1
|
Banho CA, Oliveira DS, Haudry A, Fablet M, Vieira C, Carareto CMA. Transposable Element Expression and Regulation Profile in Gonads of Interspecific Hybrids of Drosophila arizonae and Drosophila mojavensis wrigleyi. Cells 2021; 10:cells10123574. [PMID: 34944084 PMCID: PMC8700503 DOI: 10.3390/cells10123574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/07/2021] [Accepted: 12/13/2021] [Indexed: 11/16/2022] Open
Abstract
Interspecific hybridization may lead to sterility and/or inviability through differential expression of genes and transposable elements (TEs). In Drosophila, studies have reported massive TE mobilization in hybrids from interspecific crosses of species presenting high divergence times. However, few studies have examined the consequences of TE mobilization upon hybridization in recently diverged species, such as Drosophila arizonae and D. mojavensis. We have sequenced transcriptomes of D. arizonae and the subspecies D. m. wrigleyi and their reciprocal hybrids, as well as piRNAs, to analyze the impact of genomic stress on TE regulation. Our results revealed that the differential expression in both gonadal tissues of parental species was similar. Globally, ovaries and testes showed few deregulated TEs compared with both parental lines. Analyses of small RNA data showed that in ovaries, the TE upregulation is likely due to divergence of copies inherited from parental genomes and lack of piRNAs mapping to them. Nevertheless, in testes, the divergent expression of genes associated with chromatin state and piRNA pathway potentially indicates that TE differential expression is related to the divergence of regulatory genes that play a role in modulating transcriptional and post-transcriptional mechanisms.
Collapse
Affiliation(s)
- Cecília Artico Banho
- Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), São José do Rio Preto 15054-000, SP, Brazil; (C.A.B.); (D.S.O.)
- Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, Université Lyon 1, CNRS, UMR 5558, F-69622 Villeurbanne, France; (A.H.); (M.F.)
| | - Daniel Siqueira Oliveira
- Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), São José do Rio Preto 15054-000, SP, Brazil; (C.A.B.); (D.S.O.)
- Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, Université Lyon 1, CNRS, UMR 5558, F-69622 Villeurbanne, France; (A.H.); (M.F.)
| | - Annabelle Haudry
- Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, Université Lyon 1, CNRS, UMR 5558, F-69622 Villeurbanne, France; (A.H.); (M.F.)
| | - Marie Fablet
- Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, Université Lyon 1, CNRS, UMR 5558, F-69622 Villeurbanne, France; (A.H.); (M.F.)
- Institut Universitaire de France (IUF), F-75231 Paris, France
| | - Cristina Vieira
- Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, Université Lyon 1, CNRS, UMR 5558, F-69622 Villeurbanne, France; (A.H.); (M.F.)
- Correspondence: (C.V.); (C.M.A.C.)
| | - Claudia Marcia Aparecida Carareto
- Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), São José do Rio Preto 15054-000, SP, Brazil; (C.A.B.); (D.S.O.)
- Correspondence: (C.V.); (C.M.A.C.)
| |
Collapse
|
2
|
Wei KHC, Chan C, Bachtrog D. Establishment of H3K9me3-dependent heterochromatin during embryogenesis in Drosophila miranda. eLife 2021; 10:55612. [PMID: 34128466 PMCID: PMC8285105 DOI: 10.7554/elife.55612] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 06/14/2021] [Indexed: 12/27/2022] Open
Abstract
Heterochromatin is a key architectural feature of eukaryotic genomes crucial for silencing of repetitive elements. During Drosophila embryonic cellularization, heterochromatin rapidly appears over repetitive sequences, but the molecular details of how heterochromatin is established are poorly understood. Here, we map the genome-wide distribution of H3K9me3-dependent heterochromatin in individual embryos of Drosophila miranda at precisely staged developmental time points. We find that canonical H3K9me3 enrichment is established prior to cellularization and matures into stable and broad heterochromatin domains through development. Intriguingly, initial nucleation sites of H3K9me3 enrichment appear as early as embryonic stage 3 over transposable elements (TEs) and progressively broaden, consistent with spreading to neighboring nucleosomes. The earliest nucleation sites are limited to specific regions of a small number of recently active retrotransposon families and often appear over promoter and 5' regions of LTR retrotransposons, while late nucleation sites develop broadly across the entirety of most TEs. Interestingly, early nucleating TEs are strongly associated with abundant maternal piRNAs and show early zygotic transcription. These results support a model of piRNA-associated co-transcriptional silencing while also suggesting additional mechanisms for site-restricted H3K9me3 nucleation at TEs in pre-cellular Drosophila embryos.
Collapse
Affiliation(s)
- Kevin H-C Wei
- Department of Integrative Biology, University of California, Berkeley, Berkeley, United States
| | - Carolus Chan
- Department of Integrative Biology, University of California, Berkeley, Berkeley, United States
| | - Doris Bachtrog
- Department of Integrative Biology, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
3
|
Affiliation(s)
- Maria Ninova
- California Institute of Technology, Division of Biology and Biological Engineering, Pasadena, CA, USA
| | - Katalin Fejes Tóth
- California Institute of Technology, Division of Biology and Biological Engineering, Pasadena, CA, USA.
| |
Collapse
|
4
|
Stolyarenko AD. Nuclear Argonaute Piwi Gene Mutation Affects rRNA by Inducing rRNA Fragment Accumulation, Antisense Expression, and Defective Processing in Drosophila Ovaries. Int J Mol Sci 2020; 21:ijms21031119. [PMID: 32046213 PMCID: PMC7037970 DOI: 10.3390/ijms21031119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/27/2020] [Accepted: 02/04/2020] [Indexed: 12/26/2022] Open
Abstract
Drosophila key nuclear piRNA silencing pathway protein Piwi of the Argonaute family has been classically studied as a factor controlling transposable elements and fertility. Piwi has been shown to concentrate in the nucleolus for reasons largely unknown. Ribosomal RNA is the main component of the nucleolus. In this work the effect of a piwi mutation on rRNA is described. This work led to three important conclusions: A mutation in piwi induces antisense 5S rRNA expression, a processing defect of 2S rRNA orthologous to the 3′-end of eukaryotic 5.8S rRNA, and accumulation of fragments of all five rRNAs in Drosophilamelanogaster ovaries. Hypotheses to explain these phenomena are proposed, possibly involving the interaction of the components of the piRNA pathway with the RNA surveillance machinery.
