, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Miquel Sendra
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; (M.R.); (M.S.)
| | - Miguel Torres
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; (M.R.); (M.S.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| |
Collapse
|
3
|
Umezu K, Larina IV. Optical coherence tomography for dynamic investigation of mammalian reproductive processes. Mol Reprod Dev 2023; 90:3-13. [PMID: 36574640 PMCID: PMC9877170 DOI: 10.1002/mrd.23665] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/13/2022] [Accepted: 12/17/2022] [Indexed: 12/28/2022]
Abstract
The biological events associated with mammalian reproductive processes are highly dynamic and tightly regulated by molecular, genetic, and biomechanical factors. Implementation of live imaging in reproductive research is vital for the advancement of our understanding of normal reproductive physiology and for improving the management of reproductive disorders. Optical coherence tomography (OCT) is emerging as a promising tool for dynamic volumetric imaging of various reproductive processes in mice and other animal models. In this review, we summarize recent studies employing OCT-based approaches toward the investigation of reproductive processes in both, males and females. We describe how OCT can be applied to study structural features of the male reproductive system and sperm transport through the male reproductive tract. We review OCT applications for in vitro and dynamic in vivo imaging of the female reproductive system, staging and tracking of oocytes and embryos, and investigations of the oocyte/embryo transport through the oviduct. We describe how the functional OCT approach can be applied to the analysis of cilia dynamics within the male and female reproductive systems. We also discuss the areas of research, where OCT could find potential applications to progress our understanding of normal reproductive physiology and reproductive disorders.
Collapse
Affiliation(s)
- Kohei Umezu
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas, USA
| | - Irina V Larina
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
4
|
Scully DM, Larina IV. Mouse embryo phenotyping with optical coherence tomography. Front Cell Dev Biol 2022; 10:1000237. [PMID: 36158219 PMCID: PMC9500480 DOI: 10.3389/fcell.2022.1000237] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/26/2022] [Indexed: 01/25/2023] Open
Abstract
With the explosion of gene editing tools in recent years, there has been a much greater demand for mouse embryo phenotyping, and traditional methods such as histology and histochemistry experienced a methodological renaissance as they became the principal tools for phenotyping. However, it is important to explore alternative phenotyping options to maximize time and resources and implement volumetric structural analysis for enhanced investigation of phenotypes. Cardiovascular phenotyping, in particular, is important to perform in vivo due to the dramatic structural and functional changes that occur in heart development over relatively short periods of time. Optical coherence tomography (OCT) is one of the most exciting advanced imaging techniques emerging within the field of developmental biology, and this review provides a summary of how it is currently being implemented in mouse embryo investigations and phenotyping. This review aims to provide an understanding of the approaches used in optical coherence tomography and how they can be applied in embryology and developmental biology, with the overall aim of bridging the gap between biology and technology.
Collapse
|
5
|
Rykiel G, López CS, Riesterer JL, Fries I, Deosthali S, Courchaine K, Maloyan A, Thornburg K, Rugonyi S. Multiscale cardiac imaging spanning the whole heart and its internal cellular architecture in a small animal model. eLife 2020; 9:e58138. [PMID: 33078706 PMCID: PMC7595733 DOI: 10.7554/elife.58138] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 10/09/2020] [Indexed: 12/18/2022] Open
Abstract
Cardiac pumping depends on the morphological structure of the heart, but also on its subcellular (ultrastructural) architecture, which enables cardiac contraction. In cases of congenital heart defects, localized ultrastructural disruptions that increase the risk of heart failure are only starting to be discovered. This is in part due to a lack of technologies that can image the three-dimensional (3D) heart structure, to assess malformations; and its ultrastructure, to assess organelle disruptions. We present here a multiscale, correlative imaging procedure that achieves high-resolution images of the whole heart, using 3D micro-computed tomography (micro-CT); and its ultrastructure, using 3D scanning electron microscopy (SEM). In a small animal model (chicken embryo), we achieved uniform fixation and staining of the whole heart, without losing ultrastructural preservation on the same sample, enabling correlative multiscale imaging. Our approach enables multiscale studies in models of congenital heart disease and beyond.
Collapse
Affiliation(s)
- Graham Rykiel
- Biomedical Engineering, Oregon Health & Science UniversityPortlandUnited States
| | - Claudia S López
- Biomedical Engineering, Oregon Health & Science UniversityPortlandUnited States
- Multiscale Microscopy Core, Oregon Health & Science UniversityPortlandUnited States
| | - Jessica L Riesterer
- Biomedical Engineering, Oregon Health & Science UniversityPortlandUnited States
- Multiscale Microscopy Core, Oregon Health & Science UniversityPortlandUnited States
| | - Ian Fries
- Biomedical Engineering, Oregon Health & Science UniversityPortlandUnited States
| | - Sanika Deosthali
- Biomedical Engineering, Oregon Health & Science UniversityPortlandUnited States
| | | | - Alina Maloyan
- Center for Developmental Health, Knight Cardiovascular Institute, Oregon Health & Science UniversityPortlandUnited States
| | - Kent Thornburg
- Center for Developmental Health, Knight Cardiovascular Institute, Oregon Health & Science UniversityPortlandUnited States
| | - Sandra Rugonyi
- Biomedical Engineering, Oregon Health & Science UniversityPortlandUnited States
- Center for Developmental Health, Knight Cardiovascular Institute, Oregon Health & Science UniversityPortlandUnited States
| |
Collapse
|
6
|
Lopez AL, Wang S, Larina IV. Embryonic Mouse Cardiodynamic OCT Imaging. J Cardiovasc Dev Dis 2020; 7:E42. [PMID: 33020375 PMCID: PMC7712379 DOI: 10.3390/jcdd7040042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/10/2020] [Accepted: 09/21/2020] [Indexed: 12/11/2022] Open
Abstract
The embryonic heart is an active and developing organ. Genetic studies in mouse models have generated great insight into normal heart development and congenital heart defects, and suggest mechanical forces such as heart contraction and blood flow to be implicated in cardiogenesis and disease. To explore this relationship and investigate the interplay between biomechanical forces and cardiac development, live dynamic cardiac imaging is essential. Cardiodynamic imaging with optical coherence tomography (OCT) is proving to be a unique approach to functional analysis of the embryonic mouse heart. Its compatibility with live culture systems, reagent-free contrast, cellular level resolution, and millimeter scale imaging depth make it capable of imaging the heart volumetrically and providing spatially resolved information on heart wall dynamics and blood flow. Here, we review the progress made in mouse embryonic cardiodynamic imaging with OCT, highlighting leaps in technology to overcome limitations in resolution and acquisition speed. We describe state-of-the-art functional OCT methods such as Doppler OCT and OCT angiography for blood flow imaging and quantification in the beating heart. As OCT is a continuously developing technology, we provide insight into the future developments of this area, toward the investigation of normal cardiogenesis and congenital heart defects.
