1
|
Moon KW, Kim DG, Ryu JK. Anisotropic scrunching of SMC with a baton-pass mechanism. Commun Biol 2024; 7:881. [PMID: 39030299 PMCID: PMC11271495 DOI: 10.1038/s42003-024-06557-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 07/04/2024] [Indexed: 07/21/2024] Open
Abstract
DNA-loop extrusion is considered to be a universal principle of structural maintenance of chromosome (SMC) proteins with regard to chromosome organization. Despite recent advancements in structural dynamics studies that involve the use of cryogenic-electron microscopy (Cryo-EM), atomic force microscopy (AFM), etc., the precise molecular mechanism underlying DNA-loop extrusion by SMC proteins remains the subject of ongoing discussions. In this context, we propose a scrunching model that incorporates the anisotropic motion of SMC folding with a baton-pass mechanism, offering a potential explanation of how a "DNA baton" is transferred from the hinge domain to a DNA pocket via an anisotropic hinge motion. This proposed model provides insights into how SMC proteins unidirectionally extrude DNA loops in the direction of loop elongation while also maintaining the stability of a DNA loop throughout the dynamic process of DNA-loop extrusion.
Collapse
Affiliation(s)
- Kyoung-Wook Moon
- Department of Physics and Astronomy, Seoul National University, Seoul, South Korea
| | - Do-Gyun Kim
- Department of Physics and Astronomy, Seoul National University, Seoul, South Korea
| | - Je-Kyung Ryu
- Department of Physics and Astronomy, Seoul National University, Seoul, South Korea.
- Institute of Applied Physics of Seoul National University, Seoul, South Korea.
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea.
- Department of Biological Sciences, Seoul National University, Seoul, South Korea.
- Interdisciplinary Program in Neuroscience, Seoul National University, Seoul, South Korea.
| |
Collapse
|
2
|
Moon KW, Ryu JK. Current working models of SMC-driven DNA-loop extrusion. Biochem Soc Trans 2023; 51:1801-1810. [PMID: 37767565 DOI: 10.1042/bst20220898] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/17/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023]
Abstract
Structural maintenance of chromosome (SMC) proteins play a key roles in the chromosome organization by condensing two meters of DNA into cell-sized structures considered as the SMC protein extrudes DNA loop. Recent sequencing-based high-throughput chromosome conformation capture technique (Hi-C) and single-molecule experiments have provided direct evidence of DNA-loop extrusion. However, the molecular mechanism by which SMCs extrude a DNA loop is still under debate. Here, we review DNA-loop extrusion studies with single-molecule assays and introduce recent structural studies of how the ATP-hydrolysis cycle is coupled to the conformational changes of SMCs for DNA-loop extrusion. In addition, we explain the conservation of the DNA-binding sites that are vital for dynamic DNA-loop extrusion by comparing Cryo-EM structures of SMC complexes. Based on this information, we compare and discuss four compelling working models that explain how the SMC complex extrudes a DNA loop.
Collapse
Affiliation(s)
- Kyoung-Wook Moon
- Department of Physics and Astronomy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Je-Kyung Ryu
- Department of Physics and Astronomy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| |
Collapse
|
3
|
Montalbano M, Jaworski E, Garcia S, Ellsworth A, McAllen S, Routh A, Kayed R. Tau Modulates mRNA Transcription, Alternative Polyadenylation Profiles of hnRNPs, Chromatin Remodeling and Spliceosome Complexes. Front Mol Neurosci 2021; 14:742790. [PMID: 34924950 PMCID: PMC8678415 DOI: 10.3389/fnmol.2021.742790] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/09/2021] [Indexed: 11/13/2022] Open
Abstract
Tau protein is a known contributor in several neurodegenerative diseases, including Alzheimer’s disease (AD) and frontotemporal dementia (FTD). It is well-established that tau forms pathological aggregates and fibrils in these diseases. Tau has been observed within the nuclei of neurons, but there is a gap in understanding regarding the mechanism by which tau modulates transcription. We are interested in the P301L mutation of tau, which has been associated with FTD and increased tau aggregation. Our study utilized tau-inducible HEK (iHEK) cells to reveal that WT and P301L tau distinctively alter the transcription and alternative polyadenylation (APA) profiles of numerous nuclear precursors mRNAs, which then translate to form proteins involved in chromatin remodeling and splicing. We isolated total mRNA before and after over-expressing tau and then performed Poly(A)-ClickSeq (PAC-Seq) to characterize mRNA expression and APA profiles. We characterized changes in Gene Ontology (GO) pathways using EnrichR and Gene Set Enrichment Analysis (GSEA). We observed that P301L tau up-regulates genes associated with reactive oxygen species responsiveness as well as genes involved in dendrite, microtubule, and nuclear body/speckle formation. The number of genes regulated by WT tau is greater than the mutant form, which indicates that the P301L mutation causes loss-of-function at the transcriptional level. WT tau up-regulates genes contributing to cytoskeleton-dependent intracellular transport, microglial activation, microtubule and nuclear chromatin organization, formation of nuclear bodies and speckles. Interestingly, both WT and P301L tau commonly down-regulate genes responsible for ubiquitin-proteosome system. In addition, WT tau significantly down-regulates several genes implicated in chromatin remodeling and nucleosome organization. Although there are limitations inherent to the model systems used, this study will improve understanding regarding the nuclear impact of tau at the transcriptional and post-transcriptional level. This study also illustrates the potential impact of P301L tau on the human brain genome during early phases of pathogenesis.
Collapse
Affiliation(s)
- Mauro Montalbano
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, United States.,Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, United States
| | - Elizabeth Jaworski
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States
| | - Stephanie Garcia
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, United States.,Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, United States
| | - Anna Ellsworth
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, United States.,Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, United States
| | - Salome McAllen
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, United States.,Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, United States
| | - Andrew Routh
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States.,Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, United States
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, United States.,Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
4
|
Paulson JR, Hudson DF, Cisneros-Soberanis F, Earnshaw WC. Mitotic chromosomes. Semin Cell Dev Biol 2021; 117:7-29. [PMID: 33836947 PMCID: PMC8406421 DOI: 10.1016/j.semcdb.2021.03.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/23/2021] [Accepted: 03/23/2021] [Indexed: 01/25/2023]
Abstract
Our understanding of the structure and function of mitotic chromosomes has come a long way since these iconic objects were first recognized more than 140 years ago, though many details remain to be elucidated. In this chapter, we start with the early history of chromosome studies and then describe the path that led to our current understanding of the formation and structure of mitotic chromosomes. We also discuss some of the remaining questions. It is now well established that each mitotic chromatid consists of a central organizing region containing a so-called "chromosome scaffold" from which loops of DNA project radially. Only a few key non-histone proteins and protein complexes are required to form the chromosome: topoisomerase IIα, cohesin, condensin I and condensin II, and the chromokinesin KIF4A. These proteins are concentrated along the axis of the chromatid. Condensins I and II are primarily responsible for shaping the chromosome and the scaffold, and they produce the loops of DNA by an ATP-dependent process known as loop extrusion. Modelling of Hi-C data suggests that condensin II adopts a spiral staircase arrangement with an extruded loop extending out from each step in a roughly helical pattern. Condensin I then forms loops nested within these larger condensin II loops, thereby giving rise to the final compaction of the mitotic chromosome in a process that requires Topo IIα.
