1
|
Driscoll RMH, Beaudry FEG, Cosgrove EJ, Bowman R, Fitzpatrick JW, Schoech SJ, Chen N. Allele frequency dynamics under sex-biased demography and sex-specific inheritance in a pedigreed jay population. Genetics 2024; 227:iyae075. [PMID: 38722645 PMCID: PMC11228872 DOI: 10.1093/genetics/iyae075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 06/12/2024] Open
Abstract
Sex-biased demography, including sex-biased survival or migration, can alter allele frequency changes across the genome. In particular, we can expect different patterns of genetic variation on autosomes and sex chromosomes due to sex-specific differences in life histories, as well as differences in effective population size, transmission modes, and the strength and mode of selection. Here, we demonstrate the role that sex differences in life history played in shaping short-term evolutionary dynamics across the genome. We used a 25-year pedigree and genomic dataset from a long-studied population of Florida Scrub-Jays (Aphelocoma coerulescens) to directly characterize the relative roles of sex-biased demography and inheritance in shaping genome-wide allele frequency trajectories. We used gene dropping simulations to estimate individual genetic contributions to future generations and to model drift and immigration on the known pedigree. We quantified differential expected genetic contributions of males and females over time, showing the impact of sex-biased dispersal in a monogamous system. Due to female-biased dispersal, more autosomal variation is introduced by female immigrants. However, due to male-biased transmission, more Z variation is introduced by male immigrants. Finally, we partitioned the proportion of variance in allele frequency change through time due to male and female contributions. Overall, most allele frequency change is due to variance in survival and births. Males and females make similar contributions to autosomal allele frequency change, but males make higher contributions to allele frequency change on the Z chromosome. Our work shows the importance of understanding sex-specific demographic processes in characterizing genome-wide allele frequency change in wild populations.
Collapse
Affiliation(s)
- Rose M H Driscoll
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Felix E G Beaudry
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Elissa J Cosgrove
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY 14850, USA
| | - Reed Bowman
- Avian Ecology Program, Archbold Biological Station, Venus, FL 33960, USA
| | | | - Stephan J Schoech
- Department of Biological Sciences, University of Memphis, Memphis, TN 38152, USA
| | - Nancy Chen
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| |
Collapse
|
2
|
Webster TH, Vannan A, Pinto BJ, Denbrock G, Morales M, Dolby GA, Fiddes IT, DeNardo DF, Wilson MA. Lack of Dosage Balance and Incomplete Dosage Compensation in the ZZ/ZW Gila Monster (Heloderma suspectum) Revealed by De Novo Genome Assembly. Genome Biol Evol 2024; 16:evae018. [PMID: 38319079 PMCID: PMC10950046 DOI: 10.1093/gbe/evae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 02/07/2024] Open
Abstract
Reptiles exhibit a variety of modes of sex determination, including both temperature-dependent and genetic mechanisms. Among those species with genetic sex determination, sex chromosomes of varying heterogamety (XX/XY and ZZ/ZW) have been observed with different degrees of differentiation. Karyotype studies have demonstrated that Gila monsters (Heloderma suspectum) have ZZ/ZW sex determination and this system is likely homologous to the ZZ/ZW system in the Komodo dragon (Varanus komodoensis), but little else is known about their sex chromosomes. Here, we report the assembly and analysis of the Gila monster genome. We generated a de novo draft genome assembly for a male using 10X Genomics technology. We further generated and analyzed short-read whole genome sequencing and whole transcriptome sequencing data for three males and three females. By comparing female and male genomic data, we identified four putative Z chromosome scaffolds. These putative Z chromosome scaffolds are homologous to Z-linked scaffolds identified in the Komodo dragon. Further, by analyzing RNAseq data, we observed evidence of incomplete dosage compensation between the Gila monster Z chromosome and autosomes and a lack of balance in Z-linked expression between the sexes. In particular, we observe lower expression of the Z in females (ZW) than males (ZZ) on a global basis, though we find evidence suggesting local gene-by-gene compensation. This pattern has been observed in most other ZZ/ZW systems studied to date and may represent a general pattern for female heterogamety in vertebrates.
Collapse
Affiliation(s)
- Timothy H Webster
- Department of Anthropology, University of Utah, Salt Lake City, UT, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Annika Vannan
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Brendan J Pinto
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
- Department of Zoology, Milwaukee Public Museum, Milwaukee, WI, USA
| | - Grant Denbrock
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Matheo Morales
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Department of Genetics, Yale University, New Haven, CT, USA
| | - Greer A Dolby
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Dale F DeNardo
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Melissa A Wilson
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
- Center for Mechanisms of Evolution, Biodesign Institute, Tempe, AZ, USA
| |
Collapse
|
3
|
Cotter DJ, Severson AL, Kang JTL, Godrej HN, Carmi S, Rosenberg NA. Modeling the effects of consanguinity on autosomal and X-chromosomal runs of homozygosity and identity-by-descent sharing. G3 (BETHESDA, MD.) 2024; 14:jkad264. [PMID: 37972246 PMCID: PMC10849319 DOI: 10.1093/g3journal/jkad264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/01/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
Runs of homozygosity (ROH) and identity-by-descent (IBD) sharing can be studied in diploid coalescent models by noting that ROH and IBD-sharing at a genomic site are predicted to be inversely related to coalescence times-which in turn can be mathematically obtained in terms of parameters describing consanguinity rates. Comparing autosomal and X-chromosomal coalescent models, we consider ROH and IBD-sharing in relation to consanguinity that proceeds via multiple forms of first-cousin mating. We predict that across populations with different levels of consanguinity, (1) in a manner that is qualitatively parallel to the increase of autosomal IBD-sharing with autosomal ROH, X-chromosomal IBD-sharing increases with X-chromosomal ROH, owing to the dependence of both quantities on consanguinity levels; (2) even in the absence of consanguinity, X-chromosomal ROH and IBD-sharing levels exceed corresponding values for the autosomes, owing to the smaller population size and lower coalescence time for the X chromosome than for autosomes; (3) with matrilateral consanguinity, the relative increase in ROH and IBD-sharing on the X chromosome compared to the autosomes is greater than in the absence of consanguinity. Examining genome-wide SNPs in human populations for which consanguinity levels have been estimated, we find that autosomal and X-chromosomal ROH and IBD-sharing levels generally accord with the predictions. We find that each 1% increase in autosomal ROH is associated with an increase of 2.1% in X-chromosomal ROH, and each 1% increase in autosomal IBD-sharing is associated with an increase of 1.6% in X-chromosomal IBD-sharing. For each calculation, particularly for ROH, the estimate is reasonably close to the increase of 2% predicted by the population-size difference between autosomes and X chromosomes. The results support the utility of coalescent models for understanding patterns of genomic sharing and their dependence on sex-biased processes.