Collapse
Affiliation(s)
- Anastasia D Stolyarenko
- Institute of Molecular Genetics, Russian Academy of Sciences, 2 Kurchatov Sq., Moscow 123182, Russia
| |
Collapse
|
5
|
Balaratnam S, West N, Basu S. A piRNA utilizes HILI and HIWI2 mediated pathway to down-regulate ferritin heavy chain 1 mRNA in human somatic cells. Nucleic Acids Res 2018; 46:10635-10648. [PMID: 30102404 PMCID: PMC6237762 DOI: 10.1093/nar/gky728] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 07/27/2018] [Accepted: 07/31/2018] [Indexed: 12/18/2022] Open
Abstract
The piwi interacting RNAs (piRNAs) are small non-coding RNAs that specifically bind to the PIWI proteins, a functional requirement. The piRNAs regulate germline development, transposons control, and gene expression. However, piRNA-mediated post-transcriptional gene regulation in human somatic cells is not well understood. We discovered a human piRNA (piR-FTH1) which has a complementary sequence in the ferritin heavy chain 1 (Fth1) mRNA. We demonstrated that expression of piR-FTH1 and Fth1 are inversely correlated in the tested tumor cell lines. We found that piR-FTH1 negatively regulates the Fth1 expression at post-transcriptional level in triple negative breast cancer (TNBC) cells. Additionally, we confirmed that transfected piR-FTH1 knocks down the Fth1 mRNA via the HIWI2 and HILI mediated mechanism. piR-FTH1 mediated Fth1 repression also increased doxorubicin sensitivity by a remarkable 20-fold in TNBC cells. Since the current piRNA-mediated knockdowns of target mRNA are mostly reported in germ line cells, piRNA-mediated post-transcriptional gene regulation in somatic cells is rather unique in its application and mechanistically uses an alternative pathway to siRNA and miRNA. This work begins to lay the groundwork with a broader impact on treatment of various diseases that are linked to elevated levels of specific mRNAs which have a piRNA target.
Collapse
Affiliation(s)
- Sumirtha Balaratnam
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Nicole West
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Soumitra Basu
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
6
|
Switching of dominant retrotransposon silencing strategies from posttranscriptional to transcriptional mechanisms during male germ-cell development in mice. PLoS Genet 2017; 13:e1006926. [PMID: 28749988 PMCID: PMC5549759 DOI: 10.1371/journal.pgen.1006926] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 08/08/2017] [Accepted: 07/15/2017] [Indexed: 12/13/2022] Open
Abstract
Mammalian genomes harbor millions of retrotransposon copies, some of which are transpositionally active. In mouse prospermatogonia, PIWI-interacting small RNAs (piRNAs) combat retrotransposon activity to maintain the genomic integrity. The piRNA system destroys retrotransposon-derived RNAs and guides de novo DNA methylation at some retrotransposon promoters. However, it remains unclear whether DNA methylation contributes to retrotransposon silencing in prospermatogonia. We have performed comprehensive studies of DNA methylation and polyA(+) RNAs (transcriptome) in developing male germ cells from Pld6/Mitopld and Dnmt3l knockout mice, which are defective in piRNA biogenesis and de novo DNA methylation, respectively. The Dnmt3l mutation greatly reduced DNA methylation levels at most retrotransposons, but its impact on their RNA abundance was limited in prospermatogonia. In Pld6 mutant germ cells, although only a few retrotransposons exhibited reduced DNA methylation, many showed increased expression at the RNA level. More detailed analysis of RNA sequencing, nascent RNA quantification, profiling of cleaved RNA ends, and the results obtained from double knockout mice suggest that PLD6 works mainly at the posttranscriptional level. The increase in retrotransposon expression was larger in Pld6 mutants than it was in Dnmt3l mutants, suggesting that RNA degradation by the piRNA system plays a more important role than does DNA methylation in prospermatogonia. However, DNA methylation had a long-term effect: hypomethylation caused by the Pld6 or Dnmt3l mutation resulted in increased retrotransposon expression in meiotic spermatocytes. Thus, posttranscriptional silencing plays an important role in the early stage of germ cell development, then transcriptional silencing becomes important in later stages. In addition, intergenic and intronic retrotransposon sequences, in particular those containing the antisense L1 promoters, drove ectopic expression of nearby genes in both mutant spermatocytes, suggesting that retrotransposon silencing is important for the maintenance of not only genomic integrity but also transcriptomic integrity. Retrotransposons are a class of transposable elements, of which mobility has mutagenic potential. Therefore, it is important to regulate the expression of retrotransposons for maintaining the genomic integrity. In male germ cells, DNA methylation and the piRNA system are thought to play roles in retrotransposon silencing. However, genome-wide DNA methylation is once erased (in primordial germ cells) and reestablished (in prospermatogonia) during development. In prospermatogonia, piRNAs guide de novo DNA methylation at some retrotransposons. To clarify the contribution of DNA methylation and the piRNA system to retrotransposon silencing in the course of male germ cell development, we analyzed DNA methylation and RNA expression in Dnmt3l and Pld6 knockout mice, which are defective in de novo DNA methylation and piRNA biogenesis, respectively. Our results reveal that, in prospermatogonia, the piRNA system works mainly at the posttranscriptional level, and plays a more important role than does DNA methylation in retrotransposon silencing. However, DNA methylation becomes much more important in later stages when germ cells enter meiosis (in spermatocytes). We also found that hypomethylated retrotransposons can drive ectopic expression of nearby genes; therefore, their transcriptional silencing by DNA methylation is important for maintaining the transcriptomic integrity as well.
Collapse
|
7
|
Nabih A, Sobotka JA, Wu MZ, Wedeles CJ, Claycomb JM. Examining the intersection between splicing, nuclear export and small RNA pathways. Biochim Biophys Acta Gen Subj 2017; 1861:2948-2955. [PMID: 28578161 DOI: 10.1016/j.bbagen.2017.05.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/25/2017] [Accepted: 05/29/2017] [Indexed: 01/06/2023]
Abstract
BACKGROUND Nuclear Argonaute/small RNA pathways in a variety of eukaryotic species are generally known to regulate gene expression via chromatin modulation and transcription attenuation in a process known as transcriptional gene silencing (TGS). However, recent data, including genetic screens, phylogenetic profiling, and molecular mechanistic studies, also point to a novel and emerging intersection between the splicing and nuclear export machinery with nuclear Argonaute/small RNA pathways in many organisms. SCOPE OF REVIEW In this review, we summarize the field's current understanding regarding the relationship between splicing, export and small RNA pathways, and consider the biological implications for coordinated regulation of transcripts by these pathways. We also address the importance and available approaches for understanding the RNA regulatory logic generated by the intersection of these particular pathways in the context of synthetic biology. MAJOR CONCLUSIONS The interactions between various eukaryotic RNA regulatory pathways, particularly splicing, nuclear export and small RNA pathways provide a type of combinatorial code that informs the identity ("self" versus "non-self") and dictates the fate of each transcript in a cell. Although the molecular mechanisms for how splicing and nuclear export impact small RNA pathways are not entirely clear at this early stage, the links between these pathways are widespread across eukaryotic phyla. GENERAL SIGNIFICANCE The link between splicing, nuclear export, and small RNA pathways is emerging and establishes a new frontier for understanding the combinatorial logic of gene regulation across species that could someday be harnessed for therapeutic, biotechnology and agricultural applications. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue.