Collapse
Affiliation(s)
- Andrew L. Lopez
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA;
| | - Shang Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Castle Point on Hudson, Hoboken, NJ 07030, USA;
| | - Irina V. Larina
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA;
| |
Collapse
|
7
|
Wang S, Larina IV, Larin KV. Label-free optical imaging in developmental biology [Invited]. BIOMEDICAL OPTICS EXPRESS 2020; 11:2017-2040. [PMID: 32341864 PMCID: PMC7173889 DOI: 10.1364/boe.381359] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/30/2020] [Accepted: 02/25/2020] [Indexed: 05/03/2023]
Abstract
Application of optical imaging in developmental biology marks an exciting frontier in biomedical optics. Optical resolution and imaging depth allow for investigation of growing embryos at subcellular, cellular, and whole organism levels, while the complexity and variety of embryonic processes set multiple challenges stimulating the development of various live dynamic embryonic imaging approaches. Among other optical methods, label-free optical techniques attract an increasing interest as they allow investigation of developmental mechanisms without application of exogenous markers or fluorescent reporters. There has been a boost in development of label-free optical imaging techniques for studying embryonic development in animal models over the last decade, which revealed new information about early development and created new areas for investigation. Here, we review the recent progress in label-free optical embryonic imaging, discuss specific applications, and comment on future developments at the interface of photonics, engineering, and developmental biology.
Collapse
Affiliation(s)
- Shang Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, NJ 07030, USA
| | - Irina V. Larina
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Kirill V. Larin
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
- Department of Biomedical Engineering, University of Houston, 3605 Cullen Boulevard, Houston, TX 77204, USA
| |
Collapse
|
8
|
Follow Me! A Tale of Avian Heart Development with Comparisons to Mammal Heart Development. J Cardiovasc Dev Dis 2020; 7:jcdd7010008. [PMID: 32156044 PMCID: PMC7151090 DOI: 10.3390/jcdd7010008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/16/2020] [Accepted: 02/21/2020] [Indexed: 12/19/2022] Open
Abstract
Avian embryos have been used for centuries to study development due to the ease of access. Because the embryos are sheltered inside the eggshell, a small window in the shell is ideal for visualizing the embryos and performing different interventions. The window can then be covered, and the embryo returned to the incubator for the desired amount of time, and observed during further development. Up to about 4 days of chicken development (out of 21 days of incubation), when the egg is opened the embryo is on top of the yolk, and its heart is on top of its body. This allows easy imaging of heart formation and heart development using non-invasive techniques, including regular optical microscopy. After day 4, the embryo starts sinking into the yolk, but still imaging technologies, such as ultrasound, can tomographically image the embryo and its heart in vivo. Importantly, because like the human heart the avian heart develops into a four-chambered heart with valves, heart malformations and pathologies that human babies suffer can be replicated in avian embryos, allowing a unique developmental window into human congenital heart disease. Here, we review avian heart formation and provide comparisons to the mammalian heart.
Collapse
|
9
|
Su Y, Wei L, Tan H, Li J, Li W, Fu L, Wang T, Kang L, Yao XS. Optical coherence tomography as a noninvasive 3D real time imaging tool for the rapid evaluation of phenotypic variations in insect embryonic development. JOURNAL OF BIOPHOTONICS 2020; 13:e201960047. [PMID: 31682322 DOI: 10.1002/jbio.201960047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/24/2019] [Accepted: 10/24/2019] [Indexed: 06/10/2023]
Abstract
Noninvasive visualization of embryos at different development stages is crucial for the understanding of the basic developmental biology. It is therefore desirable to have an imaging tool capable of rapidly evaluating the effects of gene manipulation or genome editing in developing embryos for the studies of gene functions and genetic engineering. Here, we propose and demonstrate a novel use of optical coherence tomography (OCT) to noninvasively exam the embryonic development of the migratory locusts in real time with 3-dimensional (3D) view capability. In particular, we obtain the sufficiently high spatial resolution tomographic 2D and 3D images of live locust embryos throughout their development processes. We show that not only we are able to noninvasively observe all previously known forms of blastokinesis as an embryo develops, such as anatrepsis, katatrepsis, revolution, rotation and diapauses, and determine their precise occurring time or duration, but also discover an unreported rotation form we named "twist." In addition, with the OCT images we determined the exact occurring time of diapauses of the locusts from Tibetan plateau for the first time. Finally, we demonstrate that OCT systems can be used to rapidly capture the development defects of genetically modified embryos in which certain genes essential for embryonic development were suppressed by RNA interference. Our work shows that OCT is an enabling imaging tool with sufficient spatial resolution for the rapid evaluation of embryonic variations of small animals.