Collapse
Affiliation(s)
- Daniel J Cotter
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
| | - Alissa L Severson
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
| | - Jonathan T L Kang
- School of Math and Science, Singapore Polytechnic, 139651, Singapore
| | - Hormazd N Godrej
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Shai Carmi
- Braun School of Public Health and Community Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Noah A Rosenberg
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
4
|
Bell AV. Selection and adaptation in human migration. Evol Anthropol 2023; 32:308-324. [PMID: 37589279 DOI: 10.1002/evan.22003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 06/18/2023] [Accepted: 08/07/2023] [Indexed: 08/18/2023]
Abstract
This article reviews the ways migration shapes human biology. This includes the physiological and genetic, but also socio-cultural aspects such as organization, behavior, and culture. Across disciplines I highlight the multiple levels of cultural and genetic selection whereby individuals and groups adapt to pressures along a migration timeline: the origin, transit, and destination. Generally, the evidence suggests that selective pressures and adaptations occur at the individual, family, and community levels. Consequently, across levels there are negotiations, interactions, and feedbacks that shape migration outcomes and the trajectory of evolutionary change. The rise and persistence of migration-relevant adaptations emerges as a central question, including the maintenance of cumulative culture adaptations, the persistence of "cultures of migration," as well as the individual-level physiological and cognitive adaptations applied to successful transit and settlement in novel environments.
Collapse
Affiliation(s)
- Adrian Viliami Bell
- Department of Anthropology, University of Utah, Salt Lake City, Utah, USA
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
5
|
Cotter DJ, Webster TH, Wilson MA. Genomic and demographic processes differentially influence genetic variation across the human X chromosome. PLoS One 2023; 18:e0287609. [PMID: 37910456 PMCID: PMC10619814 DOI: 10.1371/journal.pone.0287609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 06/08/2023] [Indexed: 11/03/2023] Open
Abstract
Many forces influence genetic variation across the genome including mutation, recombination, selection, and demography. Increased mutation and recombination both lead to increases in genetic diversity in a region-specific manner, while complex demographic patterns shape patterns of diversity on a more global scale. While these processes act across the entire genome, the X chromosome is particularly interesting because it contains several distinct regions that are subject to different combinations and strengths of these forces: the pseudoautosomal regions (PARs) and the X-transposed region (XTR). The X chromosome thus can serve as a unique model for studying how genetic and demographic forces act in different contexts to shape patterns of observed variation. We therefore sought to explore diversity, divergence, and linkage disequilibrium in each region of the X chromosome using genomic data from 26 human populations. Across populations, we find that both diversity and substitution rate are consistently elevated in PAR1 and the XTR compared to the rest of the X chromosome. In contrast, linkage disequilibrium is lowest in PAR1, consistent with the high recombination rate in this region, and highest in the region of the X chromosome that does not recombine in males. However, linkage disequilibrium in the XTR is intermediate between PAR1 and the autosomes, and much lower than the non-recombining X. Finally, in addition to these global patterns, we also observed variation in ratios of X versus autosomal diversity consistent with population-specific evolutionary history as well. While our results were generally consistent with previous work, two unexpected observations emerged. First, our results suggest that the XTR does not behave like the rest of the recombining X and may need to be evaluated separately in future studies. Second, the different regions of the X chromosome appear to exhibit unique patterns of linked selection across different human populations. Together, our results highlight profound regional differences across the X chromosome, simultaneously making it an ideal system for exploring the action of evolutionary forces as well as necessitating its careful consideration and treatment in genomic analyses.
Collapse
Affiliation(s)
- Daniel J. Cotter
- Department of Genetics, Stanford University, Stanford, CA, United States of America
| | - Timothy H. Webster
- Department of Anthropology, University of Utah, Salt Lake City, UT, United States of America
- School of Life Sciences, Arizona State University, Tempe, AZ, United States of America
| | - Melissa A. Wilson
- School of Life Sciences, Arizona State University, Tempe, AZ, United States of America
- Center for Evolution and Medicine, Biodesign Institute, Arizona State University, Tempe, AZ, United States of America
| |
Collapse
|
6
|
Webster TH, Vannan A, Pinto BJ, Denbrock G, Morales M, Dolby GA, Fiddes IT, DeNardo DF, Wilson MA. Incomplete dosage balance and dosage compensation in the ZZ/ZW Gila monster ( Heloderma suspectum) revealed by de novo genome assembly. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.26.538436. [PMID: 37163099 PMCID: PMC10168389 DOI: 10.1101/2023.04.26.538436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Reptiles exhibit a variety of modes of sex determination, including both temperature-dependent and genetic mechanisms. Among those species with genetic sex determination, sex chromosomes of varying heterogamety (XX/XY and ZZ/ZW) have been observed with different degrees of differentiation. Karyotype studies have demonstrated that Gila monsters (Heloderma suspectum) have ZZ/ZW sex determination and this system is likely homologous to the ZZ/ZW system in the Komodo dragon (Varanus komodoensis), but little else is known about their sex chromosomes. Here, we report the assembly and analysis of the Gila monster genome. We generated a de novo draft genome assembly for a male using 10X Genomics technology. We further generated and analyzed short-read whole genome sequencing and whole transcriptome sequencing data for three males and three females. By comparing female and male genomic data, we identified four putative Z-chromosome scaffolds. These putative Z-chromosome scaffolds are homologous to Z-linked scaffolds identified in the Komodo dragon. Further, by analyzing RNAseq data, we observed evidence of incomplete dosage compensation between the Gila monster Z chromosome and autosomes and a lack of balance in Z-linked expression between the sexes. In particular, we observe lower expression of the Z in females (ZW) than males (ZZ) on a global basis, though we find evidence suggesting local gene-by-gene compensation. This pattern has been observed in most other ZZ/ZW systems studied to date and may represent a general pattern for female heterogamety in vertebrates.