Collapse
Affiliation(s)
- James R Paulson
- Department of Chemistry, University of Wisconsin Oshkosh, 800 Algoma Boulevard, Oshkosh, WI 54901, USA.
| | - Damien F Hudson
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC 3052, Australia
| | - Fernanda Cisneros-Soberanis
- Wellcome Trust Centre for Cell Biology, ICB, University of Edinburgh, Michael Swann Building, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
| | - William C Earnshaw
- Wellcome Trust Centre for Cell Biology, ICB, University of Edinburgh, Michael Swann Building, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK.
| |
Collapse
|
5
|
Abstract
Smc5 and Smc6, together with the kleisin Nse4, form the heart of the enigmatic and poorly understood Smc5/6 complex, which is frequently viewed as a cousin of cohesin and condensin with functions in DNA repair. As novel functions for cohesin and condensin complexes in the organization of long-range chromatin architecture have recently emerged, new unsuspected roles for Smc5/6 have also surfaced. Here, I aim to provide a comprehensive overview of our current knowledge of the Smc5/6 complex, including its long-established function in genome stability, its multiple roles in DNA repair, and its recently discovered connection to the transcription inhibition of hepatitis B virus genomes. In addition, I summarize new research that is beginning to tease out the molecular details of Smc5/6 structure and function, knowledge that will illuminate the nuclear activities of Smc5/6 in the stability and dynamics of eukaryotic genomes.
Collapse
Affiliation(s)
- Luis Aragón
- Cell Cycle Group, MRC London Institute of Medical Sciences, Hammersmith Hospital Campus, London W12 0NN, United Kingdom;
| |
Collapse
|
6
|
Shining a Spotlight on DNA: Single-Molecule Methods to Visualise DNA. Molecules 2019; 24:molecules24030491. [PMID: 30704053 PMCID: PMC6384704 DOI: 10.3390/molecules24030491] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/17/2019] [Accepted: 01/29/2019] [Indexed: 11/29/2022] Open
Abstract
The ability to watch single molecules of DNA has revolutionised how we study biological transactions concerning nucleic acids. Many strategies have been developed to manipulate DNA molecules to investigate mechanical properties, dynamics and protein–DNA interactions. Imaging methods using small molecules and protein-based probes to visualise DNA have propelled our understanding of complex biochemical reactions involving DNA. This review focuses on summarising some of the methodological developments made to visualise individual DNA molecules and discusses how these probes have been used in single-molecule biophysical assays.
Collapse
|
7
|
Palecek JJ. SMC5/6: Multifunctional Player in Replication. Genes (Basel) 2018; 10:genes10010007. [PMID: 30583551 PMCID: PMC6356406 DOI: 10.3390/genes10010007] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 12/13/2022] Open
Abstract
The genome replication process is challenged at many levels. Replication must proceed through different problematic sites and obstacles, some of which can pause or even reverse the replication fork (RF). In addition, replication of DNA within chromosomes must deal with their topological constraints and spatial organization. One of the most important factors organizing DNA into higher-order structures are Structural Maintenance of Chromosome (SMC) complexes. In prokaryotes, SMC complexes ensure proper chromosomal partitioning during replication. In eukaryotes, cohesin and SMC5/6 complexes assist in replication. Interestingly, the SMC5/6 complexes seem to be involved in replication in many ways. They stabilize stalled RFs, restrain RF regression, participate in the restart of collapsed RFs, and buffer topological constraints during RF progression. In this (mini) review, I present an overview of these replication-related functions of SMC5/6.
Collapse
Affiliation(s)
- Jan J Palecek
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic.
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic.
| |
Collapse
|
8
|
Ganji M, Shaltiel IA, Bisht S, Kim E, Kalichava A, Haering CH, Dekker C. Real-time imaging of DNA loop extrusion by condensin. Science 2018; 360:102-105. [PMID: 29472443 DOI: 10.1126/science.aar7831] [Citation(s) in RCA: 469] [Impact Index Per Article: 78.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 02/06/2018] [Indexed: 12/30/2022]
Abstract
It has been hypothesized that SMC protein complexes such as condensin and cohesin spatially organize chromosomes by extruding DNA into large loops. We directly visualized the formation and processive extension of DNA loops by yeast condensin in real time. Our findings constitute unambiguous evidence for loop extrusion. We observed that a single condensin complex is able to extrude tens of kilobase pairs of DNA at a force-dependent speed of up to 1500 base pairs per second, using the energy of adenosine triphosphate hydrolysis. Condensin-induced loop extrusion was strictly asymmetric, which demonstrates that condensin anchors onto DNA and reels it in from only one side. Active DNA loop extrusion by SMC complexes may provide the universal unifying principle for genome organization.
Collapse
Affiliation(s)
- Mahipal Ganji
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands
| | - Indra A Shaltiel
- Cell Biology and Biophysics Unit, Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Shveta Bisht
- Cell Biology and Biophysics Unit, Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Eugene Kim
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands
| | - Ana Kalichava
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands
| | - Christian H Haering
- Cell Biology and Biophysics Unit, Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands.
| |
Collapse
|
9
|
Lesne A, Victor JM, Bertrand E, Basyuk E, Barbi M. The Role of Supercoiling in the Motor Activity of RNA Polymerases. Methods Mol Biol 2018; 1805:215-232. [PMID: 29971720 DOI: 10.1007/978-1-4939-8556-2_11] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
RNA polymerase (RNAP) is, in its elongation phase, an emblematic example of a molecular motor whose activity is highly sensitive to DNA supercoiling. After a review of DNA supercoiling basic features, we discuss how supercoiling controls polymerase velocity, while being itself modified by polymerase activity. This coupling is supported by single-molecule measurements. Physical modeling allows us to describe quantitatively how supercoiling and torsional constraints mediate a mechanical coupling between adjacent polymerases. On this basis, we obtain a description that may explain the existence and functioning of RNAP convoys.
Collapse
Affiliation(s)
- Annick Lesne
- Laboratoire de Physique Théorique de la Matière Condensée (LPTMC), UMR 7600 CNRS, Sorbonne Université, Paris, France.,Institut de Génétique Moléculaire de Montpellier, UMR 5535 CNRS, Montpellier, France.,Université de Montpellier, Montpellier, France.,GDR 3536 CNRS, Sorbonne Université, Paris, France
| | - Jean-Marc Victor
- Laboratoire de Physique Théorique de la Matière Condensée (LPTMC), UMR 7600 CNRS, Sorbonne Université, Paris, France. .,Institut de Génétique Moléculaire de Montpellier, UMR 5535 CNRS, Montpellier, France. .,Université de Montpellier, Montpellier, France. .,GDR 3536 CNRS, Sorbonne Université, Paris, France.