Collapse
Affiliation(s)
- Ya Su
- Photonics Information Innovation Center, Hebei Provincial Center for Optical Sensing Innovations, College of Physics Science & Technology, Hebei University, Baoding, China
| | - Liya Wei
- College of Life Sciences, Hebei University, Baoding, China
| | - Hao Tan
- Photonics Information Innovation Center, Hebei Provincial Center for Optical Sensing Innovations, College of Physics Science & Technology, Hebei University, Baoding, China
| | - Jing Li
- College of Life Sciences, Hebei University, Baoding, China
| | - Wenping Li
- Photonics Information Innovation Center, Hebei Provincial Center for Optical Sensing Innovations, College of Physics Science & Technology, Hebei University, Baoding, China
| | - Lei Fu
- Photonics Information Innovation Center, Hebei Provincial Center for Optical Sensing Innovations, College of Physics Science & Technology, Hebei University, Baoding, China
| | - Tongxin Wang
- College of Life Sciences, Hebei University, Baoding, China
| | - Le Kang
- College of Life Sciences, Hebei University, Baoding, China
| | - X Steve Yao
- Photonics Information Innovation Center, Hebei Provincial Center for Optical Sensing Innovations, College of Physics Science & Technology, Hebei University, Baoding, China
| |
Collapse
|
10
|
Courchaine K, Rugonyi S. Optical coherence tomography for in vivo imaging of endocardial to mesenchymal transition during avian heart development. BIOMEDICAL OPTICS EXPRESS 2019; 10:5989-5995. [PMID: 31799059 PMCID: PMC6865111 DOI: 10.1364/boe.10.005989] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/20/2019] [Accepted: 10/28/2019] [Indexed: 05/08/2023]
Abstract
The endocardial to mesenchymal transition (EndMT) that occurs in endocardial cushions during heart development is critical for proper heart septation and formation of the heart's valves. In EndMT, cells delaminate from the endocardium and migrate into the previously acellular endocardial cushions. Optical coherence tomography (OCT) imaging uses the optical properties of tissues for contrast, and during early development OCT can differentiate cellular versus acellular tissues. Here we show that OCT can be used to non-invasively track EndMT progression in vivo in the outflow tract cushions of chicken embryos. This enables in vivo studies to elucidate factors leading to cardiac malformations.
Collapse
Affiliation(s)
- Katherine Courchaine
- Department of Biomedical Engineering, Oregon Health & Science University, 3303 SW Bond Ave. Mail/Code:CH13B, Portland, OR 97239, USA
| | - Sandra Rugonyi
- Department of Biomedical Engineering, Oregon Health & Science University, 3303 SW Bond Ave. Mail/Code:CH13B, Portland, OR 97239, USA
| |
Collapse
|
11
|
Huang Y, Li M, Huang D, Qiu Q, Lin W, Liu J, Yang W, Yao Y, Yan G, Qu N, Tuchin VV, Fan S, Liu G, Zhao Q, Chen X. Depth-Resolved Enhanced Spectral-Domain OCT Imaging of Live Mammalian Embryos Using Gold Nanoparticles as Contrast Agent. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1902346. [PMID: 31304667 DOI: 10.1002/smll.201902346] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/21/2019] [Indexed: 05/12/2023]
Abstract
High-resolution and real-time visualization of the morphological changes during embryonic development are critical for studying congenital anomalies. Optical coherence tomography (OCT) has been used to investigate the process of embryogenesis. However, the structural visibility of the embryo is decreased with the depth due to signal roll-off and high light scattering. To overcome these obstacles, in this study, combined is a spectral-domain OCT (SD-OCT) with gold nanorods (GNRs) for 2D/3D imaging of live mouse embryos. Inductively coupled plasma mass spectrometry is used to confirm that GNRs can be effectively delivered to the embryos during ex vivo culture. OCT signal, image contrast, and penetration depth are all enhanced on the embryos with GNRs. These results show that after GNR treatment, more accurate spatial localization and better contrasting of the borders among organs can be observed on E9.5 and E10.5 mouse embryos. Furthermore, the strong optical absorbance of GNRs results in much clearer 3D images of the embryos, which can be used for calculating the heart areas and volumes of E9.5 and E10.5 embryos. These findings provide a promising strategy for monitoring organ development and detecting congenital structural abnormalities in mice.