Collapse
Affiliation(s)
- Timothy H. Webster
- Department of Anthropology, University of Utah, Salt Lake City, UT
- School of Life Sciences, Arizona State University, Tempe, AZ
| | - Annika Vannan
- School of Life Sciences, Arizona State University, Tempe, AZ
| | - Brendan J. Pinto
- School of Life Sciences, Arizona State University, Tempe, AZ
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ
- Department of Zoology, Milwaukee Public Museum, Milwaukee, WI USA
| | - Grant Denbrock
- School of Life Sciences, Arizona State University, Tempe, AZ
| | - Matheo Morales
- School of Life Sciences, Arizona State University, Tempe, AZ
- Department of Genetics, Yale University, New Haven, CT
| | - Greer A. Dolby
- School of Life Sciences, Arizona State University, Tempe, AZ
- Center for Mechanisms of Evolution, Biodesign Institute, Tempe, AZ
| | | | - Dale F. DeNardo
- School of Life Sciences, Arizona State University, Tempe, AZ
| | - Melissa A. Wilson
- School of Life Sciences, Arizona State University, Tempe, AZ
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ
- Center for Mechanisms of Evolution, Biodesign Institute, Tempe, AZ
| |
Collapse
|
7
|
Estimating bonobo ( Pan paniscus) and chimpanzee ( Pan troglodytes) evolutionary history from nucleotide site patterns. Proc Natl Acad Sci U S A 2022; 119:e2200858119. [PMID: 35452306 PMCID: PMC9170072 DOI: 10.1073/pnas.2200858119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
There is genomic evidence of widespread admixture in deep time between many closely related species, including humans. Our closest living relatives, bonobos and chimpanzees, may also exhibit such patterns. However, assessing the exact degree of interbreeding remains challenging because previous studies have resulted in multiple inconsistent demographic models. We use an approach that addresses these gaps by analyzing all lineages, simultaneously estimating parameters, and comparing previously models. We find evidence of considerable introgression from western into eastern chimpanzees. We also show more breeding females than males and evidence of male-biased dispersal in western chimpanzees. These findings highlight the extent of admixture in bonobo and chimpanzee evolutionary history and are consistent with substantial differences between past and present chimpanzee biogeography. Admixture appears increasingly ubiquitous in the evolutionary history of various taxa, including humans. Such gene flow likely also occurred among our closest living relatives: bonobos (Pan paniscus) and chimpanzees (Pan troglodytes). However, our understanding of their evolutionary history has been limited by studies that do not consider all Pan lineages or do not analyze all lineages simultaneously, resulting in conflicting demographic models. Here, we investigate this gap in knowledge using nucleotide site patterns calculated from whole-genome sequences from the autosomes of 71 bonobos and chimpanzees, representing all five extant Pan lineages. We estimated demographic parameters and compared all previously proposed demographic models for this clade. We further considered sex bias in Pan evolutionary history by analyzing the site patterns from the X chromosome. We show that 1) 21% of autosomal DNA in eastern chimpanzees derives from western chimpanzee introgression and that 2) all four chimpanzee lineages share a common ancestor about 987,000 y ago, much earlier than previous estimates. In addition, we suggest that 3) there was male reproductive skew throughout Pan evolutionary history and find evidence of 4) male-biased dispersal from western to eastern chimpanzees. Collectively, these results offer insight into bonobo and chimpanzee evolutionary history and suggest considerable differences between current and historic chimpanzee biogeography.
Collapse
|
8
|
Mattick J, Libro S, Bromley R, Chaicumpa W, Chung M, Cook D, Khan MB, Kumar N, Lau YL, Misra-Bhattacharya S, Rao R, Sadzewicz L, Saeung A, Shahab M, Sparklin BC, Steven A, Turner JD, Tallon LJ, Taylor MJ, Moorhead AR, Michalski M, Foster JM, Dunning Hotopp JC. X-treme loss of sequence diversity linked to neo-X chromosomes in filarial nematodes. PLoS Negl Trop Dis 2021; 15:e0009838. [PMID: 34705823 PMCID: PMC8575316 DOI: 10.1371/journal.pntd.0009838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 11/08/2021] [Accepted: 09/24/2021] [Indexed: 11/19/2022] Open
Abstract
The sequence diversity of natural and laboratory populations of Brugia pahangi and Brugia malayi was assessed with Illumina resequencing followed by mapping in order to identify single nucleotide variants and insertions/deletions. In natural and laboratory Brugia populations, there is a lack of sequence diversity on chromosome X relative to the autosomes (πX/πA = 0.2), which is lower than the expected (πX/πA = 0.75). A reduction in diversity is also observed in other filarial nematodes with neo-X chromosome fusions in the genera Onchocerca and Wuchereria, but not those without neo-X chromosome fusions in the genera Loa and Dirofilaria. In the species with neo-X chromosome fusions, chromosome X is abnormally large, containing a third of the genetic material such that a sizable portion of the genome is lacking sequence diversity. Such profound differences in genetic diversity can be consequential, having been associated with drug resistance and adaptability, with the potential to affect filarial eradication.