Collapse
Affiliation(s)
- Amena Nabih
- Dept. of Molecular Genetics, University of Toronto, Canada
| | | | - Monica Z Wu
- Dept. of Molecular Genetics, University of Toronto, Canada
| | | | | |
Collapse
|
8
|
Shao MR, Kumar Kenchanmane Raju S, Laurie JD, Sanchez R, Mackenzie SA. Stress-responsive pathways and small RNA changes distinguish variable developmental phenotypes caused by MSH1 loss. BMC PLANT BIOLOGY 2017; 17:47. [PMID: 28219335 PMCID: PMC5319189 DOI: 10.1186/s12870-017-0996-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 02/08/2017] [Indexed: 05/03/2023]
Abstract
BACKGROUND Proper regulation of nuclear-encoded, organelle-targeted genes is crucial for plastid and mitochondrial function. Among these genes, MutS Homolog 1 (MSH1) is notable for generating an assortment of mutant phenotypes with varying degrees of penetrance and pleiotropy. Stronger phenotypes have been connected to stress tolerance and epigenetic changes, and in Arabidopsis T-DNA mutants, two generations of homozygosity with the msh1 insertion are required before severe phenotypes begin to emerge. These observations prompted us to examine how msh1 mutants contrast according to generation and phenotype by profiling their respective transcriptomes and small RNA populations. RESULTS Using RNA-seq, we analyze pathways that are associated with MSH1 loss, including abiotic stresses such as cold response, pathogen defense and immune response, salicylic acid, MAPK signaling, and circadian rhythm. Subtle redox and environment-responsive changes also begin in the first generation, in the absence of strong phenotypes. Using small RNA-seq we further identify miRNA changes, and uncover siRNA trends that indicate modifications at the chromatin organization level. In all cases, the magnitude of changes among protein-coding genes, transposable elements, and small RNAs increases according to generation and phenotypic severity. CONCLUSION Loss of MSH1 is sufficient to cause large-scale regulatory changes in pathways that have been individually linked to one another, but rarely described all together within a single mutant background. This study enforces the recognition of organelles as critical integrators of both internal and external cues, and highlights the relationship between organelle and nuclear regulation in fundamental aspects of plant development and stress signaling. Our findings also encourage further investigation into potential connections between organelle state and genome regulation vis-á-vis small RNA feedback.
Collapse
Affiliation(s)
- Mon-Ray Shao
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE USA
| | | | - John D. Laurie
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE USA
- Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| | - Robersy Sanchez
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE USA
| | - Sally A. Mackenzie
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE USA
| |
Collapse
|
9
|
Carrascosa LG, Huertas CS, Lechuga LM. Prospects of optical biosensors for emerging label-free RNA analysis. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.02.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Buckley RM, Adelson DL. Mammalian genome evolution as a result of epigenetic regulation of transposable elements. Biomol Concepts 2015; 5:183-94. [PMID: 25372752 DOI: 10.1515/bmc-2014-0013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 05/27/2014] [Indexed: 12/29/2022] Open
Abstract
Transposable elements (TEs) make up a large proportion of mammalian genomes and are a strong evolutionary force capable of rewiring regulatory networks and causing genome rearrangements. Additionally, there are many eukaryotic epigenetic defense mechanisms able to transcriptionally silence TEs. Furthermore, small RNA molecules that target TE DNA sequences often mediate these epigenetic defense mechanisms. As a result, epigenetic marks associated with TE silencing can be reestablished after epigenetic reprogramming - an event during the mammalian life cycle that results in widespread loss of parental epigenetic marks. Furthermore, targeted epigenetic marks associated with TE silencing may have an impact on nearby gene expression. Therefore, TEs may have driven species evolution via their ability to heritably alter the epigenetic regulation of gene expression in mammals.
Collapse
|
11
|
Abstract
Endogenously produced small interfering RNAs (endo-siRNAs, 18-30 nucleotides) play a key role in gene regulatory pathways, guiding Argonaute effector proteins as a part of a functional ribonucleoprotein complex called the RISC (RNA induced silencing complex) to complementarily target nucleic acid. Enabled by the advent of high throughput sequencing, there has been an explosion in the identification of endo-siRNAs in all three kingdoms of life since the discovery of the first microRNA in 1993. Concurrently, our knowledge of the variety of cellular processes in which small RNA pathways related to RNA interference (RNAi) play key regulatory roles has also expanded dramatically. Building on the strong foundation of RNAi established over the past fifteen years, this review uses a historical context to highlight exciting recent developments in endo-siRNA pathways. Specifically, my focus will be on recent insights regarding the Argonaute effectors, their endo-siRNA guides and the functional outputs of these pathways in several model systems that have been longstanding champions of small RNA research. I will also touch on newly discovered roles for bacterial Argonautes, which have been integral in deciphering Argonaute structure and demonstrate key functions of these conserved pathways in genome defense.
Collapse
Affiliation(s)
- Julie M Claycomb
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, 4366 Medical Sciences Building, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
12
|
Tachibana K, Takayanagi K, Akimoto A, Ueda K, Shinkai Y, Umezawa M, Takeda K. Prenatal diesel exhaust exposure disrupts the DNA methylation profile in the brain of mouse offspring. J Toxicol Sci 2015; 40:1-11. [DOI: 10.2131/jts.40.1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
13
|
Abstract
Piwi proteins and Piwi-interacting RNAs (piRNAs) are essential for gametogenesis, embryogenesis, and stem cell maintenance in animals. Piwi proteins act on transposon RNAs by cleaving the RNAs and by interacting with factors involved in RNA regulation. Additionally, piRNAs generated from transposons and psuedogenes can be used by Piwi proteins to regulate mRNAs at the posttranscriptional level. Here we discuss piRNA biogenesis, recent findings on posttranscriptional regulation of mRNAs by the piRNA pathway, and the potential importance of this posttranscriptional regulation for a variety of biological processes such as gametogenesis, developmental transitions, and sex determination.