Collapse
Affiliation(s)
- Yali Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Organ Transplantation Institute, Center for Molecular Imaging and Translational Medicine, School of Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Minghui Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Organ Transplantation Institute, Center for Molecular Imaging and Translational Medicine, School of Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Doudou Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Organ Transplantation Institute, Center for Molecular Imaging and Translational Medicine, School of Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Qi Qiu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Organ Transplantation Institute, Center for Molecular Imaging and Translational Medicine, School of Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Wenzhen Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Organ Transplantation Institute, Center for Molecular Imaging and Translational Medicine, School of Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Jiyan Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Organ Transplantation Institute, Center for Molecular Imaging and Translational Medicine, School of Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Wensheng Yang
- Department of Pathology, Affiliated Chenggong Hospital, Xiamen University, Xiamen, 361000, China
| | - Youliang Yao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Organ Transplantation Institute, Center for Molecular Imaging and Translational Medicine, School of Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Guoliang Yan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Organ Transplantation Institute, Center for Molecular Imaging and Translational Medicine, School of Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Ning Qu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Organ Transplantation Institute, Center for Molecular Imaging and Translational Medicine, School of Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Valery V Tuchin
- Research-Educational Institute of Optics and Biophotonics, Saratov State University, Saratov, 410012, Russia
- Laboratory of Laser Diagnostics of Technical and Living Systems, Institute of Precision Mechanics and Control of the Russian Academy of Science, Saratov, 410028, Russia
- Laboratory of Molecular Imaging, Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia
- Interdisciplinary Laboratory of Biophotonics, Tomsk State University, Tomsk, 634050, Russia
| | - Shanhui Fan
- College of Life Information Science and Instrument Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Organ Transplantation Institute, Center for Molecular Imaging and Translational Medicine, School of Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Qingliang Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Organ Transplantation Institute, Center for Molecular Imaging and Translational Medicine, School of Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| |
Collapse
|
12
|
Courchaine K, Rykiel G, Rugonyi S. Influence of blood flow on cardiac development. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 137:95-110. [PMID: 29772208 PMCID: PMC6109420 DOI: 10.1016/j.pbiomolbio.2018.05.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/06/2018] [Accepted: 05/08/2018] [Indexed: 12/11/2022]
Abstract
The role of hemodynamics in cardiovascular development is not well understood. Indeed, it would be remarkable if it were, given the dauntingly complex array of intricately synchronized genetic, molecular, mechanical, and environmental factors at play. However, with congenital heart defects affecting around 1 in 100 human births, and numerous studies pointing to hemodynamics as a factor in cardiovascular morphogenesis, this is not an area in which we can afford to remain in the dark. This review seeks to present the case for the importance of research into the biomechanics of the developing cardiovascular system. This is accomplished by i) illustrating the basics of some of the highly complex processes involved in heart development, and discussing the known influence of hemodynamics on those processes; ii) demonstrating how altered hemodynamic environments have the potential to bring about morphological anomalies, citing studies in multiple animal models with a variety of perturbation methods; iii) providing examples of widely used technological innovations which allow for accurate measurement of hemodynamic parameters in embryos; iv) detailing the results of studies in avian embryos which point to exciting correlations between various hemodynamic manipulations in early development and phenotypic defect incidence in mature hearts; and finally, v) stressing the relevance of uncovering specific biomechanical pathways involved in cardiovascular formation and remodeling under adverse conditions, to the potential treatment of human patients. The time is ripe to unravel the contributions of hemodynamics to cardiac development, and to recognize their frequently neglected role in the occurrence of heart malformation phenotypes.
Collapse
Affiliation(s)
- Katherine Courchaine
- Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland OR, USA
| | - Graham Rykiel
- Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland OR, USA
| | - Sandra Rugonyi
- Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland OR, USA.
| |
Collapse
|
13
|
Neeman M. Perspectives: MRI of angiogenesis. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 292:99-105. [PMID: 29705037 PMCID: PMC6542363 DOI: 10.1016/j.jmr.2018.04.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 04/03/2018] [Accepted: 04/11/2018] [Indexed: 05/07/2023]
Abstract
Angiogenesis, the expansion of the vascular bed, is an important component in remodeling of tissues and organs. Such remodeling is essential for coping with substantial and sustained increase in the demands for supply of oxygen and nutrients and the timely removal of waste products. The vasculature, and its effectiveness in systemic delivery to all parts of the body, regulates the distribution of immune cells and the delivery of therapeutics as well as the dissemination of disease. Therefore, the vascular bed is possibly one of the key organs involved in homeostasis, in health and disease. The critical role of the vasculature in health, and the accessibility to non invasive probing by MRI, renders MRI as a modality of choice for monitoring the vasculature and its adaption to challenges.
Collapse
Affiliation(s)
- Michal Neeman
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
14
|
Singh M, Wu C, Mayerich D, Dickinson ME, Larina IV, Larin KV. Multimodal embryonic imaging using optical coherence tomography, selective plane illumination microscopy, and optical projection tomography. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2016:3922-3925. [PMID: 28269143 DOI: 10.1109/embc.2016.7591585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The murine model is commonly utilized for studying developmental diseases. Different optical techniques have been developed to image mouse embryos, but each has its own set of limitations and restrictions. In this study, we compare the performance of the well-established technique of optical coherence tomography (OCT) to the relatively new methods of selective plane illumination microscopy (SPIM) and optical projection tomography (OPT) to assess murine embryonic development. OCT can provide label free high resolution images of the mouse embryo, but suffers from light attenuation that limits visualization of deeper structures. SPIM is able to image shallow regions with great detail utilizing fluorescent contrast. OPT can provide superior imaging depth, and can also use fluorescence labels but, it requires samples to be fixed and cleared before imaging. OCT requires no modification of the embryo, and thus, can be used in vivo and in utero. In this study, we compare the efficacy of OCT, SPIM, and OPT for imaging murine embryonic development. The data demonstrate the superior capability of SPIM and OPT for imaging fine structures with high resolution while only OCT can provide structural and functional imaging of live embryos with micrometer scale resolution.
Collapse
|
15
|
Raghunathan R, Singh M, Dickinson ME, Larin KV. Optical coherence tomography for embryonic imaging: a review. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:50902. [PMID: 27228503 PMCID: PMC4881290 DOI: 10.1117/1.jbo.21.5.050902] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 04/25/2016] [Indexed: 05/18/2023]
Abstract
Embryogenesis is a highly complex and dynamic process, and its visualization is crucial for understanding basic physiological processes during development and for identifying and assessing possible defects, malformations, and diseases. While traditional imaging modalities, such as ultrasound biomicroscopy, micro-magnetic resonance imaging, and micro-computed tomography, have long been adapted for embryonic imaging, these techniques generally have limitations in their speed, spatial resolution, and contrast to capture processes such as cardiodynamics during embryogenesis. Optical coherence tomography (OCT) is a noninvasive imaging modality with micrometer-scale spatial resolution and imaging depth up to a few millimeters in tissue. OCT has bridged the gap between ultrahigh resolution imaging techniques with limited imaging depth like confocal microscopy and modalities, such as ultrasound sonography, which have deeper penetration but poorer spatial resolution. Moreover, the noninvasive nature of OCT has enabled live imaging of embryos without any external contrast agents. We review how OCT has been utilized to study developing embryos and also discuss advances in techniques used in conjunction with OCT to understand embryonic development.