Collapse
Affiliation(s)
- John Mattick
- Institute for Genome Science, University of Maryland, Baltimore, Maryland, United States of America
| | - Silvia Libro
- New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Robin Bromley
- Institute for Genome Science, University of Maryland, Baltimore, Maryland, United States of America
| | - Wanpen Chaicumpa
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Matthew Chung
- Institute for Genome Science, University of Maryland, Baltimore, Maryland, United States of America
| | - Darren Cook
- Centre for Neglected Tropical Diseases, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Mohammad Behram Khan
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Nikhil Kumar
- Institute for Genome Science, University of Maryland, Baltimore, Maryland, United States of America
| | - Yee-Ling Lau
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Ramakrishna Rao
- Division of Infectious Diseases, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Lisa Sadzewicz
- Institute for Genome Science, University of Maryland, Baltimore, Maryland, United States of America
| | - Atiporn Saeung
- Center of Insect Vector Study, Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Mohd Shahab
- Division of Parasitology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Benjamin C. Sparklin
- Institute for Genome Science, University of Maryland, Baltimore, Maryland, United States of America
| | - Andrew Steven
- Centre for Neglected Tropical Diseases, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Joseph D. Turner
- Centre for Neglected Tropical Diseases, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Luke J. Tallon
- Institute for Genome Science, University of Maryland, Baltimore, Maryland, United States of America
| | - Mark J. Taylor
- Centre for Neglected Tropical Diseases, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Andrew R. Moorhead
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Michelle Michalski
- University of Wisconsin Oshkosh, Oshkosh, Wisconsin, United States of America
| | - Jeremy M. Foster
- New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Julie C. Dunning Hotopp
- Institute for Genome Science, University of Maryland, Baltimore, Maryland, United States of America
- Department of Microbiology and Immunology, University of Maryland, Baltimore, Maryland, United States of America
- Greenebaum Cancer Center, University of Maryland, Baltimore, Maryland, United States of America
| |
Collapse
|
9
|
Cotter DJ, Severson AL, Rosenberg NA. The effect of consanguinity on coalescence times on the X chromosome. Theor Popul Biol 2021; 140:32-43. [PMID: 33901539 DOI: 10.1016/j.tpb.2021.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/22/2021] [Accepted: 03/26/2021] [Indexed: 10/21/2022]
Abstract
Consanguineous unions increase the frequency at which identical genomic segments are inherited along separate paths of descent, decreasing coalescence times for pairs of alleles drawn from an individual who is the offspring of a consanguineous pair. For an autosomal locus, it has recently been shown that the mean time to the most recent common ancestor (TMRCA) for two alleles in the same individual and the mean TMRCA for two alleles in two separate individuals both decrease with increasing consanguinity in a population. Here, we extend this analysis to the X chromosome, considering X-chromosomal coalescence times under a coalescent model with diploid, male-female mating pairs. We examine four possible first-cousin mating schemes that are equivalent in their effects on autosomes, but that have differing effects on the X chromosome: patrilateral-parallel, patrilateral-cross, matrilateral-parallel, and matrilateral-cross. In each mating model, we calculate mean TMRCA for X-chromosomal alleles sampled either within or between individuals. We describe a consanguinity effect on X-chromosomal TMRCA that differs from the autosomal pattern under matrilateral but not under patrilateral first-cousin mating. For matrilateral first cousins, the effect of consanguinity in reducing TMRCA is stronger on the X chromosome than on the autosomes, with an increased effect of parallel-cousin mating compared to cross-cousin mating. The theoretical computations support the utility of the model in understanding patterns of genomic sharing on the X chromosome.
Collapse
Affiliation(s)
- Daniel J Cotter
- Department of Genetics, Stanford University, Stanford, CA 94305, USA.
| | - Alissa L Severson
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Noah A Rosenberg
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
10
|
Hayes K, Barton HJ, Zeng K. A Study of Faster-Z Evolution in the Great Tit (Parus major). Genome Biol Evol 2021; 12:210-222. [PMID: 32119100 PMCID: PMC7144363 DOI: 10.1093/gbe/evaa044] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2020] [Indexed: 12/17/2022] Open
Abstract
Sex chromosomes contribute substantially to key evolutionary processes such as speciation and adaptation. Several theories suggest that evolution could occur more rapidly on sex chromosomes, but currently our understanding of whether and how this occurs is limited. Here, we present an analysis of the great tit (Parus major) genome, aiming to detect signals of faster-Z evolution. We find mixed evidence of faster divergence on the Z chromosome than autosomes, with significantly higher divergence being found in ancestral repeats, but not at 4- or 0-fold degenerate sites. Interestingly, some 4-fold sites appear to be selectively constrained, which may mislead analyses that use these sites as the neutral reference (e.g., dN/dS). Consistent with other studies in birds, the mutation rate is significantly higher in males than females, and the long-term Z-to-autosome effective population size ratio is only 0.5, significantly lower than the expected value of 0.75. These are indicative of male-driven evolution and high variance in male reproductive success, respectively. We find no evidence for an increased efficacy of positive selection on the Z chromosome. In contrast, the Z chromosome in great tits appears to be affected by increased genetic drift, which has led to detectable signals of weakened intensity of purifying selection. These results provide further evidence that the Z chromosome often has a low effective population size, and that this has important consequences for its evolution. They also highlight the importance of considering multiple factors that can affect the rate of evolution and effective population sizes of sex chromosomes.
Collapse
Affiliation(s)
- Kai Hayes
- Department of Animal and Plant Sciences, University of Sheffield, United Kingdom
| | - Henry J Barton
- Department of Animal and Plant Sciences, University of Sheffield, United Kingdom.,Organismal and Evolutionary Biology Research Program, University of Helsinki, Finland
| | - Kai Zeng
- Department of Animal and Plant Sciences, University of Sheffield, United Kingdom
| |
Collapse
|
11
|
García-Fernández C, Font-Porterias N, Kučinskas V, Sukarova-Stefanovska E, Pamjav H, Makukh H, Dobon B, Bertranpetit J, Netea MG, Calafell F, Comas D. Sex-biased patterns shaped the genetic history of Roma. Sci Rep 2020; 10:14464. [PMID: 32879340 PMCID: PMC7468237 DOI: 10.1038/s41598-020-71066-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 08/07/2020] [Indexed: 12/30/2022] Open
Abstract
The Roma population is a European ethnic minority characterized by recent and multiple dispersals and founder effects. After their origin in South Asia around 1,500 years ago, they migrated West. In Europe, they diverged into ethnolinguistically distinct migrant groups that spread across the continent. Previous genetic studies based on genome-wide data and uniparental markers detected Roma founder events and West-Eurasian gene flow. However, to the best of our knowledge, it has not been assessed whether these demographic processes have equally affected both sexes in the population. The present study uses the largest and most comprehensive dataset of complete mitochondrial and Y chromosome Roma sequences to unravel the sex-biased patterns that have shaped their genetic history. The results show that the Roma maternal genetic pool carries a higher lineage diversity from South Asia, as opposed to a single paternal South Asian lineage. Nonetheless, the European gene flow events mainly occurred through the maternal lineages; however, a signal of this gene flow is also traceable in the paternal lineages. We also detect a higher female migration rate among European Roma groups. Altogether, these results suggest that sociocultural factors influenced the emergence of sex-biased genetic patterns at global and local scales in the Roma population through time.