| | - Edouard Bertrand
- Institut de Génétique Moléculaire de Montpellier, UMR 5535 CNRS, Montpellier, France.,Université de Montpellier, Montpellier, France
| | - Eugenia Basyuk
- Institut de Génétique Moléculaire de Montpellier, UMR 5535 CNRS, Montpellier, France.,Université de Montpellier, Montpellier, France
| | - Maria Barbi
- Laboratoire de Physique Théorique de la Matière Condensée (LPTMC), UMR 7600 CNRS, Sorbonne Université, Paris, France.,GDR 3536 CNRS, Sorbonne Université, Paris, France
| |
Collapse
|
10
|
Eeftens JM, Bisht S, Kerssemakers J, Kschonsak M, Haering CH, Dekker C. Real-time detection of condensin-driven DNA compaction reveals a multistep binding mechanism. EMBO J 2017; 36:3448-3457. [PMID: 29118001 PMCID: PMC5709735 DOI: 10.15252/embj.201797596] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 10/18/2017] [Accepted: 10/19/2017] [Indexed: 11/09/2022] Open
Abstract
Condensin, a conserved member of the SMC protein family of ring-shaped multi-subunit protein complexes, is essential for structuring and compacting chromosomes. Despite its key role, its molecular mechanism has remained largely unknown. Here, we employ single-molecule magnetic tweezers to measure, in real time, the compaction of individual DNA molecules by the budding yeast condensin complex. We show that compaction can proceed in large steps, driving DNA molecules into a fully condensed state against forces of up to 2 pN. Compaction can be reversed by applying high forces or adding buffer of high ionic strength. While condensin can stably bind DNA in the absence of ATP, ATP hydrolysis by the SMC subunits is required for rendering the association salt insensitive and for the subsequent compaction process. Our results indicate that the condensin reaction cycle involves two distinct steps, where condensin first binds DNA through electrostatic interactions before using ATP hydrolysis to encircle the DNA topologically within its ring structure, which initiates DNA compaction. The finding that both binding modes are essential for its DNA compaction activity has important implications for understanding the mechanism of chromosome compaction.
Collapse
Affiliation(s)
- Jorine M Eeftens
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, The Netherlands
| | - Shveta Bisht
- Cell Biology and Biophysics Unit, Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Jacob Kerssemakers
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, The Netherlands
| | - Marc Kschonsak
- Cell Biology and Biophysics Unit, Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Christian H Haering
- Cell Biology and Biophysics Unit, Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
11
|
McFarlane RJ, Wakeman JA. Meiosis-like Functions in Oncogenesis: A New View of Cancer. Cancer Res 2017; 77:5712-5716. [PMID: 29061671 DOI: 10.1158/0008-5472.can-17-1535] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/03/2017] [Accepted: 08/16/2017] [Indexed: 11/16/2022]
Abstract
Cancer cells have many abnormal characteristics enabling tumors to grow, spread, and avoid immunologic and therapeutic destruction. Central to this is the innate ability of populations of cancer cells to rapidly evolve. One feature of many cancers is that they activate genes that are normally associated with distinct developmental states, including germ cell-specific genes. This has historically led to the proposal that tumors take on embryonal characteristics, the so called embryonal theory of cancer. However, one group of germline genes, not directly associated with embryonic somatic tissue genesis, is the one that encodes the specific factors to drive the unique reductional chromosome segregation of meiosis I, which also results in chromosomal exchanges. Here, we propose that meiosis I-specific modulators of reductional segregation can contribute to oncogenic chromosome dynamics and that the embryonal theory for cancer cell growth/proliferation is overly simplistic, as meiotic factors are not a feature of most embryonic tissue development. We postulate that some meiotic chromosome-regulatory functions contribute to a soma-to-germline model for cancer, in which activation of germline (including meiosis) functions drive oncogenesis, and we extend this to propose that meiotic factors could be powerful sources of targets for therapeutics and biomonitoring in oncology. Cancer Res; 77(21); 5712-6. ©2017 AACR.
Collapse
Affiliation(s)
- Ramsay J McFarlane
- North West Cancer Research Institute, School of Medical Sciences, Bangor University, Bangor, Gwynedd, United Kingdom.
| | - Jane A Wakeman
- North West Cancer Research Institute, School of Medical Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
| |
Collapse
|
12
|
Lazar-Stefanita L, Scolari VF, Mercy G, Muller H, Guérin TM, Thierry A, Mozziconacci J, Koszul R. Cohesins and condensins orchestrate the 4D dynamics of yeast chromosomes during the cell cycle. EMBO J 2017; 36:2684-2697. [PMID: 28729434 PMCID: PMC5599795 DOI: 10.15252/embj.201797342] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 06/29/2017] [Accepted: 07/04/2017] [Indexed: 11/09/2022] Open
Abstract
Duplication and segregation of chromosomes involves dynamic reorganization of their internal structure by conserved architectural proteins, including the structural maintenance of chromosomes (SMC) complexes cohesin and condensin. Despite active investigation of the roles of these factors, a genome-wide view of dynamic chromosome architecture at both small and large scale during cell division is still missing. Here, we report the first comprehensive 4D analysis of the higher-order organization of the Saccharomyces cerevisiae genome throughout the cell cycle and investigate the roles of SMC complexes in controlling structural transitions. During replication, cohesion establishment promotes numerous long-range intra-chromosomal contacts and correlates with the individualization of chromosomes, which culminates at metaphase. In anaphase, mitotic chromosomes are abruptly reorganized depending on mechanical forces exerted by the mitotic spindle. Formation of a condensin-dependent loop bridging the centromere cluster with the rDNA loci suggests that condensin-mediated forces may also directly facilitate segregation. This work therefore comprehensively recapitulates cell cycle-dependent chromosome dynamics in a unicellular eukaryote, but also unveils new features of chromosome structural reorganization during highly conserved stages of cell division.