Collapse
Affiliation(s)
- Toshiaki Watanabe
- Yale Stem Cell Center and Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06519, USA.
| | - Haifan Lin
- Yale Stem Cell Center and Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06519, USA.
| |
Collapse
|
14
|
Expression profiles of PIWIL2 short isoforms differ in testicular germ cell tumors of various differentiation subtypes. PLoS One 2014; 9:e112528. [PMID: 25384072 PMCID: PMC4226551 DOI: 10.1371/journal.pone.0112528] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 09/13/2014] [Indexed: 01/22/2023] Open
Abstract
PIWI family proteins have recently emerged as essential contributors in numerous biological processes including germ cell development, stem cell maintenance and epigenetic reprogramming. Expression of some of the family members has been shown to be elevated in tumors. In particular, PIWIL2 has been probed as a potential neoplasia biomarker in many cancers in humans. Previously, PIWIL2 was shown to be expressed in most tumours as a set of its shorter isoforms. In this work, we demonstrated the presence of its 60 kDa (PL2L60A) and 80 kDa (PL2L80A) isoforms in testicular cancer cell lines. We also ascertained the transcriptional boundaries of mRNAs and alternative promoter regions for these PIWIL2 isoforms. Further, we probed a range of testicular germ cell tumor (TGCT) samples and found PIWIL2 to be predominantly expressed as PL2L60A in most of them. Importantly, the levels of both PL2L60A mRNA and protein products were found to vary depending on the differentiation subtype of TGCTs, i.e., PL2L60A expression is significantly higher in undifferentiated seminomas and appears to be substantially decreased in mixed and nonseminomatous TGCTs. The higher level of PL2L60A expression in undifferentiated TGCTs was further validated in the model system of retinoic acid induced differentiation in NT2/D1 cell line. Therefore, both PL2L60A mRNA and protein abundance could serve as an additional marker distinguishing between seminomas and nonseminomatous tumors with different prognosis and therapy approaches.
Collapse
|
15
|
Ichiyanagi T, Ichiyanagi K, Ogawa A, Kuramochi-Miyagawa S, Nakano T, Chuma S, Sasaki H, Udono H. HSP90α plays an important role in piRNA biogenesis and retrotransposon repression in mouse. Nucleic Acids Res 2014; 42:11903-11. [PMID: 25262350 PMCID: PMC4231750 DOI: 10.1093/nar/gku881] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
HSP90, found in all kingdoms of life, is a major chaperone protein regulating many client proteins. We demonstrated that HSP90α, one of two paralogs duplicated in vertebrates, plays an important role in the biogenesis of fetal PIWI-interacting RNAs (piRNA), which act against the transposon activities, in mouse male germ cells. The knockout mutation of Hsp90α resulted in a large reduction in the expression of primary and secondary piRNAs and mislocalization of MIWI2, a PIWI homolog. Whereas the mutation in Fkbp6 encoding a co-chaperone reduced piRNAs of 28–32 nucleotides in length, the Hsp90α mutation reduced piRNAs of 24–32 nucleotides, suggesting the presence of both FKBP6-dependent and -independent actions of HSP90α. Although DNA methylation and mRNA levels of L1 retrotransposon were largely unchanged in the Hsp90α mutant testes, the L1-encoded protein was increased, suggesting the presence of post-transcriptional regulation. This study revealed the specialized function of the HSP90α isofom in the piRNA biogenesis and repression of retrotransposons during the development of male germ cells in mammals.
Collapse
Affiliation(s)
- Tomoko Ichiyanagi
- Department of Immunology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Kita-ku, Okayama 700-8558, Japan Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kenji Ichiyanagi
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Ayako Ogawa
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Satomi Kuramochi-Miyagawa
- Department of Pathology, Medical School and Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan CREST, Japan Science and Technology Agency (JST), Saitama 332-0012, Japan
| | - Toru Nakano
- Department of Pathology, Medical School and Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan CREST, Japan Science and Technology Agency (JST), Saitama 332-0012, Japan
| | - Shinichiro Chuma
- Department of Development and Differentiation, Institute for Frontier Medical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Hiroyuki Sasaki
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Heiichiro Udono
- Department of Immunology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Kita-ku, Okayama 700-8558, Japan
| |
Collapse
|
16
|
Sarkies P, Miska EA. Small RNAs break out: the molecular cell biology of mobile small RNAs. Nat Rev Mol Cell Biol 2014; 15:525-35. [DOI: 10.1038/nrm3840] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Molla-Herman A, Matias NR, Huynh JR. Chromatin modifications regulate germ cell development and transgenerational information relay. CURRENT OPINION IN INSECT SCIENCE 2014; 1:10-18. [PMID: 32846502 DOI: 10.1016/j.cois.2014.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 04/23/2014] [Accepted: 04/23/2014] [Indexed: 06/11/2023]
Abstract
Germ cells transmit genetic, cytoplasmic and epigenetic information to the next generation. Recent reports describe the importance of chromatin modifiers and small RNAs for germ cells development in Drosophila. We also review exciting progress in our understanding of piRNAs functions, which demonstrate that this class of small RNAs is both an adaptive and inheritable epigenetic memory.