Collapse
Affiliation(s)
- C García-Fernández
- Institute of Evolutionary Biology (UPF-CSIC), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - N Font-Porterias
- Institute of Evolutionary Biology (UPF-CSIC), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - V Kučinskas
- Department of Human and Medical Genetics, Faculty of Medicine, Biomedical Science Institute, Vilnius University, Vilnius, Lithuania
| | - E Sukarova-Stefanovska
- Research Center for Genetic Engineering and Biotechnology "Georgi D. Efremov", Academy of Sciences and Arts of the Republic of North Macedonia - MASA, Skopje, Republic of North Macedonia
| | - H Pamjav
- Institute of Forensic Genetics, Hungarian Institute for Forensic Sciences, Budapest, Hungary
| | - H Makukh
- Institute of Hereditary Pathology, Ukrainian Academy of Medical Sciences, Lviv, Ukraine
| | - B Dobon
- Institute of Evolutionary Biology (UPF-CSIC), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - J Bertranpetit
- Institute of Evolutionary Biology (UPF-CSIC), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - M G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA, Nijmegen, the Netherlands.,Department of Human Genetics, University of Medicine and Pharmacy Craiova, Craiova, Romania.,Department for Genomics and Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, 53115, Bonn, Germany
| | - F Calafell
- Institute of Evolutionary Biology (UPF-CSIC), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain.
| | - D Comas
- Institute of Evolutionary Biology (UPF-CSIC), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain.
| |
Collapse
|
12
|
Changes in life history and population size can explain the relative neutral diversity levels on X and autosomes in extant human populations. Proc Natl Acad Sci U S A 2020; 117:20063-20069. [PMID: 32747577 DOI: 10.1073/pnas.1915664117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
In human populations, the relative levels of neutral diversity on the X and autosomes differ markedly from each other and from the naïve theoretical expectation of 3/4. Here we propose an explanation for these differences based on new theory about the effects of sex-specific life history and given pedigree-based estimates of the dependence of human mutation rates on sex and age. We demonstrate that life history effects, particularly longer generation times in males than in females, are expected to have had multiple effects on human X-to-autosome (X:A) diversity ratios, as a result of male-biased mutation rates, the equilibrium X:A ratio of effective population sizes, and the differential responses to changes in population size. We also show that the standard approach of using divergence between species to correct for male mutation bias results in biased estimates of X:A effective population size ratios. We obtain alternative estimates using pedigree-based estimates of the male mutation bias, which reveal that X:A ratios of effective population sizes are considerably greater than previously appreciated. Finally, we find that the joint effects of historical changes in life history and population size can explain the observed X:A diversity ratios in extant human populations. Our results suggest that ancestral human populations were highly polygynous, that non-African populations experienced a substantial reduction in polygyny and/or increase in the male-to-female ratio of generation times around the Out-of-Africa bottleneck, and that current diversity levels were affected by fairly recent changes in sex-specific life history.
Collapse
|
13
|
Phung TN, Wayne RK, Wilson MA, Lohmueller KE. Complex patterns of sex-biased demography in canines. Proc Biol Sci 2020; 286:20181976. [PMID: 31113325 DOI: 10.1098/rspb.2018.1976] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The demographic history of dogs is complex, involving multiple bottlenecks, admixture events and artificial selection. However, existing genetic studies have not explored variance in the number of reproducing males and females, and whether it has changed across evolutionary time. While male-biased mating practices, such as male-biased migration and multiple paternity, have been observed in wolves, recent breeding practices could have led to female-biased mating patterns in breed dogs. For example, breed dogs are thought to have experienced a popular sire effect, where a small number of males father many offspring with a large number of females. Here we use genetic variation data to test how widespread sex-biased mating practices in canines are during different evolutionary time points. Using whole-genome sequence data from 33 dogs and wolves, we show that patterns of diversity on the X chromosome and autosomes are consistent with a higher number of reproducing males than females over ancient evolutionary history in both dogs and wolves, suggesting that mating practices did not change during early dog domestication. By contrast, since breed formation, we found evidence for a larger number of reproducing females than males in breed dogs, consistent with the popular sire effect. Our results confirm that canine demography has been complex, with opposing sex-biased processes occurring throughout their history. The signatures observed in genetic data are consistent with documented sex-biased mating practices in both the wild and domesticated populations, suggesting that these mating practices are pervasive.
Collapse
Affiliation(s)
- Tanya N Phung
- 1 Interdepartmental Program in Bioinformatics, University of California , Los Angeles, CA 90095 , USA
| | - Robert K Wayne
- 2 Department of Ecology and Evolutionary Biology, University of California , Los Angeles, CA 90095 , USA
| | - Melissa A Wilson
- 4 School of Life Sciences and Center for Evolution and Medicine, The Biodesign Institute, Arizona State University , Tempe, AZ 85281 , USA
| | - Kirk E Lohmueller
- 1 Interdepartmental Program in Bioinformatics, University of California , Los Angeles, CA 90095 , USA.,2 Department of Ecology and Evolutionary Biology, University of California , Los Angeles, CA 90095 , USA.,3 Department of Human Genetics, David Geffen School of Medicine, University of California , Los Angeles, CA 90095 , USA
| |
Collapse
|
14
|
Hitchcock TJ, Paracchini S, Gardner A. Genomic Imprinting As a Window into Human Language Evolution. Bioessays 2020; 41:e1800212. [PMID: 31132171 DOI: 10.1002/bies.201800212] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 03/22/2019] [Indexed: 01/20/2023]
Abstract
Humans spend large portions of their time and energy talking to one another, yet it remains unclear whether this activity is primarily selfish or altruistic. Here, it is shown how parent-of-origin specific gene expression-or "genomic imprinting"-may provide an answer to this question. First, it is shown why, regarding language, only altruistic or selfish scenarios are expected. Second, it is pointed out that an individual's maternal-origin and paternal-origin genes may have different evolutionary interests regarding investment into language, and that this intragenomic conflict may drive genomic imprinting which-as the direction of imprint depends upon whether investment into language is relatively selfish or altruistic-may be used to discriminate between these two possibilities. Third, predictions concerning the impact of various mutations and epimutations at imprinted loci on language pathologies are derived. In doing so, a framework is developed that highlights avenues for using intragenomic conflicts to investigate the evolutionary drivers of language.