Collapse
Affiliation(s)
- Luciana Lazar-Stefanita
- Institut Pasteur, Department Genomes and Genetics, Unité Régulation Spatiale des Génomes, Paris, France
- CNRS, UMR 3525, Paris, France
- Institut Pasteur, CNRS Center of Bioinformatics, Biostatistics and Integrative Biology (C3BI), USR 3756, Paris, France
- Sorbonne Universités, UPMC Université Paris 6, Complexité du Vivant, Paris, France
| | - Vittore F Scolari
- Institut Pasteur, Department Genomes and Genetics, Unité Régulation Spatiale des Génomes, Paris, France
- CNRS, UMR 3525, Paris, France
- Institut Pasteur, CNRS Center of Bioinformatics, Biostatistics and Integrative Biology (C3BI), USR 3756, Paris, France
| | - Guillaume Mercy
- Institut Pasteur, Department Genomes and Genetics, Unité Régulation Spatiale des Génomes, Paris, France
- CNRS, UMR 3525, Paris, France
- Institut Pasteur, CNRS Center of Bioinformatics, Biostatistics and Integrative Biology (C3BI), USR 3756, Paris, France
- Sorbonne Universités, UPMC Université Paris 6, Complexité du Vivant, Paris, France
| | - Héloise Muller
- Institut Pasteur, Department Genomes and Genetics, Unité Régulation Spatiale des Génomes, Paris, France
- CNRS, UMR 3525, Paris, France
- Institut Pasteur, CNRS Center of Bioinformatics, Biostatistics and Integrative Biology (C3BI), USR 3756, Paris, France
| | - Thomas M Guérin
- Laboratoire Télomères et Réparation du Chromosome, CEA, INSERM, UMR 967, IRCM, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Agnès Thierry
- Institut Pasteur, Department Genomes and Genetics, Unité Régulation Spatiale des Génomes, Paris, France
- CNRS, UMR 3525, Paris, France
- Institut Pasteur, CNRS Center of Bioinformatics, Biostatistics and Integrative Biology (C3BI), USR 3756, Paris, France
| | - Julien Mozziconacci
- Sorbonne Universités, Theoretical Physics for Condensed Matter Lab, UPMC Université Paris 06, Paris, France
- CNRS, UMR 7600, Paris, France
| | - Romain Koszul
- Institut Pasteur, Department Genomes and Genetics, Unité Régulation Spatiale des Génomes, Paris, France
- CNRS, UMR 3525, Paris, France
- Institut Pasteur, CNRS Center of Bioinformatics, Biostatistics and Integrative Biology (C3BI), USR 3756, Paris, France
| |
Collapse
|
13
|
Abstract
Chromatin condensation during mitosis produces detangled and discrete DNA entities required for high fidelity sister chromatid segregation during mitosis and positions DNA away from the cleavage furrow during cytokinesis. Regional condensation during G1 also establishes a nuclear architecture through which gene transcription is regulated but remains plastic so that cells can respond to changes in nutrient levels, temperature and signaling molecules. To date, however, the potential impact of this plasticity on mitotic chromosome condensation remains unknown. Here, we report results obtained from a new condensation assay that wildtype budding yeast cells exhibit dramatic changes in rDNA conformation in response to temperature. rDNA hypercondenses in wildtype cells maintained at 37°C, compared with cells maintained at 23°C. This hypercondensation machinery can be activated during preanaphase but readily inactivated upon exposure to lower temperatures. Extended mitotic arrest at 23°C does not result in hypercondensation, negating a kinetic-based argument in which condensation that typically proceeds slowly is accelerated when cells are placed at 37°C. Neither elevated recombination nor reduced transcription appear to promote this hypercondensation. This heretofore undetected temperature-dependent hypercondensation pathway impacts current views of chromatin structure based on conditional mutant gene analyses and significantly extends our understanding of physiologic changes in chromatin architecture in response to hypothermia.
Collapse
Affiliation(s)
- Donglai Shen
- a Department of Biological Sciences , Lehigh University , Bethlehem , PA , USA
| | - Robert V Skibbens
- a Department of Biological Sciences , Lehigh University , Bethlehem , PA , USA
| |
Collapse
|
14
|
Rana V, Bosco G. Condensin Regulation of Genome Architecture. J Cell Physiol 2017; 232:1617-1625. [PMID: 27888504 DOI: 10.1002/jcp.25702] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 11/22/2016] [Indexed: 02/06/2023]
Abstract
Condensin complexes exist across all domains of life and are central to the structure and organization of chromatin. As architectural proteins, condensins control chromatin compaction during interphase and mitosis. Condensin activity has been well studied in mitosis but have recently emerged as important regulators of genome organization and gene expression during interphase. Here, we focus our discussion on recent findings on the molecular mechanism and how condensins are used to shape chromosomes during interphase. These findings suggest condensin activity during interphase is required for proper chromosome organization. J. Cell. Physiol. 232: 1617-1625, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Vibhuti Rana
- Department of Molecular Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Giovanni Bosco
- Department of Molecular Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| |
Collapse
|
15
|
Gupta P, Lavagnolli T, Mira-Bontenbal H, Merkenschlager M. Analysis of Cohesin Function in Gene Regulation and Chromatin Organization in Interphase. Methods Mol Biol 2017; 1515:197-216. [PMID: 27797081 DOI: 10.1007/978-1-4939-6545-8_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Cohesin is essential for the maintenance of chromosomes through the cell cycle. In addition, cohesin contributes to the regulation of gene expression and the organization of chromatin in interphase cells. To study cohesin's role in gene expression and chromatin organization, it is necessary to avoid secondary effects due to disruption of vital cohesin functions in the cell cycle. Here we describe experimental approaches to achieve this and the methods applied to define cohesin's role in interphase.
Collapse
Affiliation(s)
- Preksha Gupta
- Lymphocyte Development Group, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK.
| | - Thais Lavagnolli
- Lymphocyte Development Group, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Hegias Mira-Bontenbal
- Lymphocyte Development Group, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
- Department of Developmental Biology, Erasmus MC, University Medical Centre, 3015 CN, Rotterdam, The Netherlands
| | - Matthias Merkenschlager
- Lymphocyte Development Group, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| |
Collapse
|
16
|
Roles of SMC Complexes During T Lymphocyte Development and Function. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2017; 106:17-42. [DOI: 10.1016/bs.apcsb.2016.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
17
|
Toselli-Mollereau E, Robellet X, Fauque L, Lemaire S, Schiklenk C, Klein C, Hocquet C, Legros P, N'Guyen L, Mouillard L, Chautard E, Auboeuf D, Haering CH, Bernard P. Nucleosome eviction in mitosis assists condensin loading and chromosome condensation. EMBO J 2016; 35:1565-81. [PMID: 27266525 DOI: 10.15252/embj.201592849] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 05/05/2016] [Indexed: 12/15/2022] Open
Abstract
Condensins associate with DNA and shape mitotic chromosomes. Condensins are enriched nearby highly expressed genes during mitosis, but how this binding is achieved and what features associated with transcription attract condensins remain unclear. Here, we report that condensin accumulates at or in the immediate vicinity of nucleosome-depleted regions during fission yeast mitosis. Two transcriptional coactivators, the Gcn5 histone acetyltransferase and the RSC chromatin-remodelling complex, bind to promoters adjoining condensin-binding sites and locally evict nucleosomes to facilitate condensin binding and allow efficient mitotic chromosome condensation. The function of Gcn5 is closely linked to condensin positioning, since neither the localization of topoisomerase II nor that of the cohesin loader Mis4 is altered in gcn5 mutant cells. We propose that nucleosomes act as a barrier for the initial binding of condensin and that nucleosome-depleted regions formed at highly expressed genes by transcriptional coactivators constitute access points into chromosomes where condensin binds free genomic DNA.