Collapse
Affiliation(s)
- Raksha Raghunathan
- University of Houston, Department of Biomedical Engineering, 3517 Cullen Boulevard, Room 2027, Houston, Texas 77204-5060, United States
| | - Manmohan Singh
- University of Houston, Department of Biomedical Engineering, 3517 Cullen Boulevard, Room 2027, Houston, Texas 77204-5060, United States
| | - Mary E. Dickinson
- Baylor College of Medicine, Department of Molecular Physiology and Biophysics, One Baylor Plaza- BCM335, Houston, Texas 77030, United States
| | - Kirill V. Larin
- University of Houston, Department of Biomedical Engineering, 3517 Cullen Boulevard, Room 2027, Houston, Texas 77204-5060, United States
- Baylor College of Medicine, Department of Molecular Physiology and Biophysics, One Baylor Plaza- BCM335, Houston, Texas 77030, United States
| |
Collapse
|
16
|
Abstract
The mouse is the mammalian model of choice for investigating cardiovascular biology, given our ability to manipulate it by genetic, pharmacologic, mechanical, and environmental means. Imaging is an important approach to phenotyping both function and structure of cardiac and vascular components. This review details commonly used imaging approaches, with a focus on echocardiography and magnetic resonance imaging and brief overviews of other imaging modalities. We also briefly outline emerging imaging approaches but caution that reliability and validity data may be lacking.
Collapse
Affiliation(s)
- Colin K L Phoon
- Division of Pediatric Cardiology, Department of Pediatrics, New York University School of Medicine, New York, New York
| | - Daniel H Turnbull
- Departments of Radiology and Pathology, New York University School of Medicine, New York, New York.,Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York
| |
Collapse
|
17
|
A Novel Procedure for Rapid Imaging of Adult Mouse Brains with MicroCT Using Iodine-Based Contrast. PLoS One 2015; 10:e0142974. [PMID: 26571123 PMCID: PMC4646620 DOI: 10.1371/journal.pone.0142974] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 10/29/2015] [Indexed: 01/14/2023] Open
Abstract
High-resolution Magnetic Resonance Imaging (MRI) has been the primary modality for obtaining 3D cross-sectional anatomical information in animals for soft tissue, particularly brain. However, costs associated with MRI can be considerably high for large phenotypic screens for gross differences in the structure of the brain due to pathology and/or experimental manipulations. MicroCT (mCT), especially benchtop mCT, is becoming a common laboratory equipment with throughput rates equal or faster than any form of high-resolution MRI at lower costs. Here we explore adapting previously developed contrast based mCT to image adult mouse brains in-situ. We show that 2% weight per volume (w/v) iodine-potassium iodide solution can be successfully used to image adult mouse brains within 48 hours post-mortem when a structural support matrix is used. We demonstrate that hydrogel can be effectively used as a perfusant which limits the tissue shrinkage due to iodine.
Collapse
|
18
|
Deán-Ben XL, Ford SJ, Razansky D. High-frame rate four dimensional optoacoustic tomography enables visualization of cardiovascular dynamics and mouse heart perfusion. Sci Rep 2015; 5:10133. [PMID: 26130401 PMCID: PMC4486932 DOI: 10.1038/srep10133] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 03/31/2015] [Indexed: 12/17/2022] Open
Abstract
Functional imaging of mouse models of cardiac health and disease provides a major contribution to our fundamental understanding of the mammalian heart. However, imaging murine hearts presents significant challenges due to their small size and rapid heart rate. Here we demonstrate the feasibility of high-frame-rate, noninvasive optoacoustic imaging of the murine heart. The temporal resolution of 50 three-dimensional frames per second provides functional information at important phases of the cardiac cycle without the use of gating or other motion-reduction methods. Differentiation of the blood oxygenation state in the heart chambers was enabled by exploiting the wavelength dependence of optoacoustic signals. Real-time volumetric tracking of blood perfusion in the cardiac chambers was also evaluated using indocyanine green. Taken together, the newly-discovered capacities offer a unique tool set for in-vivo structural and functional imaging of the whole heart with high spatio-temporal resolution in all three dimensions.
Collapse
Affiliation(s)
- Xosé Luís Deán-Ben
- Institute for Biological and Medical Imaging (IBMI), Helmholtz Center Munich, Ingolstädter Landstraβe 1, 85764 Neuherberg, Germany
| | - Steven James Ford
- Institute for Biological and Medical Imaging (IBMI), Helmholtz Center Munich, Ingolstädter Landstraβe 1, 85764 Neuherberg, Germany
| | - Daniel Razansky
- 1] Institute for Biological and Medical Imaging (IBMI), Helmholtz Center Munich, Ingolstädter Landstraβe 1, 85764 Neuherberg, Germany [2] Faculty of Medicine, Technical University of Munich, Ismaninger Straβe 22, 81675 Munich, Germany
| |
Collapse
|
19
|
Chan G, Balaratnasingam C, Xu J, Mammo Z, Han S, Mackenzie P, Merkur A, Kirker A, Albiani D, Sarunic MV, Yu DY. In vivo optical imaging of human retinal capillary networks using speckle variance optical coherence tomography with quantitative clinico-histological correlation. Microvasc Res 2015; 100:32-9. [DOI: 10.1016/j.mvr.2015.04.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 04/11/2015] [Accepted: 04/19/2015] [Indexed: 10/23/2022]
|
20
|
Syed SH, Coughlin AJ, Garcia MD, Wang S, West JL, Larin KV, Larina IV. Optical coherence tomography guided microinjections in live mouse embryos: high-resolution targeted manipulation for mouse embryonic research. JOURNAL OF BIOMEDICAL OPTICS 2015; 20:78001. [PMID: 25581495 DOI: 10.1117/1.jbo.20.7.078001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 05/29/2015] [Indexed: 05/19/2023]
Abstract
The ability to conduct highly localized delivery of contrast agents, viral vectors, therapeutic or pharmacological agents, and signaling molecules or dyes to live mammalian embryos is greatly desired to enable a variety of studies in the field of developmental biology, such as investigating the molecular regulation of cardiovascular morphogenesis. To meet such a demand, we introduce, for the first time, the concept of employing optical coherence tomography (OCT)-guide microinjections in live mouse embryos, which provides precisely targeted manipulation with spatial resolution at the micrometer scale. The feasibility demonstration is performed with experimental studies on cultured live mouse embryos at E8.5 and E9.5. Additionally, we investigate the OCT-guided microinjection of gold–silica nanoshells to the yolk sac vasculature of live cultured mouse embryos at the stage when the heart just starts to beat, as a potential approach for dynamic assessment of cardiovascular form and function before the onset of blood cell circulation. Also, the capability of OCT to quantitatively monitor and measure injection volume is presented. Our results indicate that OCT-guided microinjection could be a useful tool for mouse embryonic research.