Collapse
Affiliation(s)
- Thomas J Hitchcock
- School of Biology, University of St Andrews, Dyers Brae, St Andrews, KY16 9TH, UK
| | - Silvia Paracchini
- School of Medicine, University of St Andrews, North Haugh, St Andrews, KY16 9TF, UK
| | - Andy Gardner
- School of Biology, University of St Andrews, Dyers Brae, St Andrews, KY16 9TH, UK
| |
Collapse
|
15
|
Webster TH, Couse M, Grande BM, Karlins E, Phung TN, Richmond PA, Whitford W, Wilson MA. Identifying, understanding, and correcting technical artifacts on the sex chromosomes in next-generation sequencing data. Gigascience 2020; 8:5530326. [PMID: 31289836 PMCID: PMC6615978 DOI: 10.1093/gigascience/giz074] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 12/04/2018] [Accepted: 06/03/2019] [Indexed: 11/25/2022] Open
Abstract
Background Mammalian X and Y chromosomes share a common evolutionary origin and retain regions of high sequence similarity. Similar sequence content can confound the mapping of short next-generation sequencing reads to a reference genome. It is therefore possible that the presence of both sex chromosomes in a reference genome can cause technical artifacts in genomic data and affect downstream analyses and applications. Understanding this problem is critical for medical genomics and population genomic inference. Results Here, we characterize how sequence homology can affect analyses on the sex chromosomes and present XYalign, a new tool that (1) facilitates the inference of sex chromosome complement from next-generation sequencing data; (2) corrects erroneous read mapping on the sex chromosomes; and (3) tabulates and visualizes important metrics for quality control such as mapping quality, sequencing depth, and allele balance. We find that sequence homology affects read mapping on the sex chromosomes and this has downstream effects on variant calling. However, we show that XYalign can correct mismapping, resulting in more accurate variant calling. We also show how metrics output by XYalign can be used to identify XX and XY individuals across diverse sequencing experiments, including low- and high-coverage whole-genome sequencing, and exome sequencing. Finally, we discuss how the flexibility of the XYalign framework can be leveraged for other uses including the identification of aneuploidy on the autosomes. XYalign is available open source under the GNU General Public License (version 3). Conclusions Sex chromsome sequence homology causes the mismapping of short reads, which in turn affects downstream analyses. XYalign provides a reproducible framework to correct mismapping and improve variant calling on the sex chromsomes.
Collapse
Affiliation(s)
- Timothy H Webster
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ 85281, USA.,Department of Anthropology, University of Utah, 260 S Central Drive, Carolyn and Kem Gardner Commons, Suite 4625, Salt Lake City, UT 84112, USA
| | - Madeline Couse
- University of British Columbia, 2329 West Mall, Vancouver, BC, V6T 1Z4, Canada.,BC Children's Hospital Research Institute, 950 W 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
| | - Bruno M Grande
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Eric Karlins
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, MSC 9776, Bethesda, MD 20892, USA
| | - Tanya N Phung
- Interdepartmental Program in Bioinformatics, UCLA, 621 Charles E. Young Drive South, Los Angeles, CA 90095-1606, USA
| | - Phillip A Richmond
- BC Children's Hospital Research Institute, 950 W 28th Avenue, Vancouver, BC, V5Z 4H4, Canada.,Centre for Molecular Medicine and Therapeutics, University of British Columbia, 950 West 28th Avenue, Vancouver, BC, V52 4H4, Canada
| | - Whitney Whitford
- School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.,Centre for Brain Research, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Melissa A Wilson
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ 85281, USA.,Center for Evolution and Medicine, Arizona State University, 401 E. Tyler Mall, Tempe, AZ 85287, USA
| |
Collapse
|
16
|
Radespiel U, Lutermann H, Schmelting B, Zimmermann E. An empirical estimate of the generation time of mouse lemurs. Am J Primatol 2019; 81:e23062. [PMID: 31631370 DOI: 10.1002/ajp.23062] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/25/2019] [Accepted: 10/08/2019] [Indexed: 11/05/2022]
Abstract
The generation time of organisms drives the rate of change in populations and across evolutionary times. In long-lived species, generation time should also account for overlapping generations, and the average age of parents has been proposed as a best approximation under these conditions. This study uses this definition to estimate the generation time of a widely studied small primate, Microcebus murinus, based on parentage data generated for a free-living population over a 6-year period in northwestern Madagascar. The average age of parents was calculated separately for mothers and fathers of three different offspring cohorts that differed in the degree of demographic uncertainty. In addition, adult survival rates were calculated for males and females based on long-term capture data from the same population to estimate the possible upper limits of generation time. Adult survival was low with only 44% of adult females and 38% of adult males being recaptured at the beginning of their second breeding season. The average age of mothers was 1.56-1.91 years, pointing toward a 2-year female generation time due to the high proportion of 1-year old mothers in all three cohorts. Female generation time estimates were fairly stable across the three offspring cohorts. In contrast, the average age of fathers differed by more than 1 year from the first to the third offspring cohort (1.71-2.83 years) pointing toward a 3-year generation time, but also suggesting a higher degree of demographic uncertainty in the early years of the study. For future modeling purposes, we, therefore, propose to use the average, 2.5 years, of male and female values as new estimate for the generation time of mouse lemurs.
Collapse
Affiliation(s)
- Ute Radespiel
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Heike Lutermann
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Hatfield, South Africa
| | | | - Elke Zimmermann
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
17
|
Connallon T, Olito C, Dutoit L, Papoli H, Ruzicka F, Yong L. Local adaptation and the evolution of inversions on sex chromosomes and autosomes. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0423. [PMID: 30150221 DOI: 10.1098/rstb.2017.0423] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2018] [Indexed: 11/12/2022] Open
Abstract
Spatially varying selection with gene flow can favour the evolution of inversions that bind locally adapted alleles together, facilitate local adaptation and ultimately drive genomic divergence between species. Several studies have shown that the rates of spread and establishment of new inversions capturing locally adaptive alleles depend on a suite of evolutionary factors, including the strength of selection for local adaptation, rates of gene flow and recombination, and the deleterious mutation load carried by inversions. Because the balance of these factors is expected to differ between X (or Z) chromosomes and autosomes, opportunities for inversion evolution are likely to systematically differ between these genomic regions, though such scenarios have not been formally modelled. Here, we consider the evolutionary dynamics of X-linked and autosomal inversions in populations evolving at a balance between migration and local selection. We identify three factors that lead to asymmetric rates of X-linked and autosome inversion establishment: (1) sex-biased migration, (2) dominance of locally adapted alleles and (3) chromosome-specific deleterious mutation loads. This theory predicts an elevated rate of fixation, and depressed opportunities for polymorphism, for X-linked inversions. Our survey of data on the genomic distribution of polymorphic and fixed inversions supports both theoretical predictions.This article is part of the theme issue 'Linking local adaptation with the evolution of sex differences'.