Collapse
Affiliation(s)
- Esther Toselli-Mollereau
- Laboratory of Biology and Modelling of the Cell, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, Lyon, France
| | - Xavier Robellet
- Laboratory of Biology and Modelling of the Cell, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, Lyon, France
| | - Lydia Fauque
- Laboratory of Biology and Modelling of the Cell, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, Lyon, France
| | - Sébastien Lemaire
- Laboratory of Biology and Modelling of the Cell, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, Lyon, France
| | | | - Carlo Klein
- Cell Biology and Biophysics Unit, EMBL, Heidelberg, Germany
| | - Clémence Hocquet
- Laboratory of Biology and Modelling of the Cell, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, Lyon, France
| | - Pénélope Legros
- Laboratory of Biology and Modelling of the Cell, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, Lyon, France
| | - Lia N'Guyen
- Laboratory of Biology and Modelling of the Cell, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, Lyon, France
| | - Léo Mouillard
- Laboratory of Biology and Modelling of the Cell, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, Lyon, France
| | - Emilie Chautard
- Laboratory of Biology and Modelling of the Cell, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, Lyon, France
| | - Didier Auboeuf
- Laboratory of Biology and Modelling of the Cell, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, Lyon, France
| | | | - Pascal Bernard
- Laboratory of Biology and Modelling of the Cell, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, Lyon, France
| |
Collapse
|
18
|
Hepatitis B virus X protein identifies the Smc5/6 complex as a host restriction factor. Nature 2016; 531:386-9. [PMID: 26983541 DOI: 10.1038/nature17170] [Citation(s) in RCA: 374] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 01/27/2016] [Indexed: 12/14/2022]
Abstract
Chronic hepatitis B virus infection is a leading cause of cirrhosis and liver cancer. Hepatitis B virus encodes the regulatory HBx protein whose primary role is to promote transcription of the viral genome, which persists as an extrachromosomal DNA circle in infected cells. HBx accomplishes this task by an unusual mechanism, enhancing transcription only from extrachromosomal DNA templates. Here we show that HBx achieves this by hijacking the cellular DDB1-containing E3 ubiquitin ligase to target the 'structural maintenance of chromosomes' (Smc) complex Smc5/6 for degradation. Blocking this event inhibits the stimulatory effect of HBx both on extrachromosomal reporter genes and on hepatitis B virus transcription. Conversely, silencing the Smc5/6 complex enhances extrachromosomal reporter gene transcription in the absence of HBx, restores replication of an HBx-deficient hepatitis B virus, and rescues wild-type hepatitis B virus in a DDB1-knockdown background. The Smc5/6 complex associates with extrachromosomal reporters and the hepatitis B virus genome, suggesting a direct mechanism of transcriptional inhibition. These results uncover a novel role for the Smc5/6 complex as a restriction factor selectively blocking extrachromosomal DNA transcription. By destroying this complex, HBx relieves the inhibition to allow productive hepatitis B virus gene expression.
Collapse
|
19
|
Eeftens JM, Katan AJ, Kschonsak M, Hassler M, de Wilde L, Dief EM, Haering CH, Dekker C. Condensin Smc2-Smc4 Dimers Are Flexible and Dynamic. Cell Rep 2016; 14:1813-8. [PMID: 26904946 PMCID: PMC4785793 DOI: 10.1016/j.celrep.2016.01.063] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 12/21/2015] [Accepted: 01/20/2016] [Indexed: 12/20/2022] Open
Abstract
Structural maintenance of chromosomes (SMC) protein complexes, including cohesin and condensin, play key roles in the regulation of higher-order chromosome organization. Even though SMC proteins are thought to mechanistically determine the function of the complexes, their native conformations and dynamics have remained unclear. Here, we probe the topology of Smc2-Smc4 dimers of the S. cerevisiae condensin complex with high-speed atomic force microscopy (AFM) in liquid. We show that the Smc2-Smc4 coiled coils are highly flexible polymers with a persistence length of only ∼ 4 nm. Moreover, we demonstrate that the SMC dimers can adopt various architectures that interconvert dynamically over time, and we find that the SMC head domains engage not only with each other, but also with the hinge domain situated at the other end of the ∼ 45-nm-long coiled coil. Our findings reveal structural properties that provide insights into the molecular mechanics of condensin complexes.
Collapse
Affiliation(s)
- Jorine M Eeftens
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft 2628 CJ, the Netherlands
| | - Allard J Katan
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft 2628 CJ, the Netherlands
| | - Marc Kschonsak
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Markus Hassler
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Liza de Wilde
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft 2628 CJ, the Netherlands
| | - Essam M Dief
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft 2628 CJ, the Netherlands
| | - Christian H Haering
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany.
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft 2628 CJ, the Netherlands.
| |
Collapse
|
20
|
Pradillo M, Knoll A, Oliver C, Varas J, Corredor E, Puchta H, Santos JL. Involvement of the Cohesin Cofactor PDS5 (SPO76) During Meiosis and DNA Repair in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2015; 6:1034. [PMID: 26648949 PMCID: PMC4664637 DOI: 10.3389/fpls.2015.01034] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 11/06/2015] [Indexed: 05/23/2023]
Abstract
Maintenance and precise regulation of sister chromatid cohesion is essential for faithful chromosome segregation during mitosis and meiosis. Cohesin cofactors contribute to cohesin dynamics and interact with cohesin complexes during cell cycle. One of these, PDS5, also known as SPO76, is essential during mitosis and meiosis in several organisms and also plays a role in DNA repair. In yeast, the complex Wapl-Pds5 controls cohesion maintenance and colocalizes with cohesin complexes into chromosomes. In Arabidopsis, AtWAPL proteins are essential during meiosis, however, the role of AtPDS5 remains to be ascertained. Here we have isolated mutants for each of the five AtPDS5 genes (A-E) and obtained, after different crosses between them, double, triple, and even quadruple mutants (Atpds5a Atpds5b Atpds5c Atpds5e). Depletion of AtPDS5 proteins has a weak impact on meiosis, but leads to severe effects on development, fertility, somatic homologous recombination (HR) and DNA repair. Furthermore, this cohesin cofactor could be important for the function of the AtSMC5/AtSMC6 complex. Contrarily to its function in other species, our results suggest that AtPDS5 is dispensable during the meiotic division of Arabidopsis, although it plays an important role in DNA repair by HR.
Collapse
Affiliation(s)
- Mónica Pradillo
- Departamento de Genética, Facultad de Biología, Universidad ComplutenseMadrid, Spain
| | - Alexander Knoll
- Botanical Institute II, Karlsruhe Institute of TechnologyKarlsruhe, Germany
| | - Cecilia Oliver
- Departamento de Genética, Facultad de Biología, Universidad ComplutenseMadrid, Spain
| | - Javier Varas
- Departamento de Genética, Facultad de Biología, Universidad ComplutenseMadrid, Spain
| | - Eduardo Corredor
- Departamento de Genética, Facultad de Biología, Universidad ComplutenseMadrid, Spain
| | - Holger Puchta
- Botanical Institute II, Karlsruhe Institute of TechnologyKarlsruhe, Germany
| | - Juan L. Santos
- Departamento de Genética, Facultad de Biología, Universidad ComplutenseMadrid, Spain
| |
Collapse
|
21
|
Ma Y, Kanakousaki K, Buttitta L. How the cell cycle impacts chromatin architecture and influences cell fate. Front Genet 2015; 6:19. [PMID: 25691891 PMCID: PMC4315090 DOI: 10.3389/fgene.2015.00019] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 01/14/2015] [Indexed: 01/17/2023] Open
Abstract
Since the earliest observations of cells undergoing mitosis, it has been clear that there is an intimate relationship between the cell cycle and nuclear chromatin architecture. The nuclear envelope and chromatin undergo robust assembly and disassembly during the cell cycle, and transcriptional and post-transcriptional regulation of histone biogenesis and chromatin modification is controlled in a cell cycle-dependent manner. Chromatin binding proteins and chromatin modifications in turn influence the expression of critical cell cycle regulators, the accessibility of origins for DNA replication, DNA repair, and cell fate. In this review we aim to provide an integrated discussion of how the cell cycle machinery impacts nuclear architecture and vice-versa. We highlight recent advances in understanding cell cycle-dependent histone biogenesis and histone modification deposition, how cell cycle regulators control histone modifier activities, the contribution of chromatin modifications to origin firing for DNA replication, and newly identified roles for nucleoporins in regulating cell cycle gene expression, gene expression memory and differentiation. We close with a discussion of how cell cycle status may impact chromatin to influence cell fate decisions, under normal contexts of differentiation as well as in instances of cell fate reprogramming.