Collapse
Affiliation(s)
- Anahi Molla-Herman
- Department of Genetics and Developmental Biology, Institut Curie, Paris, France; CNRS UMR3215, Inserm U934, F-75248 Paris, France
| | - Neuza R Matias
- Department of Genetics and Developmental Biology, Institut Curie, Paris, France; CNRS UMR3215, Inserm U934, F-75248 Paris, France
| | - Jean-René Huynh
- Department of Genetics and Developmental Biology, Institut Curie, Paris, France; CNRS UMR3215, Inserm U934, F-75248 Paris, France.
| |
Collapse
|
18
|
Ha H, Song J, Wang S, Kapusta A, Feschotte C, Chen KC, Xing J. A comprehensive analysis of piRNAs from adult human testis and their relationship with genes and mobile elements. BMC Genomics 2014; 15:545. [PMID: 24981367 PMCID: PMC4094622 DOI: 10.1186/1471-2164-15-545] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 06/20/2014] [Indexed: 11/11/2022] Open
Abstract
Background Piwi-interacting RNAs (piRNAs) are a recently discovered class of small non-coding RNAs whose best-understood function is to repress mobile element (ME) activity in animal germline. To date, nearly all piRNA studies have been conducted in model organisms and little is known about piRNA diversity, target specificity and biological function in human. Results Here we performed high-throughput sequencing of piRNAs from three human adult testis samples. We found that more than 81% of the ~17 million putative piRNAs mapped to ~6,000 piRNA-producing genomic clusters using a relaxed definition of clusters. A set of human protein-coding genes produces a relatively large amount of putative piRNAs from their 3’UTRs, and are significantly enriched for certain biological processes, suggestive of non-random sampling by the piRNA biogenesis machinery. Up to 16% of putative piRNAs mapped to a few hundred annotated long non-coding RNA (lncRNA) genes, suggesting that some lncRNA genes can act as piRNA precursors. Among major ME families, young families of LTR and endogenous retroviruses have a greater association with putative piRNAs than other MEs. In addition, piRNAs preferentially mapped to specific regions in the consensus sequences of several ME (sub)families and some piRNA mapping peaks showed patterns consistent with the “ping-pong” cycle of piRNA targeting and amplification. Conclusions Overall our data provide a comprehensive analysis and improved annotation of human piRNAs in adult human testes and shed new light into the relationship of piRNAs with protein-coding genes, lncRNAs, and mobile genetic elements in human. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-545) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jinchuan Xing
- Department of Genetics, The State University of New Jersey, Piscataway, NJ 08854, USA.
| |
Collapse
|
19
|
Abstract
With the completion of the human genome sequence, attention turned to identifying and annotating its functional DNA elements. As a complement to genetic and comparative genomics approaches, the Encyclopedia of DNA Elements Project was launched to contribute maps of RNA transcripts, transcriptional regulator binding sites, and chromatin states in many cell types. The resulting genome-wide data reveal sites of biochemical activity with high positional resolution and cell type specificity that facilitate studies of gene regulation and interpretation of noncoding variants associated with human disease. However, the biochemically active regions cover a much larger fraction of the genome than do evolutionarily conserved regions, raising the question of whether nonconserved but biochemically active regions are truly functional. Here, we review the strengths and limitations of biochemical, evolutionary, and genetic approaches for defining functional DNA segments, potential sources for the observed differences in estimated genomic coverage, and the biological implications of these discrepancies. We also analyze the relationship between signal intensity, genomic coverage, and evolutionary conservation. Our results reinforce the principle that each approach provides complementary information and that we need to use combinations of all three to elucidate genome function in human biology and disease.
Collapse
|
20
|
Bortvin A. PIWI-interacting RNAs (piRNAs) - a mouse testis perspective. BIOCHEMISTRY (MOSCOW) 2014; 78:592-602. [PMID: 23980886 DOI: 10.1134/s0006297913060059] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Over the past decade, PIWI-interacting RNAs (piRNAs) have emerged as the most intriguing class of small RNAs. Almost every aspect of piRNA biology defies established rules of the RNA interference world while the scope of piRNA functional potential spans from transcriptional gene silencing to genome defense to transgenerational epigenetic phenomena. This review will focus on the genomic origins, biogenesis, and function of piRNAs in the mouse testis - an exceptionally robust experimental system amenable to genetic, cell-biological, molecular, and biochemical studies. Aided and frequently guided by knowledge obtained in insect, worm, and fish germ cells, mouse spermatogenesis has emerged as the primary model in understanding the role of this conserved pathway in mammals.
Collapse
Affiliation(s)
- A Bortvin
- Department of Embryology, Carnegie Institution of Washington, Baltimore, MD 21218, USA.
| |
Collapse
|
21
|
Characterization of human pseudogene-derived non-coding RNAs for functional potential. PLoS One 2014; 9:e93972. [PMID: 24699680 PMCID: PMC3974860 DOI: 10.1371/journal.pone.0093972] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 03/10/2014] [Indexed: 11/19/2022] Open
Abstract
Thousands of pseudogenes exist in the human genome and many are transcribed, but their functional potential remains elusive and understudied. To explore these issues systematically, we first developed a computational pipeline to identify transcribed pseudogenes from RNA-Seq data. Applying the pipeline to datasets from 16 distinct normal human tissues identified ∼ 3,000 pseudogenes that could produce non-coding RNAs in a manner of low abundance but high tissue specificity under normal physiological conditions. Cross-tissue comparison revealed that the transcriptional profiles of pseudogenes and their parent genes showed mostly positive correlations, suggesting that pseudogene transcription could have a positive effect on the expression of their parent genes, perhaps by functioning as competing endogenous RNAs (ceRNAs), as previously suggested and demonstrated with the PTEN pseudogene, PTENP1. Our analysis of the ENCODE project data also found many transcriptionally active pseudogenes in the GM12878 and K562 cell lines; moreover, it showed that many human pseudogenes produced small RNAs (sRNAs) and some pseudogene-derived sRNAs, especially those from antisense strands, exhibited evidence of interfering with gene expression. Further integrated analysis of transcriptomics and epigenomics data, however, demonstrated that trimethylation of histone 3 at lysine 9 (H3K9me3), a posttranslational modification typically associated with gene repression and heterochromatin, was enriched at many transcribed pseudogenes in a transcription-level dependent manner in the two cell lines. The H3K9me3 enrichment was more prominent in pseudogenes that produced sRNAs at pseudogene loci and their adjacent regions, an observation further supported by the co-enrichment of SETDB1 (a H3K9 methyltransferase), suggesting that pseudogene sRNAs may have a role in regional chromatin repression. Taken together, our comprehensive and systematic characterization of pseudogene transcription uncovers a complex picture of how pseudogene ncRNAs could influence gene and pseudogene expression, at both epigenetic and post-transcriptional levels.