Collapse
Affiliation(s)
- Tim Connallon
- School of Biological Sciences, and Centre for Geometric Biology, Monash University, Clayton, 3800 Victoria, Australia
| | - Colin Olito
- School of Biological Sciences, and Centre for Geometric Biology, Monash University, Clayton, 3800 Victoria, Australia.,Department of Biology, Section for Evolutionary Ecology, Lund University, 22362 Lund, Sweden
| | - Ludovic Dutoit
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, 75236 Uppsala, Sweden.,Department of Zoology, University of Otago, 9054 Dunedin, New Zealand
| | - Homa Papoli
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, 75236 Uppsala, Sweden
| | - Filip Ruzicka
- Research Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Lengxob Yong
- Centre for Ecology and Conservation, University of Exeter, Penryn TR10 9FE, UK
| |
Collapse
|
18
|
Zeng K, Jackson BC, Barton HJ. Methods for Estimating Demography and Detecting Between-Locus Differences in the Effective Population Size and Mutation Rate. Mol Biol Evol 2019; 36:423-433. [PMID: 30428070 PMCID: PMC6409433 DOI: 10.1093/molbev/msy212] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
It is known that the effective population size (Ne) and the mutation rate (u) vary across the genome. Here, we show that ignoring this heterogeneity may lead to biased estimates of past demography. To solve the problem, we develop new methods for jointly inferring past changes in population size and detecting variation in Ne and u between loci. These methods rely on either polymorphism data alone or both polymorphism and divergence data. In addition to inferring demography, we can use the methods to study a variety of questions: 1) comparing sex chromosomes with autosomes (for finding evidence for male-driven evolution, an unequal sex ratio, or sex-biased demographic changes) and 2) analyzing multilocus data from within autosomes or sex chromosomes (for studying determinants of variability in Ne and u). Simulations suggest that the methods can provide accurate parameter estimates and have substantial statistical power for detecting difference in Ne and u. As an example, we use the methods to analyze a polymorphism data set from Drosophila simulans. We find clear evidence for rapid population expansion. The results also indicate that the autosomes have a higher mutation rate than the X chromosome and that the sex ratio is probably female-biased. The new methods have been implemented in a user-friendly package.
Collapse
Affiliation(s)
- Kai Zeng
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Benjamin C Jackson
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Henry J Barton
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
19
|
|
20
|
Oliveira S, Hübner A, Fehn AM, Aço T, Lages F, Pakendorf B, Stoneking M, Rocha J. The role of matrilineality in shaping patterns of Y chromosome and mtDNA sequence variation in southwestern Angola. Eur J Hum Genet 2018; 27:475-483. [PMID: 30467412 DOI: 10.1038/s41431-018-0304-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 10/25/2018] [Accepted: 11/01/2018] [Indexed: 11/09/2022] Open
Abstract
Southwestern Angola is a region characterized by contact between indigenous foragers and incoming food-producers, involving genetic and cultural exchanges between peoples speaking Kx'a, Khoe-Kwadi, and Bantu languages. Although present-day Bantu speakers share a patrilocal residence pattern and matrilineal principle of clan and group membership, a highly stratified social setting divides dominant pastoralists from marginalized groups that subsist on alternative strategies and have previously been thought to have pre-Bantu origins. Here, we compare new high-resolution sequence data from 2.3 Mb of the male-specific region of the Y chromosome (MSY) from 170 individuals with previously reported mitochondrial DNA (mtDNA) genomes, to investigate the population history of seven representative southwestern Angolan groups (Himba, Kuvale, Kwisi, Kwepe, Twa, Tjimba, !Xun), and to study the causes and consequences of sex-biased processes in their genetic variation. We found no clear link between the formerly Kwadi-speaking Kwepe and pre-Bantu eastern African migrants, and no pre-Bantu MSY lineages among Bantu-speaking groups, except for small amounts of "Khoisan" introgression. We therefore propose that irrespective of their subsistence strategies, all Bantu-speaking groups of the area share a male Bantu origin. Additionally, we show that in Bantu-speaking groups, the levels of among-group and between-group variation are higher for mtDNA than for MSY. These results, together with our previous demonstration that the matriclanic systems of southwestern Angolan Bantu groups are genealogically consistent, suggest that matrilineality strongly enhances both female population sizes and interpopulation mtDNA variation.
Collapse
Affiliation(s)
- Sandra Oliveira
- CIBIO/InBIO: Research Center in Biodiversity and Genetic Resources, 4485-661, Vairão, Portugal. .,Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007, Porto, Portugal.