Collapse
Affiliation(s)
- Saba H Syed
- Baylor College of Medicine, Department of Molecular Physiology and Biophysics, One Baylor Plaza, Houston, Texas 77030, United States
| | - Andrew J Coughlin
- Duke University, Department of Biomedical Engineering, Hudson Hall, Durham, North Carolina 27708, United States
| | - Monica D Garcia
- Baylor College of Medicine, Department of Molecular Physiology and Biophysics, One Baylor Plaza, Houston, Texas 77030, United States
| | - Shang Wang
- Baylor College of Medicine, Department of Molecular Physiology and Biophysics, One Baylor Plaza, Houston, Texas 77030, United States
| | - Jennifer L West
- Duke University, Department of Biomedical Engineering, Hudson Hall, Durham, North Carolina 27708, United States
| | - Kirill V Larin
- Baylor College of Medicine, Department of Molecular Physiology and Biophysics, One Baylor Plaza, Houston, Texas 77030, United StatescUniversity of Houston, Department of Biomedical Engineering, 4605 Cullen Boulevard, Houston, Texas 77204, United States
| | - Irina V Larina
- Baylor College of Medicine, Department of Molecular Physiology and Biophysics, One Baylor Plaza, Houston, Texas 77030, United States
| |
Collapse
|
21
|
Syed SH, Coughlin AJ, Garcia MD, Wang S, West JL, Larin KV, Larina IV. Optical coherence tomography guided microinjections in live mouse embryos: high-resolution targeted manipulation for mouse embryonic research. JOURNAL OF BIOMEDICAL OPTICS 2015; 20:051020. [PMID: 25581495 PMCID: PMC4405081 DOI: 10.1117/1.jbo.20.5.051020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 12/02/2014] [Indexed: 05/08/2023]
Abstract
The ability to conduct highly localized delivery of contrast agents, viral vectors, therapeutic or pharmacological agents, and signaling molecules or dyes to live mammalian embryos is greatly desired to enable a variety of studies in the field of developmental biology, such as investigating the molecular regulation of cardiovascular morphogenesis. To meet such a demand, we introduce, for the first time, the concept of employing optical coherence tomography (OCT)-guide microinjections in live mouse embryos, which provides precisely targeted manipulation with spatial resolution at the micrometer scale. The feasibility demonstration is performed with experimental studies on cultured live mouse embryos at E8.5 and E9.5. Additionally, we investigate the OCT-guided microinjection of gold–silica nanoshells to the yolk sac vasculature of live cultured mouse embryos at the stage when the heart just starts to beat, as a potential approach for dynamic assessment of cardiovascular form and function before the onset of blood cell circulation. Also, the capability of OCT to quantitatively monitor and measure injection volume is presented. Our results indicate that OCT-guided microinjection could be a useful tool for mouse embryonic research.
Collapse
Affiliation(s)
- Saba H. Syed
- Baylor College of Medicine, Department of Molecular Physiology and Biophysics, One Baylor Plaza, Houston, Texas 77030, United States
| | - Andrew J. Coughlin
- Duke University, Department of Biomedical Engineering, Hudson Hall, Durham, North Carolina 27708, United States
| | - Monica D. Garcia
- Baylor College of Medicine, Department of Molecular Physiology and Biophysics, One Baylor Plaza, Houston, Texas 77030, United States
| | - Shang Wang
- Baylor College of Medicine, Department of Molecular Physiology and Biophysics, One Baylor Plaza, Houston, Texas 77030, United States
| | - Jennifer L. West
- Duke University, Department of Biomedical Engineering, Hudson Hall, Durham, North Carolina 27708, United States
| | - Kirill V. Larin
- Baylor College of Medicine, Department of Molecular Physiology and Biophysics, One Baylor Plaza, Houston, Texas 77030, United States
- University of Houston, Department of Biomedical Engineering, 4605 Cullen Boulevard, Houston, Texas 77204, United States
| | - Irina V. Larina
- Baylor College of Medicine, Department of Molecular Physiology and Biophysics, One Baylor Plaza, Houston, Texas 77030, United States
- Address all correspondence to: Irina V. Larina, E-mail:
| |
Collapse
|
22
|
Filas BA, Xu G, Taber LA. Probing regional mechanical properties of embryonic tissue using microindentation and optical coherence tomography. Methods Mol Biol 2015; 1189:3-16. [PMID: 25245683 DOI: 10.1007/978-1-4939-1164-6_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Physical forces regulate morphogenetic movements and the mechanical properties of embryonic tissues during development. Such quantities are closely interrelated, as increases in material stiffness can limit force-induced deformations and vice versa. Here we present a minimally invasive method to quantify spatiotemporal changes in mechanical properties during morphogenesis. Regional stiffness is measured using microindentation, while displacement and strain distributions near the indenter are computed from the motion of tissue labels tracked from 3-D optical coherence tomography (OCT) images. Applied forces, displacements, and strain distributions are then used in conjunction with finite-element models to estimate regional material properties. This method is applicable to a wide variety of experimental systems and can be used to better understand the dynamic interrelation between tissue deformations and material properties that occur during time-lapse studies of embryogenesis. Such information is important to improve our understanding of the etiology of congenital disease where dynamic changes in mechanical properties are likely involved, such as situs inversus in the heart, hydrocephalus in the brain, and microphthalmia in the eye.