Collapse
|
22
|
Pascarella G, Lazarevic D, Plessy C, Bertin N, Akalin A, Vlachouli C, Simone R, Faulkner GJ, Zucchelli S, Kawai J, Daub CO, Hayashizaki Y, Lenhard B, Carninci P, Gustincich S. NanoCAGE analysis of the mouse olfactory epithelium identifies the expression of vomeronasal receptors and of proximal LINE elements. Front Cell Neurosci 2014; 8:41. [PMID: 24600346 PMCID: PMC3927265 DOI: 10.3389/fncel.2014.00041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 01/28/2014] [Indexed: 11/13/2022] Open
Abstract
By coupling laser capture microdissection to nanoCAGE technology and next-generation sequencing we have identified the genome-wide collection of active promoters in the mouse Main Olfactory Epithelium (MOE). Transcription start sites (TSSs) for the large majority of Olfactory Receptors (ORs) have been previously mapped increasing our understanding of their promoter architecture. Here we show that in our nanoCAGE libraries of the mouse MOE we detect a large number of tags mapped in loci hosting Type-1 and Type-2 Vomeronasal Receptors genes (V1Rs and V2Rs). These loci also show a massive expression of Long Interspersed Nuclear Elements (LINEs). We have validated the expression of selected receptors detected by nanoCAGE with in situ hybridization, RT-PCR and qRT-PCR. This work extends the repertory of receptors capable of sensing chemical signals in the MOE, suggesting intriguing interplays between MOE and VNO for pheromone processing and positioning transcribed LINEs as candidate regulatory RNAs for VRs expression.
Collapse
Affiliation(s)
- Giovanni Pascarella
- Area of Neuroscience, International School for Advanced Studies (SISSA) Trieste, Italy ; RIKEN Yokohama Institute, Center for Life Science Technologies, Division of Genomic Technologies Tsurumi-ku, Yokohama, Japan
| | - Dejan Lazarevic
- Area of Neuroscience, International School for Advanced Studies (SISSA) Trieste, Italy ; Cluster in Biomedicine (CBM), AREA Science Park Trieste, Italy
| | - Charles Plessy
- RIKEN Yokohama Institute, Center for Life Science Technologies, Division of Genomic Technologies Tsurumi-ku, Yokohama, Japan
| | - Nicolas Bertin
- RIKEN Yokohama Institute, Center for Life Science Technologies, Division of Genomic Technologies Tsurumi-ku, Yokohama, Japan
| | - Altuna Akalin
- Bergen Center for Computational Science - Computational Biology Unit and Sars Centre for Marine Molecular Biology, University of Bergen Bergen, Norway
| | - Christina Vlachouli
- Area of Neuroscience, International School for Advanced Studies (SISSA) Trieste, Italy
| | - Roberto Simone
- Area of Neuroscience, International School for Advanced Studies (SISSA) Trieste, Italy
| | - Geoffrey J Faulkner
- Cancer Biology Program, Mater Medical Research Institute South Brisbane, QLD, Australia ; School of Biomedical Sciences, University of Queensland Brisbane, QLD, Australia
| | - Silvia Zucchelli
- Area of Neuroscience, International School for Advanced Studies (SISSA) Trieste, Italy ; Department of Health Sciences, University of Eastern Piedmont "A. Avogadro," Novara, Italy
| | - Jun Kawai
- RIKEN Yokohama Institute, Center for Life Science Technologies, Division of Genomic Technologies Tsurumi-ku, Yokohama, Japan
| | - Carsten O Daub
- RIKEN Yokohama Institute, Center for Life Science Technologies, Division of Genomic Technologies Tsurumi-ku, Yokohama, Japan
| | - Yoshihide Hayashizaki
- RIKEN Yokohama Institute, Center for Life Science Technologies, Division of Genomic Technologies Tsurumi-ku, Yokohama, Japan
| | - Boris Lenhard
- Bergen Center for Computational Science - Computational Biology Unit and Sars Centre for Marine Molecular Biology, University of Bergen Bergen, Norway
| | - Piero Carninci
- RIKEN Yokohama Institute, Center for Life Science Technologies, Division of Genomic Technologies Tsurumi-ku, Yokohama, Japan
| | - Stefano Gustincich
- Area of Neuroscience, International School for Advanced Studies (SISSA) Trieste, Italy
| |
Collapse
|
23
|
Fu Q, Wang PJ. Mammalian piRNAs: Biogenesis, function, and mysteries. SPERMATOGENESIS 2014; 4:e27889. [PMID: 25077039 DOI: 10.4161/spmg.27889] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 12/23/2013] [Accepted: 01/16/2014] [Indexed: 12/20/2022]
Abstract
Piwi-interacting RNAs (piRNAs) are a distinct class of small non-coding RNAs specifically expressed in the germline of many species. They are most notably required for transposon silencing. Loss of piRNAs results in defects in germ cell development, and thus, infertility. Most studies of piRNAs have been done in Drosophila, but much progress has also been made on piRNAs in the germline of mammals and other species in the past few years. This review provides a summary of our current knowledge of the biogenesis and functions of piRNAs during mouse spermatogenesis and discusses challenges in the mammalian piRNA field.
Collapse
Affiliation(s)
- Qi Fu
- Department of Animal Biology; University of Pennsylvania School of Veterinary Medicine; Philadelphia, PA USA
| | - P Jeremy Wang
- Department of Animal Biology; University of Pennsylvania School of Veterinary Medicine; Philadelphia, PA USA
| |
Collapse
|
24
|
Olovnikov I, Chan K, Sachidanandam R, Newman DK, Aravin AA. Bacterial argonaute samples the transcriptome to identify foreign DNA. Mol Cell 2014; 51:594-605. [PMID: 24034694 DOI: 10.1016/j.molcel.2013.08.014] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 08/08/2013] [Accepted: 08/08/2013] [Indexed: 01/20/2023]
Abstract
Eukaryotic Argonautes bind small RNAs and use them as guides to find complementary RNA targets and induce gene silencing. Though homologs of eukaryotic Argonautes are present in many bacteria and archaea, their small RNA partners and functions are unknown. We found that the Argonaute of Rhodobacter sphaeroides (RsAgo) associates with 15-19 nt RNAs that correspond to the majority of transcripts. RsAgo also binds single-stranded 22-24 nt DNA molecules that are complementary to the small RNAs and enriched in sequences derived from exogenous plasmids as well as genome-encoded foreign nucleic acids such as transposons and phage genes. Expression of RsAgo in the heterologous E. coli system leads to formation of plasmid-derived small RNA and DNA and plasmid degradation. In a R. sphaeroides mutant lacking RsAgo, expression of plasmid-encoded genes is elevated. Our results indicate that RNAi-related processes found in eukaryotes are also conserved in bacteria and target foreign nucleic acids.