| | - Alexander Hübner
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103, Leipzig, Germany
| | - Anne-Maria Fehn
- CIBIO/InBIO: Research Center in Biodiversity and Genetic Resources, 4485-661, Vairão, Portugal.,Department of Linguistic and Cultural Evolution, Max Planck Institute for the Science of Human History, 00745, Jena, Germany.,Institute for African Studies, Goethe University, 60323, Frankfurt, Germany
| | - Teresa Aço
- Centro de Estudos do Deserto (CEDO), Namibe, Angola
| | - Fernanda Lages
- ISCED/Huíla-Instituto Superior de Ciências da Educação, Lubango, Angola
| | - Brigitte Pakendorf
- Laboratoire Dynamique du Langage, UMR5596, CNRS & Univ Lyon, 69007, Lyon, France
| | - Mark Stoneking
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103, Leipzig, Germany
| | - Jorge Rocha
- CIBIO/InBIO: Research Center in Biodiversity and Genetic Resources, 4485-661, Vairão, Portugal.,Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007, Porto, Portugal.,ISCED/Huíla-Instituto Superior de Ciências da Educação, Lubango, Angola
| |
Collapse
|
21
|
Abstract
Levels and patterns of genetic diversity can provide insights into a population’s history. In species with sex chromosomes, differences between genomic regions with unique inheritance patterns can be used to distinguish between different sets of possible demographic and selective events. This review introduces the differences in population history for sex chromosomes and autosomes, provides the expectations for genetic diversity across the genome under different evolutionary scenarios, and gives an introductory description for how deviations in these expectations are calculated and can be interpreted. Predominantly, diversity on the sex chromosomes has been used to explore and address three research areas: 1) Mating patterns and sex-biased variance in reproductive success, 2) signatures of selection, and 3) evidence for modes of speciation and introgression. After introducing the theory, this review catalogs recent studies of genetic diversity on the sex chromosomes across species within the major research areas that sex chromosomes are typically applied to, arguing that there are broad similarities not only between male-heterogametic (XX/XY) and female-heterogametic (ZZ/ZW) sex determination systems but also any mating system with reduced recombination in a sex-determining region. Further, general patterns of reduced diversity in nonrecombining regions are shared across plants and animals. There are unique patterns across populations with vastly different patterns of mating and speciation, but these do not tend to cluster by taxa or sex determination system.
Collapse
Affiliation(s)
- Melissa A Wilson Sayres
- School of Life Sciences, Center for Evolution and Medicine, The Biodesign Institute, Arizona State University
| |
Collapse
|
22
|
Abstract
Over the 180 My since their origin, the sex chromosomes of mammals have evolved a gene repertoire highly specialized for function in the male germline. The mouse Y chromosome is unique among mammalian Y chromosomes characterized to date in that it is large, gene-rich and euchromatic. Yet, little is known about its diversity in natural populations. Here, we take advantage of published whole-genome sequencing data to survey the diversity of sequence and copy number of sex-linked genes in three subspecies of house mice. Copy number of genes on the repetitive long arm of both sex chromosomes is highly variable, but sequence diversity in nonrepetitive regions is decreased relative to expectations based on autosomes. We use simulations and theory to show that this reduction in sex-linked diversity is incompatible with neutral demographic processes alone, but is consistent with recent positive selection on genes active during spermatogenesis. Our results support the hypothesis that the mouse sex chromosomes are engaged in ongoing intragenomic conflict.
Collapse
Affiliation(s)
- Andrew P Morgan
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC
| | | |
Collapse
|
23
|
Adhikari K, Chacón-Duque JC, Mendoza-Revilla J, Fuentes-Guajardo M, Ruiz-Linares A. The Genetic Diversity of the Americas. Annu Rev Genomics Hum Genet 2017; 18:277-296. [DOI: 10.1146/annurev-genom-083115-022331] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kaustubh Adhikari
- Department of Genetics, Evolution, and Environment, University College London, London WC1E 6BT, United Kingdom
| | - Juan Camilo Chacón-Duque
- Department of Genetics, Evolution, and Environment, University College London, London WC1E 6BT, United Kingdom
| | - Javier Mendoza-Revilla
- Department of Genetics, Evolution, and Environment, University College London, London WC1E 6BT, United Kingdom
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 31, Perú
| | - Macarena Fuentes-Guajardo
- Department of Genetics, Evolution, and Environment, University College London, London WC1E 6BT, United Kingdom
- Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Tarapacá, Arica 1000009, Chile
| | - Andrés Ruiz-Linares
- Department of Genetics, Evolution, and Environment, University College London, London WC1E 6BT, United Kingdom
- Ministry of Education Key Laboratory of Contemporary Anthropology and Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai 200438, China
- Laboratory of Biocultural Anthropology, Law, Ethics, and Health (Centre National de la Recherche Scientifique and Etablissement Français du Sang, UMR-7268), Aix-Marseille University, 13824 Marseille, France
| |
Collapse
|
24
|
Batini C, Jobling MA. Detecting past male-mediated expansions using the Y chromosome. Hum Genet 2017; 136:547-557. [PMID: 28349239 DOI: 10.1007/s00439-017-1781-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 03/15/2017] [Indexed: 12/29/2022]
Abstract
Males and females display biological differences that lead to a higher variance of offspring number in males, and this is frequently exacerbated in human societies by mating practices, and possibly by past socio-cultural circumstances. This implies that the genetic record might contain the imprint of past male-mediated expansions, which can be investigated by analysing the male-specific region of the Y chromosome (MSY). Here, we review studies that have used MSY data to infer such expansions. Sets of short-tandem repeats define haplotypes of very low average frequencies, but in a few cases, high-frequency haplotypes are observed, forming the core of descent clusters. Estimates of the ages of such clusters, together with geographical information, have been used to propose powerful historical founders, including Genghis Khan, although without direct supporting evidence. Resequencing of multi-megabase segments of MSY has allowed the construction of detailed phylogenies in which branch lengths are proportional to time, leading to the identification of lineage expansions in the last few millennia as well as the more distant past. Comparisons with maternally-inherited mitochondrial DNA sequence data allow the male specificity of some of these expansions to be demonstrated. These include expansions in Europe in the last ~5000 years that may be associated with a cultural shift during the Bronze Age, as well as expansions elsewhere in the world for which explanations from archaeological evidence are not yet clear.
Collapse
Affiliation(s)
- Chiara Batini
- Department of Health Sciences, University of Leicester, University Road, Leicester, LE1 7RH, UK.
| | - Mark A Jobling
- Department of Genetics, University of Leicester, University Road, Leicester, LE1 7RH, UK.
| |
Collapse
|
25
|
Abstract
A new study on sex chromosome evolution in papaya helps to illuminate sex chromosome biology, including deviations from expected trajectories. Please see related Research article: https://genomebiology.biomedcentral.com/articles/10.1186/s13059-016-1095-9
Collapse
Affiliation(s)
- Angela M Taravella
- School of Life Sciences, Arizona State University, Tempe, AZ, 85281, USA
| | - Melissa A Wilson Sayres
- School of Life Sciences, Arizona State University, Tempe, AZ, 85281, USA. .,Center for Evolution and Medicine, The Biodesign Institute, Arizona State University, Tempe, AZ, 85281, USA.
| |
Collapse
|