Collapse
Affiliation(s)
- Benjamen A Filas
- Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | | | | |
Collapse
|
23
|
Brown K, Harvey M. Optical coherence tomography: age estimation of Calliphora vicina pupae in vivo? Forensic Sci Int 2014; 242:157-161. [PMID: 25064575 DOI: 10.1016/j.forsciint.2014.07.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 07/01/2014] [Accepted: 07/02/2014] [Indexed: 11/16/2022]
Abstract
Necrophagous blowfly pupae are valuable contributors to the estimation of post-mortem interval, should an accurate age estimate be obtained. At present, this is reliant on a combination of rearing and destructive methods conducted on preserved samples, including morphological observation and gene expression analyses. This study demonstrates the use of optical coherence tomography (OCT) as a tool for in vivo morphological observation and pupal age estimation. Using a Michelson OCT microscope, alive and preserved four and ten-day old Calliphora vicina pupae were scanned in different orientations. Two and three-dimensional images were created. Morphological characteristics such as the brain, mouthparts and legs were identifiable in both living and preserved samples, with distinct differences noted between the two ages. Absorption of light by the puparium results in a vertical resolution of 1-2 mm, preventing observation of deeper tissues. The use of contrast agents or a longer wavelength laser would improve the images obtainable. At present, the data suggests OCT provides a primary view of external and internal morphology, which can be used to distinguish younger and older pupae for further analysis of age and PMI estimation.
Collapse
Affiliation(s)
- Katherine Brown
- School of Biological Sciences, University of Portsmouth, King Henry Building, King Henry I Street, Portsmouth PO1 2DY, England.
| | - Michelle Harvey
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia.
| |
Collapse
|
24
|
Wong MD, Dazai J, Walls JR, Gale NW, Henkelman RM. Design and implementation of a custom built optical projection tomography system. PLoS One 2013; 8:e73491. [PMID: 24023880 PMCID: PMC3762719 DOI: 10.1371/journal.pone.0073491] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 07/23/2013] [Indexed: 11/18/2022] Open
Abstract
Optical projection tomography (OPT) is an imaging modality that has, in the last decade, answered numerous biological questions owing to its ability to view gene expression in 3 dimensions (3D) at high resolution for samples up to several cm3. This has increased demand for a cabinet OPT system, especially for mouse embryo phenotyping, for which OPT was primarily designed for. The Medical Research Council (MRC) Technology group (UK) released a commercial OPT system, constructed by Skyscan, called the Bioptonics OPT 3001 scanner that was installed in a limited number of locations. The Bioptonics system has been discontinued and currently there is no commercial OPT system available. Therefore, a few research institutions have built their own OPT system, choosing parts and a design specific to their biological applications. Some of these custom built OPT systems are preferred over the commercial Bioptonics system, as they provide improved performance based on stable translation and rotation stages and up to date CCD cameras coupled with objective lenses of high numerical aperture, increasing the resolution of the images. Here, we present a detailed description of a custom built OPT system that is robust and easy to build and install. Included is a hardware parts list, instructions for assembly, a description of the acquisition software and a free download site, and methods for calibration. The described OPT system can acquire a full 3D data set in 10 minutes at 6.7 micron isotropic resolution. The presented guide will hopefully increase adoption of OPT throughout the research community, for the OPT system described can be implemented by personnel with minimal expertise in optics or engineering who have access to a machine shop.
Collapse
Affiliation(s)
- Michael D. Wong
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Mouse Imaging Centre (MICe), Hospital for Sick Children, Toronto, Ontario, Canada
- * E-mail:
| | - Jun Dazai
- Mouse Imaging Centre (MICe), Hospital for Sick Children, Toronto, Ontario, Canada
| | - Johnathon R. Walls
- Regeneron Pharmaceuticals, Tarrytown, New York, United States of America
| | - Nicholas W. Gale
- Regeneron Pharmaceuticals, Tarrytown, New York, United States of America
| | - R. Mark Henkelman
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Mouse Imaging Centre (MICe), Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
25
|
Adams D, Baldock R, Bhattacharya S, Copp AJ, Dickinson M, Greene NDE, Henkelman M, Justice M, Mohun T, Murray SA, Pauws E, Raess M, Rossant J, Weaver T, West D. Bloomsbury report on mouse embryo phenotyping: recommendations from the IMPC workshop on embryonic lethal screening. Dis Model Mech 2013; 6:571-9. [PMID: 23519032 PMCID: PMC3634642 DOI: 10.1242/dmm.011833] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Identifying genes that are important for embryo development is a crucial first step towards understanding their many functions in driving the ordered growth, differentiation and organogenesis of embryos. It can also shed light on the origins of developmental disease and congenital abnormalities. Current international efforts to examine gene function in the mouse provide a unique opportunity to pinpoint genes that are involved in embryogenesis, owing to the emergence of embryonic lethal knockout mutants. Through internationally coordinated efforts, the International Knockout Mouse Consortium (IKMC) has generated a public resource of mouse knockout strains and, in April 2012, the International Mouse Phenotyping Consortium (IMPC), supported by the EU InfraCoMP programme, convened a workshop to discuss developing a phenotyping pipeline for the investigation of embryonic lethal knockout lines. This workshop brought together over 100 scientists, from 13 countries, who are working in the academic and commercial research sectors, including experts and opinion leaders in the fields of embryology, animal imaging, data capture, quality control and annotation, high-throughput mouse production, phenotyping, and reporter gene analysis. This article summarises the outcome of the workshop, including (1) the vital scientific importance of phenotyping embryonic lethal mouse strains for basic and translational research; (2) a common framework to harmonise international efforts within this context; (3) the types of phenotyping that are likely to be most appropriate for systematic use, with a focus on 3D embryo imaging; (4) the importance of centralising data in a standardised form to facilitate data mining; and (5) the development of online tools to allow open access to and dissemination of the phenotyping data.