Collapse
Affiliation(s)
- Yiqin Ma
- Department of Molecular, Cellular and Developmental Biology, University of Michigan , Ann Arbor, MI, USA
| | - Kiriaki Kanakousaki
- Department of Molecular, Cellular and Developmental Biology, University of Michigan , Ann Arbor, MI, USA
| | - Laura Buttitta
- Department of Molecular, Cellular and Developmental Biology, University of Michigan , Ann Arbor, MI, USA
| |
Collapse
|
22
|
Barysz H, Kim JH, Chen ZA, Hudson DF, Rappsilber J, Gerloff DL, Earnshaw WC. Three-dimensional topology of the SMC2/SMC4 subcomplex from chicken condensin I revealed by cross-linking and molecular modelling. Open Biol 2015; 5:150005. [PMID: 25716199 PMCID: PMC4345284 DOI: 10.1098/rsob.150005] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 01/25/2015] [Indexed: 02/06/2023] Open
Abstract
SMC proteins are essential components of three protein complexes that are important for chromosome structure and function. The cohesin complex holds replicated sister chromatids together, whereas the condensin complex has an essential role in mitotic chromosome architecture. Both are involved in interphase genome organization. SMC-containing complexes are large (more than 650 kDa for condensin) and contain long anti-parallel coiled-coils. They are thus difficult subjects for conventional crystallographic and electron cryomicroscopic studies. Here, we have used amino acid-selective cross-linking and mass spectrometry combined with structure prediction to develop a full-length molecular draft three-dimensional structure of the SMC2/SMC4 dimeric backbone of chicken condensin. We assembled homology-based molecular models of the globular heads and hinges with the lengthy coiled-coils modelled in fragments, using numerous high-confidence cross-links and accounting for potential irregularities. Our experiments reveal that isolated condensin complexes can exist with their coiled-coil segments closely apposed to one another along their lengths and define the relative spatial alignment of the two anti-parallel coils. The centres of the coiled-coils can also approach one another closely in situ in mitotic chromosomes. In addition to revealing structural information, our cross-linking data suggest that both H2A and H4 may have roles in condensin interactions with chromatin.
Collapse
Affiliation(s)
- Helena Barysz
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | - Ji Hun Kim
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JR, UK Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria 3052, Australia Department of Paediatrics, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Zhuo Angel Chen
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | - Damien F Hudson
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria 3052, Australia Department of Paediatrics, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Juri Rappsilber
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JR, UK Department of Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany
| | - Dietlind L Gerloff
- Foundation for Applied Molecular Evolution, PO Box 13174, Gainesville, FL 32604, USA
| | - William C Earnshaw
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| |
Collapse
|
23
|
Bakhrebah M, Zhang T, Mann JR, Kalitsis P, Hudson DF. Disruption of a conserved CAP-D3 threonine alters condensin loading on mitotic chromosomes leading to chromosome hypercondensation. J Biol Chem 2015; 290:6156-67. [PMID: 25605712 DOI: 10.1074/jbc.m114.627109] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The condensin complex plays a key role in organizing mitotic chromosomes. In vertebrates, there are two condensin complexes that have independent and cooperative roles in folding mitotic chromosomes. In this study, we dissect the role of a putative Cdk1 site on the condensin II subunit CAP-D3 in chicken DT40 cells. This conserved site has been shown to activate condensin II during prophase in human cells, and facilitate further phosphorylation by polo-like kinase I. We examined the functional significance of this phosphorylation mark by mutating the orthologous site of CAP-D3 (CAP-D3(T1403A)) in chicken DT40 cells. We show that this mutation is a gain of function mutant in chicken cells; it disrupts prophase, results in a dramatic shortening of the mitotic chromosome axis, and leads to abnormal INCENP localization. Our results imply phosphorylation of CAP-D3 acts to limit condensin II binding onto mitotic chromosomes. We present the first in vivo example that alters the ratio of condensin I:II on mitotic chromosomes. Our results demonstrate this ratio is a critical determinant in shaping mitotic chromosomes.
Collapse
Affiliation(s)
- Muhammed Bakhrebah
- From the Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Victoria 3052 and the Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, Victoria 3052, Australia
| | - Tao Zhang
- From the Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Victoria 3052 and the Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, Victoria 3052, Australia
| | - Jeff R Mann
- From the Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Victoria 3052 and the Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, Victoria 3052, Australia
| | - Paul Kalitsis
- From the Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Victoria 3052 and the Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, Victoria 3052, Australia
| | - Damien F Hudson
- From the Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Victoria 3052 and the Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, Victoria 3052, Australia
| |
Collapse
|
24
|
Sun L, Hartson SD, Matts RL. Identification of proteins associated with Aha1 in HeLa cells by quantitative proteomics. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:365-80. [PMID: 25614414 DOI: 10.1016/j.bbapap.2015.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 12/20/2014] [Accepted: 01/09/2015] [Indexed: 01/17/2023]
Abstract
The identification of the activator of heat shock protein 90 (Hsp90) ATPase's (Aha1) protein-protein interaction (PPI) network will provide critical insights into the relationship of Aha1 with multi-molecular complexes and shed light onto Aha1's interconnections with Hsp90-regulated biological functions. Flag-tagged Aha1 was over-expressed in HeLa cells and isolated by anti-Flag affinity pull downs, followed by trypsin digestion and identification co-adsorbing proteins by liquid chromatography-tandem mass spectroscopy (LC-MS/MS). A probability-based identification of Aha1 PPIs was generated from the LC-MS/MS analysis by using a relative quantification strategy, spectral counting (SC). By comparing the SC-based protein levels between Aha1 pull-down samples and negative controls, 164 Aha1-interacting proteins were identified that were quantitatively enriched in the pull-down samples over the controls. The identified Aha1-interacting proteins are involved in a wide number of intracellular bioprocesses, including DNA maintenance, chromatin structure, RNA processing, translation, nucleocytoplasmic and vesicle transport, among others. The interactions of 33 of the identified proteins with Aha1 were further confirmed by Western blotting, demonstrating the reliability of our affinity-purification-coupled quantitative SC-MS strategy. Our proteomic data suggests that Aha1 may participate in diverse biological pathways to facilitate Hsp90 chaperone functions in response to stress.
Collapse
Affiliation(s)
- Liang Sun
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Steven D Hartson
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Robert L Matts
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
25
|
Calcium mobilization is both required and sufficient for initiating chromatin decondensation during activation of peripheral T-cells. Mol Immunol 2014; 63:540-9. [PMID: 25453467 DOI: 10.1016/j.molimm.2014.10.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 10/06/2014] [Accepted: 10/17/2014] [Indexed: 01/10/2023]
Abstract
Antigen engagement of the T-cell receptor (TCR) induces a rapid and dramatic decondensation of chromatin that is necessary for T-cell activation. This decondensation makes T-cells competent to respond to interleukin-2 providing a mechanism to ensure clonotypic proliferation during an immune response. Using murine T-cells, we investigated the mechanism by which TCR signaling can initiate chromatin decondensation, focusing on the role of calcium mobilization. During T-cell activation, calcium is first released from intracellular stores, followed by influx of extracellular calcium via store operated calcium entry. We show that mobilization of intracellular calcium is required for TCR-induced chromatin decondensation. However, the decondensation is not dependent on the activity of the downstream transcription factor NFAT. Furthermore, we show that the influx of extracellular calcium is dispensable for initiating chromatin decondensation. Finally, we show that mobilization of calcium from intracellular stores is sufficient to induce decondensation, independent of TCR engagement. Collectively, our data suggest that chromatin decondensation in peripheral T-cells is controlled by modulating intracellular calcium levels.
