1
|
V KN, O KY, Yu DI. Regeneration of the digestive system in the crinoid Lamprometra palmata (Mariametridae, Comatulida). Cell Tissue Res 2023; 391:87-109. [PMID: 34633568 DOI: 10.1007/s00441-021-03526-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/09/2021] [Indexed: 01/18/2023]
Abstract
The morphology and regeneration of the digestive system and tegmen after autotomy of the visceral mass in the crinoid Lamprometra palmata (Clark 1921) was studied. The gut has a five-lobed shape and is covered by a tegmen. The tegmen consists of epidermis and underlying connective tissue. The digestive tube can be divided into three parts: esophagus, intestine, and rectum. At 6 h post-autotomy, the calyx surface is covered by a layer of amoebocytes and juxtaligamental cells (JLCs). At 14-18 h, post-autotomy transdifferentiation of JLCs begins and give rise to the epidermis and cells of digestive system. On days 1-2 post-autotomy, JLCs undergo the mesenchymal-epithelial transition. Some JLCs turn into typical epidermal cells, while other JLCs form small closed epithelial structures that represent the gut anlage. On day 4 post-autotomy, the animals have a mouth opening and a small anal cone. On day 7 post-autotomy, the visceral mass and the digestive system become fully formed but are smaller than normal. A 24-h exposure of L. palmata individuals to a 10-7 M colchicine solution did not slow down regeneration, and the timing of gut formation was similar to that in the control animals. We conclude that JLCs are the major cell source for gut and epidermis regeneration in L. palmata. The main mechanisms of morphogenesis are cell migration, mesenchymal-epithelial transition, and transdifferentiation.
Collapse
Affiliation(s)
- Kalacheva Nadezhda V
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia.
| | - Kamenev Yaroslav O
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - Dolmatov Igor Yu
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| |
Collapse
|
2
|
Rothman J, Jarriault S. Developmental Plasticity and Cellular Reprogramming in Caenorhabditis elegans. Genetics 2019; 213:723-757. [PMID: 31685551 PMCID: PMC6827377 DOI: 10.1534/genetics.119.302333] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/25/2019] [Indexed: 12/28/2022] Open
Abstract
While Caenorhabditis elegans was originally regarded as a model for investigating determinate developmental programs, landmark studies have subsequently shown that the largely invariant pattern of development in the animal does not reflect irreversibility in rigidly fixed cell fates. Rather, cells at all stages of development, in both the soma and germline, have been shown to be capable of changing their fates through mutation or forced expression of fate-determining factors, as well as during the normal course of development. In this chapter, we review the basis for natural and induced cellular plasticity in C. elegans We describe the events that progressively restrict cellular differentiation during embryogenesis, starting with the multipotency-to-commitment transition (MCT) and subsequently through postembryonic development of the animal, and consider the range of molecular processes, including transcriptional and translational control systems, that contribute to cellular plasticity. These findings in the worm are discussed in the context of both classical and recent studies of cellular plasticity in vertebrate systems.
Collapse
Affiliation(s)
- Joel Rothman
- Department of MCD Biology and Neuroscience Research Institute, University of California, Santa Barbara, California 93111, and
| | - Sophie Jarriault
- IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), Department of Development and Stem Cells, CNRS UMR7104, Inserm U1258, Université de Strasbourg, 67404 Illkirch CU Strasbourg, France
| |
Collapse
|
3
|
Lavrov AI, Bolshakov FV, Tokina DB, Ereskovsky AV. Sewing up the wounds : The epithelial morphogenesis as a central mechanism of calcaronean sponge regeneration. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2018; 330:351-371. [PMID: 30421540 DOI: 10.1002/jez.b.22830] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/03/2018] [Accepted: 08/10/2018] [Indexed: 01/14/2023]
Abstract
Sponges (Porifera) demonstrate prominent regeneration abilities and possess a wide variety of mechanisms, used during this process. In the current study, we combined in vivo observations with histological, immunohistochemical, and ultrastructural technics to elucidate the fine cellular mechanisms of the regeneration in the calcareous sponge Leucosolenia cf. variabilis. The regeneration of Leucosolenia cf. variabilis ends within 4-6 days. The crucial step of the process is the formation of the transient regenerative membrane, formed by the epithelial morphogenesis-spreading of the intact exopinacoderm and choanoderm. The spreading of the choanoderm is accompanied by the transdifferentiation of the choanocytes. The regenerative membrane develops without any contribution of the mesohyl cells. Subsequently, the membrane gradually transforms into the body wall. The cell proliferation is neither affected nor contributes to the regeneration at any stage. Thus, Leucosolenia cf. variabilis regeneration relies on the remodeling of the intact tissues through the epithelial morphogenesis, accompanied by the transdifferentiation of some differentiated cell types, which makes it similar to the regeneration in homoscleromorphs and eumetazoans.