Collapse
Affiliation(s)
- David Adams
- Wellcome Trust Sanger Institute, Cambridge, CB10 1SA, UK
| | | | | | - Andrew J. Copp
- UCL Institute of Child Health, Gower Street, London, WC1E 6BT, UK
| | | | | | | | | | - Timothy Mohun
- MRC National Institute for Medical Research, London, NW7 1AA, UK
| | | | - Erwin Pauws
- UCL Institute of Child Health, Gower Street, London, WC1E 6BT, UK
| | - Michael Raess
- Helmholtz Zentrum Munich and Infrafrontier, Ingolstädter Landstraße 1 85764 Neuherberg, Munich, Germany
| | | | - Tom Weaver
- MRC Harwell, Harwell Science and Innovation Campus, Oxford, OX11 0RD, UK
| | - David West
- CHORI, 5700 Martin Luther King Jr Way, Oakland, CA 94609, USA
| |
Collapse
|
26
|
Bhat S, Larina IV, Larin KV, Dickinson ME, Liebling M. 4D reconstruction of the beating embryonic heart from two orthogonal sets of parallel optical coherence tomography slice-sequences. IEEE TRANSACTIONS ON MEDICAL IMAGING 2013; 32:578-88. [PMID: 23221816 PMCID: PMC4114225 DOI: 10.1109/tmi.2012.2231692] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Current methods to build dynamic optical coherence tomography (OCT) volumes of the beating embryonic heart involve synchronization of 2D+time slice-sequences acquired over separate heartbeats. Temporal registration of these sequences is performed either through gating or postprocessing. While synchronization algorithms that exclusively rely on image- intrinsic signals allow forgoing external gating hardware, they are prone to error accumulation, require operator-supervised correction, or lead to nonisotropic resolution. Here, we propose an image-based, retrospective reconstruction technique that uses two sets of parallel 2D+T slice-sequences, acquired perpendicularly to each other, to yield accurate and automatic reconstructions with isotropic resolution. The method utilizes the similarity of the data at the slice intersections to spatio-temporally register the two sets of slice sequences and fuse them into a high-resolution 4D volume. We characterize our method by using 1) simulated heart phantom datasets and 2) OCT datasets acquired from the beating heart of live cultured E9.5 mouse and E10.5 rat embryos. We demonstrate that while our method requires greater acquisition and reconstruction time compared to methods that use slices from a single direction, it produces more accurate and self-validating reconstructions since each set of reconstructed slices acts as a reference for the slices in the perpendicular set.
Collapse
Affiliation(s)
- Sandeep Bhat
- Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA 93106 USA
| | - Irina V. Larina
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030 USA
| | - Kirill V. Larin
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030 USA
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204 USA
| | - Mary E. Dickinson
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030 USA
| | - Michael Liebling
- Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA 93106 USA ()
| |
Collapse
|
27
|
Larina IV, Larin KV, Dickinson ME, Liebling M. Sequential Turning Acquisition and Reconstruction (STAR) method for four-dimensional imaging of cyclically moving structures. BIOMEDICAL OPTICS EXPRESS 2012; 3:650-60. [PMID: 22435109 PMCID: PMC3296549 DOI: 10.1364/boe.3.000650] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 02/14/2012] [Accepted: 02/17/2012] [Indexed: 05/19/2023]
Abstract
Optical coherence tomography allows for dynamic, three-dimensional (3D+T) imaging of the heart within animal embryos. However, direct 3D+T imaging frame rates remain insufficient for cardiodynamic analysis. Previously, this limitation has been addressed by reconstructing 3D+T representations of the beating heart based on sets of two-dimensional image sequences (2D+T) acquired sequentially at high frame rate and in fixed (and parallel) planes throughout the heart. These methods either require additional hardware to trigger the acquisition of each 2D+T series to the same phase of the cardiac cycle or accumulate registration errors as the slices are synchronized retrospectively by pairs, without a gating signal. Here, we present a sequential turning acquisition and reconstruction (STAR) method for 3D+T imaging of periodically moving structures, which does not require any additional gating signal and is not prone to registration error accumulation. Similarly to other sequential cardiac imaging methods, multiple fast image series are consecutively acquired for different sections but in between acquisitions, the imaging plane is rotated around the center line instead of shifted along the direction perpendicular to the slices. As the central lines of all image-sequences coincide and represent measurements of the same spatial position, they can be used to accurately synchronize all the slices to a single inherent reference signal. We characterized the accuracy of our method on a simulated dynamic phantom and successfully imaged a beating embryonic rat heart. Potentially, this method can be applied for structural or Doppler imaging approaches with any direct space imaging modality such as computed tomography, ultrasound, or light microscopy.
Collapse
Affiliation(s)
- Irina V. Larina
- Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030,
USA
| | - Kirill V. Larin
- Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030,
USA
- Department of Biomedical Engineering, University of Houston, Houston, Texas 77204,
USA
| | - Mary E. Dickinson
- Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030,
USA
| | - Michael Liebling
- Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106,
USA
| |
Collapse
|