Collapse
|
26
|
Kaur M, Izumi K, Wilkens AB, Chatfield KC, Spinner NB, Conlin LK, Zhang Z, Krantz ID. Genome-wide expression analysis in fibroblast cell lines from probands with Pallister Killian syndrome. PLoS One 2014; 9:e108853. [PMID: 25329894 PMCID: PMC4199614 DOI: 10.1371/journal.pone.0108853] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 08/26/2014] [Indexed: 12/01/2022] Open
Abstract
Pallister Killian syndrome (OMIM: # 601803) is a rare multisystem disorder typically caused by tissue limited mosaic tetrasomy of chromosome 12p (isochromosome 12p). The clinical manifestations of Pallister Killian syndrome are variable with the most common findings including craniofacial dysmorphia, hypotonia, cognitive impairment, hearing loss, skin pigmentary differences and epilepsy. Isochromosome 12p is identified primarily in skin fibroblast cultures and in chorionic villus and amniotic fluid cell samples and may be identified in blood lymphocytes during the neonatal and early childhood period. We performed genomic expression profiling correlated with interphase fluorescent in situ hybridization and single nucleotide polymorphism array quantification of degree of mosaicism in fibroblasts from 17 Caucasian probands with Pallister Killian syndrome and 9 healthy age, gender and ethnicity matched controls. We identified a characteristic profile of 354 (180 up- and 174 down-regulated) differentially expressed genes in Pallister Killian syndrome probands and supportive evidence for a Pallister Killian syndrome critical region on 12p13.31. The differentially expressed genes were enriched for developmentally important genes such as homeobox genes. Among the differentially expressed genes, we identified several genes whose misexpression may be associated with the clinical phenotype of Pallister Killian syndrome such as downregulation of ZFPM2, GATA6 and SOX9, and overexpression of IGFBP2.
Collapse
Affiliation(s)
- Maninder Kaur
- The Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Kosuke Izumi
- The Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- Research Center for Epigenetic Disease, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Alisha B. Wilkens
- The Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Kathryn C. Chatfield
- Department of Pediatrics, Section of Pediatric Cardiology, The Children's Hospital of Colorado, Denver, Colorado, United States of America
| | - Nancy B. Spinner
- The Department of Pathology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- The Perelman School of Medicine at The University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Laura K. Conlin
- The Department of Pathology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- The Perelman School of Medicine at The University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Zhe Zhang
- Center for Biomedical Informatics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Ian D. Krantz
- The Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- The Perelman School of Medicine at The University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
27
|
Bigeard J, Rayapuram N, Bonhomme L, Hirt H, Pflieger D. Proteomic and phosphoproteomic analyses of chromatin-associated proteins from Arabidopsis thaliana. Proteomics 2014; 14:2141-55. [PMID: 24889360 DOI: 10.1002/pmic.201400072] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/28/2014] [Accepted: 05/26/2014] [Indexed: 11/09/2022]
Abstract
The nucleus is the organelle where basically all DNA-related processes take place in eukaryotes, such as replication, transcription, and splicing as well as epigenetic regulation. The identification and description of the nuclear proteins is one of the requisites toward a comprehensive understanding of the biological functions accomplished in the nucleus. Many of the regulatory mechanisms of protein functions rely on their PTMs among which phosphorylation is probably one of the most important properties affecting enzymatic activity, interaction with other molecules, localization, or stability. So far, the nuclear and subnuclear proteome and phosphoproteome of the model plant Arabidopsis thaliana have been the subject of very few studies. In this work, we developed a purification protocol of Arabidopsis chromatin-associated proteins and performed proteomic and phosphoproteomic analyses identifying a total of 879 proteins of which 198 were phosphoproteins that were mainly involved in chromatin remodeling, transcriptional regulation, and RNA processing. From 230 precisely localized phosphorylation sites (phosphosites), 52 correspond to hitherto unidentified sites. This protocol and data thereby obtained should be a valuable resource for many domains of plant research.
Collapse
Affiliation(s)
- Jean Bigeard
- Unité de Recherche en Génomique Végétale (URGV), UMR INRA/CNRS/Université d'Evry Val d'Essonne/Saclay Plant Sciences, Evry, France
| | | | | | | | | |
Collapse
|
28
|
Bigeard J, Rayapuram N, Pflieger D, Hirt H. Phosphorylation-dependent regulation of plant chromatin and chromatin-associated proteins. Proteomics 2014; 14:2127-40. [PMID: 24889195 DOI: 10.1002/pmic.201400073] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/28/2014] [Accepted: 05/26/2014] [Indexed: 12/25/2022]
Abstract
In eukaryotes, most of the DNA is located in the nucleus where it is organized with histone proteins in a higher order structure as chromatin. Chromatin and chromatin-associated proteins contribute to DNA-related processes such as replication and transcription as well as epigenetic regulation. Protein functions are often regulated by PTMs among which phosphorylation is one of the most abundant PTM. Phosphorylation of proteins affects important properties, such as enzyme activity, protein stability, or subcellular localization. We here describe the main specificities of protein phosphorylation in plants and review the current knowledge on phosphorylation-dependent regulation of plant chromatin and chromatin-associated proteins. We also outline some future challenges to further elucidate protein phosphorylation and chromatin regulation.
Collapse
Affiliation(s)
- Jean Bigeard
- Unité de Recherche en Génomique Végétale (URGV), UMR INRA/CNRS/Université d'Evry Val d'Essonne/Saclay Plant Sciences, Evry, France
| | | | | | | |
Collapse
|
29
|
Association of condensin with chromosomes depends on DNA binding by its HEAT-repeat subunits. Nat Struct Mol Biol 2014; 21:560-8. [DOI: 10.1038/nsmb.2831] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 04/24/2014] [Indexed: 02/07/2023]
|
30
|
Doenecke D. Chromatin dynamics from S-phase to mitosis: contributions of histone modifications. Cell Tissue Res 2014; 356:467-75. [PMID: 24816984 DOI: 10.1007/s00441-014-1873-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 03/13/2014] [Indexed: 10/25/2022]
Abstract
This review focuses on the major protein moiety of chromosomes, i.e., the histone proteins, on the contribution of their posttranslational modification to structural and functional chromatin dynamics, on the acetylation and methylation of lysine residues, and on the phosphorylation of serine or threonine with respect to various steps during the cell cycle.