Collapse
Affiliation(s)
- Andrey I Lavrov
- Pertsov White Sea Biological Station, Biological Faculty, Lomonosov Moscow State University, Moscow, Russia.,Department Embryology, Faculty of Biology, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Fyodor V Bolshakov
- Pertsov White Sea Biological Station, Biological Faculty, Lomonosov Moscow State University, Moscow, Russia.,Department Embryology, Faculty of Biology, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Daria B Tokina
- Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale (IMBE), Aix Marseille University, CNRS, IRD, Avignon University, Station Marine d'Endoume, Marseille, France
| | - Alexander V Ereskovsky
- Department Embryology, Faculty of Biology, Saint-Petersburg State University, Saint-Petersburg, Russia.,Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale (IMBE), Aix Marseille University, CNRS, IRD, Avignon University, Station Marine d'Endoume, Marseille, France
| |
Collapse
|
4
|
Spickard EA, Joshi PM, Rothman JH. The multipotency-to-commitment transition in Caenorhabditis elegans-implications for reprogramming from cells to organs. FEBS Lett 2018; 592:838-851. [PMID: 29334121 DOI: 10.1002/1873-3468.12977] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/22/2017] [Accepted: 01/11/2018] [Indexed: 12/13/2022]
Abstract
In animal embryos, cells transition from a multipotential state, with the capacity to adopt multiple fates, into an irreversible, committed state of differentiation. This multipotency-to-commitment transition (MCT) is evident from experiments in which cell fate is reprogrammed by transcription factors for cell type-specific differentiation, as has been observed extensively in Caenorhabditis elegans. Although factors that direct differentiation into each of the three germ layer types cannot generally reprogram cells after the MCT in this animal, transcription factors for endoderm development are able to do so in multiple differentiated cell types. In one case, these factors can redirect the development of an entire organ in the process of "transorganogenesis". Natural transdifferentiation also occurs in a small number of differentiated cells during normal C. elegans development. We review these reprogramming and transdifferentiation events, highlighting the cellular and developmental contexts in which they occur, and discuss common themes underlying direct cell lineage reprogramming. Although certain aspects may be unique to the model system, growing evidence suggests that some mechanisms are evolutionarily conserved and may shed light on cellular plasticity and disease in humans.
Collapse
Affiliation(s)
- Erik A Spickard
- Department of MCD Biology and Neuroscience Research Institute, University of California Santa Barbara, CA, USA
| | - Pradeep M Joshi
- Department of MCD Biology and Neuroscience Research Institute, University of California Santa Barbara, CA, USA
| | - Joel H Rothman
- Department of MCD Biology and Neuroscience Research Institute, University of California Santa Barbara, CA, USA
| |
Collapse
|
5
|
Vibert L, Daulny A, Jarriault S. Wound healing, cellular regeneration and plasticity: the elegans way. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2018; 62:491-505. [PMID: 29938761 PMCID: PMC6161810 DOI: 10.1387/ijdb.180123sj] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Regeneration and wound healing are complex processes that allow organs and tissues to regain their integrity and functionality after injury. Wound healing, a key property of epithelia, involves tissue closure that in some cases leads to scar formation. Regeneration, a process rather limited in mammals, is the capacity to regrow (parts of) an organ or a tissue, after damage or amputation. What are the properties of organs and the features of tissue permitting functional regrowth and repair? What are the cellular and molecular mechanisms underlying these processes? These questions are crucial both in fundamental and applied contexts, with important medical implications. The mechanisms and cells underlying tissue repair have thus been the focus of intense investigation. The last decades have seen rapid progress in the domain and new models emerging. Here, we review the fundamental advances and the perspectives that the use of C. elegans as a model have brought to the mechanisms of wound healing and cellular plasticity, axon regeneration and transdifferentiation in vivo.