Collapse
Affiliation(s)
- Ivan Olovnikov
- Division of Biology, California Institute of Technology, 147-75, 1200E California Boulevard, Pasadena, CA 91125, USA; Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov Square 2, Moscow 123182, Russia
| | | | | | | | | |
Collapse
|
25
|
Harding JL, Horswell S, Heliot C, Armisen J, Zimmerman LB, Luscombe NM, Miska EA, Hill CS. Small RNA profiling of Xenopus embryos reveals novel miRNAs and a new class of small RNAs derived from intronic transposable elements. Genome Res 2014; 24:96-106. [PMID: 24065776 PMCID: PMC3875865 DOI: 10.1101/gr.144469.112] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 09/04/2013] [Indexed: 12/22/2022]
Abstract
Small RNA control of gene expression is critical for developmental processes in vertebrate embryos. To determine the dynamics of small RNA expression and to uncover novel small RNAs in the early vertebrate embryo, we performed high-throughput sequencing of all small RNAs in Xenopus tropicalis embryos at three developmental time points and in dissected halves of gastrula embryos. This analysis allowed us to identify novel microRNAs and we show that microRNA expression is highly dynamic and spatially localized in early embryos. In addition, we have developed a microRNA prediction pipeline and demonstrate that it has the power to predict new miRNAs that are experimentally detectable in frogs, mice, and humans. By combining the small RNA sequencing with mRNA profiling at the different developmental stages, we identify a new class of small noncoding RNAs that we name siteRNAs, which align in clusters to introns of protein-coding genes. We show that siteRNAs are derived from remnants of transposable elements present in the introns. We find that genes containing clusters of siteRNAs are transcriptionally repressed as compared with all genes. Furthermore, we show that this is true for individual genes containing siteRNA clusters, and that these genes are enriched in specific repressive histone modifications. Our data thus suggest a new mechanism of siteRNA-mediated gene silencing in vertebrates, and provide an example of how mobile elements can affect gene regulation.
Collapse
Affiliation(s)
| | - Stuart Horswell
- Bioinformatics and Biostatistics Group, Cancer Research UK London Research Institute, London WC2A 3LY, United Kingdom
| | | | - Javier Armisen
- Wellcome Trust/Cancer Research UK Gurdon Institute, Cambridge CB2 1QN, United Kingdom
| | - Lyle B. Zimmerman
- MRC National Institute for Medical Research, London NW7 1AA, United Kingdom
| | - Nicholas M. Luscombe
- Computational Biology, Cancer Research UK London Research Institute, London WC2A 3LY, United Kingdom
| | - Eric A. Miska
- Wellcome Trust/Cancer Research UK Gurdon Institute, Cambridge CB2 1QN, United Kingdom
| | | |
Collapse
|
26
|
Burroughs AM, Ando Y, Aravind L. New perspectives on the diversification of the RNA interference system: insights from comparative genomics and small RNA sequencing. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 5:141-81. [PMID: 24311560 DOI: 10.1002/wrna.1210] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 10/03/2013] [Accepted: 11/01/2013] [Indexed: 12/19/2022]
Abstract
Our understanding of the pervasive involvement of small RNAs in regulating diverse biological processes has been greatly augmented by recent application of deep-sequencing technologies to small RNA across diverse eukaryotes. We review the currently known small RNA classes and place them in context of the reconstructed evolutionary history of the RNA interference (RNAi) protein machinery. This synthesis indicates that the earliest versions of eukaryotic RNAi systems likely utilized small RNA processed from three types of precursors: (1) sense-antisense transcriptional products, (2) genome-encoded, imperfectly complementary hairpin sequences, and (3) larger noncoding RNA precursor sequences. Structural dissection of PIWI proteins along with recent discovery of novel families (including Med13 of the Mediator complex) suggest that emergence of a distinct architecture with the N-terminal domains (also occurring separately fused to endoDNases in prokaryotes) formed via duplication of an ancestral unit was key to their recruitment as primary RNAi effectors and use of small RNAs of certain preferred lengths. Prokaryotic PIWI proteins are typically components of several RNA-directed DNA restriction or CRISPR/Cas systems. However, eukaryotic versions appear to have emerged from a subset that evolved RNA-directed RNAi. They were recruited alongside RNaseIII domains and RNA-dependent RNA polymerase (RdRP) domains, also from prokaryotic systems, to form the core eukaryotic RNAi system. Like certain regulatory systems, RNAi diversified into two distinct but linked arms concomitant with eukaryotic nucleocytoplasmic compartmentalization. Subsequent elaboration of RNAi proceeded via diversification of the core protein machinery through lineage-specific expansions and recruitment of new components from prokaryotes (nucleases and small RNA-modifying enzymes), allowing for diversification of associating small RNAs.
Collapse
Affiliation(s)
- Alexander Maxwell Burroughs
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | | | | |
Collapse
|
27
|
Li Z, Zhou X. Small RNA biology: from fundamental studies to applications. SCIENCE CHINA. LIFE SCIENCES 2013; 56:1059-1062. [PMID: 23943246 DOI: 10.1007/s11427-013-4535-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 07/22/2013] [Indexed: 06/02/2023]
Affiliation(s)
- Zhenghe Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | | |
Collapse
|
28
|
Guérin TM, Palladino F, Robert VJ. Transgenerational functions of small RNA pathways in controlling gene expression in C. elegans. Epigenetics 2013; 9:37-44. [PMID: 24162759 DOI: 10.4161/epi.26795] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
RNA silencing processes use exogenous or endogenous RNA molecules to specifically and robustly regulate gene expression. In C. elegans, initial mechanistic descriptions of the different silencing processes focused on posttranscriptional regulation. In this review, we discuss recent work showing that, in this model organism, RNA silencing also controls the transcription of target genes by inducing heterochromatin formation. Specifically, it has been shown that ribonucleoprotein complexes containing small RNAs, either processed from exogenous dsRNA or synthesized from the genome itself, and proteins of the Argonaute family, mediate the deposition of repressive histone marks at the targeted loci. Interestingly, the accumulation of repressive marks is required for the inheritance of the silencing effect and the establishment of an epigenetic memory that discriminates self- from non-self-RNAs.