Collapse
Affiliation(s)
- Detlef Doenecke
- Department for Molecular Biology, Georg August University, Göttingen, Germany,
| |
Collapse
|
31
|
Kim JH, Zhang T, Wong NC, Davidson N, Maksimovic J, Oshlack A, Earnshaw WC, Kalitsis P, Hudson DF. Condensin I associates with structural and gene regulatory regions in vertebrate chromosomes. Nat Commun 2014; 4:2537. [PMID: 24088984 DOI: 10.1038/ncomms3537] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 09/03/2013] [Indexed: 11/09/2022] Open
Abstract
The condensin complex is essential for correct packaging and segregation of chromosomes during mitosis and meiosis in all eukaryotes. To date, the genome-wide location and the nature of condensin-binding sites have remained elusive in vertebrates. Here we report the genome-wide map of condensin I in chicken DT40 cells. Unexpectedly, we find that condensin I binds predominantly to promoter sequences in mitotic cells. We also find a striking enrichment at both centromeres and telomeres, highlighting the importance of the complex in chromosome segregation. Taken together, the results show that condensin I is largely absent from heterochromatic regions. This map of the condensin I binding sites on the chicken genome reveals that patterns of condensin distribution on chromosomes are conserved from prokaryotes, through yeasts to vertebrates. Thus in three kingdoms of life, condensin is enriched on promoters of actively transcribed genes and at loci important for chromosome segregation.
Collapse
Affiliation(s)
- Ji Hun Kim
- 1] Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Melbourne, Victoria 3052, Australia [2] Department of Paediatrics, University of Melbourne, Parkville, Melbourne, Victoria 3052, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Symmons O, Uslu VV, Tsujimura T, Ruf S, Nassari S, Schwarzer W, Ettwiller L, Spitz F. Functional and topological characteristics of mammalian regulatory domains. Genome Res 2014; 24:390-400. [PMID: 24398455 PMCID: PMC3941104 DOI: 10.1101/gr.163519.113] [Citation(s) in RCA: 313] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 12/19/2013] [Indexed: 01/04/2023]
Abstract
Long-range regulatory interactions play an important role in shaping gene-expression programs. However, the genomic features that organize these activities are still poorly characterized. We conducted a large operational analysis to chart the distribution of gene regulatory activities along the mouse genome, using hundreds of insertions of a regulatory sensor. We found that enhancers distribute their activities along broad regions and not in a gene-centric manner, defining large regulatory domains. Remarkably, these domains correlate strongly with the recently described TADs, which partition the genome into distinct self-interacting blocks. Different features, including specific repeats and CTCF-binding sites, correlate with the transition zones separating regulatory domains, and may help to further organize promiscuously distributed regulatory influences within large domains. These findings support a model of genomic organization where TADs confine regulatory activities to specific but large regulatory domains, contributing to the establishment of specific gene expression profiles.
Collapse
Affiliation(s)
- Orsolya Symmons
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Veli Vural Uslu
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Taro Tsujimura
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Sandra Ruf
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Sonya Nassari
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Wibke Schwarzer
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Laurence Ettwiller
- Centre for Organismal Studies, University of Heidelberg, 69111 Heidelberg, Germany
| | - François Spitz
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| |
Collapse
|
33
|
Seitan VC, Faure AJ, Zhan Y, McCord RP, Lajoie BR, Ing-Simmons E, Lenhard B, Giorgetti L, Heard E, Fisher AG, Flicek P, Dekker J, Merkenschlager M. Cohesin-based chromatin interactions enable regulated gene expression within preexisting architectural compartments. Genome Res 2013; 23:2066-77. [PMID: 24002784 PMCID: PMC3847776 DOI: 10.1101/gr.161620.113] [Citation(s) in RCA: 252] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 08/28/2013] [Indexed: 01/09/2023]
Abstract
Chromosome conformation capture approaches have shown that interphase chromatin is partitioned into spatially segregated Mb-sized compartments and sub-Mb-sized topological domains. This compartmentalization is thought to facilitate the matching of genes and regulatory elements, but its precise function and mechanistic basis remain unknown. Cohesin controls chromosome topology to enable DNA repair and chromosome segregation in cycling cells. In addition, cohesin associates with active enhancers and promoters and with CTCF to form long-range interactions important for gene regulation. Although these findings suggest an important role for cohesin in genome organization, this role has not been assessed on a global scale. Unexpectedly, we find that architectural compartments are maintained in noncycling mouse thymocytes after genetic depletion of cohesin in vivo. Cohesin was, however, required for specific long-range interactions within compartments where cohesin-regulated genes reside. Cohesin depletion diminished interactions between cohesin-bound sites, whereas alternative interactions between chromatin features associated with transcriptional activation and repression became more prominent, with corresponding changes in gene expression. Our findings indicate that cohesin-mediated long-range interactions facilitate discrete gene expression states within preexisting chromosomal compartments.
Collapse
Affiliation(s)
- Vlad C. Seitan
- Lymphocyte Development Group, MRC Clinical Sciences Centre, Imperial College London, London W12 0NN, United Kingdom
| | - Andre J. Faure
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Ye Zhan
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Rachel Patton McCord
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Bryan R. Lajoie
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Elizabeth Ing-Simmons
- Lymphocyte Development Group, MRC Clinical Sciences Centre, Imperial College London, London W12 0NN, United Kingdom
- Computational Regulatory Genomics Group, MRC Clinical Sciences Centre, Imperial College London, London W12 0NN, United Kingdom
| | - Boris Lenhard
- Computational Regulatory Genomics Group, MRC Clinical Sciences Centre, Imperial College London, London W12 0NN, United Kingdom
| | | | | | - Amanda G. Fisher
- Lymphocyte Development Group, MRC Clinical Sciences Centre, Imperial College London, London W12 0NN, United Kingdom
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Job Dekker
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Matthias Merkenschlager
- Lymphocyte Development Group, MRC Clinical Sciences Centre, Imperial College London, London W12 0NN, United Kingdom
| |
Collapse
|
34
|
Kruesi WS, Core LJ, Waters CT, Lis JT, Meyer BJ. Condensin controls recruitment of RNA polymerase II to achieve nematode X-chromosome dosage compensation. eLife 2013; 2:e00808. [PMID: 23795297 PMCID: PMC3687364 DOI: 10.7554/elife.00808] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 05/09/2013] [Indexed: 01/24/2023] Open
Abstract
The X-chromosome gene regulatory process called dosage compensation ensures that males (1X) and females (2X) express equal levels of X-chromosome transcripts. The mechanism in Caenorhabditis elegans has been elusive due to improperly annotated transcription start sites (TSSs). Here we define TSSs and the distribution of transcriptionally engaged RNA polymerase II (Pol II) genome-wide in wild-type and dosage-compensation-defective animals to dissect this regulatory mechanism. Our TSS-mapping strategy integrates GRO-seq, which tracks nascent transcription, with a new derivative of this method, called GRO-cap, which recovers nascent RNAs with 5' caps prior to their removal by co-transcriptional processing. Our analyses reveal that promoter-proximal pausing is rare, unlike in other metazoans, and promoters are unexpectedly far upstream from the 5' ends of mature mRNAs. We find that C. elegans equalizes X-chromosome expression between the sexes, to a level equivalent to autosomes, by reducing Pol II recruitment to promoters of hermaphrodite X-linked genes using a chromosome-restructuring condensin complex. DOI:http://dx.doi.org/10.7554/eLife.00808.001.
Collapse
Affiliation(s)
- William S Kruesi
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Leighton J Core
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
| | - Colin T Waters
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
| | - John T Lis
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
| | - Barbara J Meyer
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| |
Collapse
|