Collapse
Affiliation(s)
- Laura Vibert
- Department of Development and Stem Cells, IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), CNRS UMR 7104/INSERM U1258, Université de Strasbourg, Strasbourg, France
| | - Anne Daulny
- Department of Development and Stem Cells, IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), CNRS UMR 7104/INSERM U1258, Université de Strasbourg, Strasbourg, France
| | - Sophie Jarriault
- Department of Development and Stem Cells, IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), CNRS UMR 7104/INSERM U1258, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
6
|
Jin Y, Qi YB. Building stereotypic connectivity: mechanistic insights into structural plasticity from C. elegans. Curr Opin Neurobiol 2017; 48:97-105. [PMID: 29182952 DOI: 10.1016/j.conb.2017.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 11/07/2017] [Accepted: 11/14/2017] [Indexed: 01/10/2023]
Abstract
The ability of neurons to modify or remodel their synaptic connectivity is critical for the function of neural circuitry throughout the life of an animal. Understanding the mechanisms underlying neuronal structural changes is central to our knowledge of how the nervous system is shaped for complex behaviors and how it further adapts to developmental and environmental demands. Caenorhabditis elegans provides a powerful model for examining developmental processes and for discovering mechanisms controlling neural plasticity. Recent findings have identified conserved themes underlying neural plasticity in development and under environmental stress.
Collapse
Affiliation(s)
- Yishi Jin
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Yingchuan B Qi
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China.
| |
Collapse
|
7
|
Kalacheva NV, Eliseikina MG, Frolova LT, Dolmatov IY. Regeneration of the digestive system in the crinoid Himerometra robustipinna occurs by transdifferentiation of neurosecretory-like cells. PLoS One 2017; 12:e0182001. [PMID: 28753616 PMCID: PMC5533335 DOI: 10.1371/journal.pone.0182001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 07/11/2017] [Indexed: 11/18/2022] Open
Abstract
The structure and regeneration of the digestive system in the crinoid Himerometra robustipinna (Carpenter, 1881) were studied. The gut comprises a spiral tube forming radial lateral processes, which gives it a five-lobed shape. The digestive tube consists of three segments: esophagus, intestine, and rectum. The epithelia of these segments have different cell compositions. Regeneration of the gut after autotomy of the visceral mass progresses very rapidly. Within 6 h after autotomy, an aggregation consisting of amoebocytes, coelomic epithelial cells and juxtaligamental cells (neurosecretory neurons) forms on the inner surface of the skeletal calyx. At 12 h post-autotomy, transdifferentiation of the juxtaligamental cells starts. At 24 h post-autotomy these cells undergo a mesenchymal-epithelial-like transition, resulting in the formation of the luminal epithelium of the gut. Specialization of the intestinal epithelial cells begins on day 2 post-autotomy. At this stage animals acquire the mouth and anal opening. On day 4 post-autotomy the height of both the enterocytes and the visceral mass gradually increases. Proliferation does not play any noticeable role in gut regeneration. The immersion of animals in a 10-7 M solution of colchicine neither stopped formation of the lost structures nor caused accumulation of mitoses in tissues. Weakly EdU-labeled nuclei were observed in the gut only on day 2 post-autotomy and were not detected at later regeneration stages. Single mitotically dividing cells were recorded during the same period. It is concluded that juxtaligamental cells play a major role in gut regeneration in H. robustipinna. The main mechanisms of morphogenesis are cell migration and transdifferentiation.
Collapse
Affiliation(s)
- Nadezhda V. Kalacheva
- A.V. Zhirmunsky Institute of Marine Biology, National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
- Far Eastern Federal University, Vladivostok, Russia
| | - Marina G. Eliseikina
- A.V. Zhirmunsky Institute of Marine Biology, National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
- Far Eastern Federal University, Vladivostok, Russia
| | - Lidia T. Frolova
- A.V. Zhirmunsky Institute of Marine Biology, National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - Igor Yu. Dolmatov
- A.V. Zhirmunsky Institute of Marine Biology, National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
- Far Eastern Federal University, Vladivostok, Russia
| |
Collapse
|