Collapse
Affiliation(s)
- Thomas M Guérin
- Ecole Normale Supérieure de Lyon; CNRS; Molecular biology of the Cell Laboratory/UMR5239; Université Claude Bernard Lyon; Lyon, France; Master Biosciences; Ecole Normale Supérieure de Lyon; Université Claude Bernard Lyon; Lyon, France
| | - Francesca Palladino
- Ecole Normale Supérieure de Lyon; CNRS; Molecular biology of the Cell Laboratory/UMR5239; Université Claude Bernard Lyon; Lyon, France
| | - Valérie J Robert
- Ecole Normale Supérieure de Lyon; CNRS; Molecular biology of the Cell Laboratory/UMR5239; Université Claude Bernard Lyon; Lyon, France
| |
Collapse
|
29
|
Eilebrecht S, Schwartz C, Rohr O. Non-coding RNAs: novel players in chromatin-regulation during viral latency. Curr Opin Virol 2013; 3:387-93. [PMID: 23660570 DOI: 10.1016/j.coviro.2013.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 04/01/2013] [Indexed: 10/26/2022]
Abstract
Chromatin structure plays an essential role during gene expression regulation not only in the case of the host cellular genome, but also during the viral life cycle. Epigenetic chromatin marks thereby define, whether a gene promoter is accessible for the transcription machinery or whether a repressive heterochromatin state is established. The heterochromatin-mediated repression of lytic viral genes results in viral latency, enabling the virus to persist dormant without being recognized by the host immune system, but keeping the potential for reactivation. Arising new systems biology approaches are starting to uncover an unexpected multiplicity and variety of non-coding (nc)RNAs playing important roles during chromatin structure control, likely constituting a novel layer in epigenetic regulation. In this review we give an overview of chromatin-regulatory viral and host cellular ncRNAs and their links to viral latency.
Collapse
Affiliation(s)
- Sebastian Eilebrecht
- Vaccine Research Institute, INSERM U955, 8 rue du Général Sarrail, 94010 Créteil, France.
| | | | | |
Collapse
|
30
|
Polymerase IV occupancy at RNA-directed DNA methylation sites requires SHH1. Nature 2013; 498:385-9. [PMID: 23636332 DOI: 10.1038/nature12178] [Citation(s) in RCA: 257] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Accepted: 04/12/2013] [Indexed: 12/31/2022]
Abstract
DNA methylation is an epigenetic modification that has critical roles in gene silencing, development and genome integrity. In Arabidopsis, DNA methylation is established by DOMAINS REARRANGED METHYLTRANSFERASE 2 (DRM2) and targeted by 24-nucleotide small interfering RNAs (siRNAs) through a pathway termed RNA-directed DNA methylation (RdDM). This pathway requires two plant-specific RNA polymerases: Pol-IV, which functions to initiate siRNA biogenesis, and Pol-V, which functions to generate scaffold transcripts that recruit downstream RdDM factors. To understand the mechanisms controlling Pol-IV targeting we investigated the function of SAWADEE HOMEODOMAIN HOMOLOG 1 (SHH1), a Pol-IV-interacting protein. Here we show that SHH1 acts upstream in the RdDM pathway to enable siRNA production from a large subset of the most active RdDM targets, and that SHH1 is required for Pol-IV occupancy at these same loci. We also show that the SHH1 SAWADEE domain is a novel chromatin-binding module that adopts a unique tandem Tudor-like fold and functions as a dual lysine reader, probing for both unmethylated K4 and methylated K9 modifications on the histone 3 (H3) tail. Finally, we show that key residues within both lysine-binding pockets of SHH1 are required in vivo to maintain siRNA and DNA methylation levels as well as Pol-IV occupancy at RdDM targets, demonstrating a central role for methylated H3K9 binding in SHH1 function and providing the first insights into the mechanism of Pol-IV targeting. Given the parallels between methylation systems in plants and mammals, a further understanding of this early targeting step may aid our ability to control the expression of endogenous and newly introduced genes, which has broad implications for agriculture and gene therapy.
Collapse
|
31
|
Akkouche A, Grentzinger T, Fablet M, Armenise C, Burlet N, Braman V, Chambeyron S, Vieira C. Maternally deposited germline piRNAs silence the tirant retrotransposon in somatic cells. EMBO Rep 2013; 14:458-64. [PMID: 23559065 DOI: 10.1038/embor.2013.38] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 02/27/2013] [Accepted: 03/01/2013] [Indexed: 01/17/2023] Open
Abstract
Transposable elements (TEs), whose propagation can result in severe damage to the host genome, are silenced in the animal gonad by Piwi-interacting RNAs (piRNAs). piRNAs produced in the ovaries are deposited in the embryonic germline and initiate TE repression in the germline progeny. Whether the maternally transmitted piRNAs play a role in the silencing of somatic TEs is however unknown. Here we show that maternally transmitted piRNAs from the tirant retrotransposon in Drosophila are required for the somatic silencing of the TE and correlate with an increase in histone H3K9 trimethylation an active tirant copy.
Collapse
Affiliation(s)
- Abdou Akkouche
- Université de Lyon, Université Lyon 1, CNRS UMR5558, Laboratoire de Biométrie et Biologie Evolutive, F-69622 Villeurbanne, France
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Mirouze M. The Small RNA-Based Odyssey of Epigenetic Information in Plants: From Cells to Species. DNA Cell Biol 2012; 31:1650-6. [DOI: 10.1089/dna.2012.1681] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Marie Mirouze
- Institut de Recherche pour le Développement, UMR232, ERL5300 IRD UM2 CNRS, Montpellier, France
| |
Collapse
|
33
|
Kilpinen H, Dermitzakis ET. Genetic and epigenetic contribution to complex traits. Hum Mol Genet 2012; 21:R24-8. [DOI: 10.1093/hmg/dds383] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
34
|
Caudron-Herger M, Rippe K. Nuclear architecture by RNA. Curr Opin Genet Dev 2012; 22:179-87. [PMID: 22281031 DOI: 10.1016/j.gde.2011.12.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 12/20/2011] [Accepted: 12/24/2011] [Indexed: 12/15/2022]
Abstract
The dynamic organization of the cell nucleus into subcompartments with distinct biological activities represents an important determinant of cell function. Recent studies point to a crucial role of RNA as an architectural factor for shaping the genome and its nuclear environment. Here, we outline general principles by which RNA organizes functionally different nuclear subcompartments in mammalian cells. RNA is a structural component of mobile DNA-free nuclear bodies like paraspeckles or Cajal bodies, and is involved in establishing specific chromatin domains. The latter group comprises largely different structures that require RNA for the formation of active or repressive chromatin compartments with respect to gene expression as well as separating boundaries between these.
Collapse
Affiliation(s)
- Maïwen Caudron-Herger
- Research Group Genome Organization & Function, Deutsches Krebsforschungszentrum and BioQuant, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | | |
Collapse
|