1
|
Hamilton MC, Fife JD, Akinci E, Yu T, Khowpinitchai B, Cha M, Barkal S, Thi TT, Yeo GH, Ramos Barroso JP, Francoeur MJ, Velimirovic M, Gifford DK, Lettre G, Yu H, Cassa CA, Sherwood RI. Systematic elucidation of genetic mechanisms underlying cholesterol uptake. CELL GENOMICS 2023; 3:100304. [PMID: 37228746 PMCID: PMC10203276 DOI: 10.1016/j.xgen.2023.100304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 12/02/2022] [Accepted: 03/24/2023] [Indexed: 05/27/2023]
Abstract
Genetic variation contributes greatly to LDL cholesterol (LDL-C) levels and coronary artery disease risk. By combining analysis of rare coding variants from the UK Biobank and genome-scale CRISPR-Cas9 knockout and activation screening, we substantially improve the identification of genes whose disruption alters serum LDL-C levels. We identify 21 genes in which rare coding variants significantly alter LDL-C levels at least partially through altered LDL-C uptake. We use co-essentiality-based gene module analysis to show that dysfunction of the RAB10 vesicle transport pathway leads to hypercholesterolemia in humans and mice by impairing surface LDL receptor levels. Further, we demonstrate that loss of function of OTX2 leads to robust reduction in serum LDL-C levels in mice and humans by increasing cellular LDL-C uptake. Altogether, we present an integrated approach that improves our understanding of the genetic regulators of LDL-C levels and provides a roadmap for further efforts to dissect complex human disease genetics.
Collapse
Affiliation(s)
- Marisa C. Hamilton
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - James D. Fife
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ersin Akinci
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Tian Yu
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Benyapa Khowpinitchai
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Minsun Cha
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Sammy Barkal
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Thi Tun Thi
- Precision Medicine Research Programme, Cardiovascular Disease Research Programme, and Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Grace H.T. Yeo
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Juan Pablo Ramos Barroso
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Matthew Jake Francoeur
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Minja Velimirovic
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - David K. Gifford
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Guillaume Lettre
- Montreal Heart Institute, Montréal, QC H1T 1C8, Canada
- Faculté de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Haojie Yu
- Precision Medicine Research Programme, Cardiovascular Disease Research Programme, and Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Christopher A. Cassa
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Richard I. Sherwood
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
2
|
Head and neck cancer patient-derived tumouroid cultures: opportunities and challenges. Br J Cancer 2023; 128:1807-1818. [PMID: 36765173 PMCID: PMC10147637 DOI: 10.1038/s41416-023-02167-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 02/12/2023] Open
Abstract
Head and neck cancers (HNC) are the seventh most prevalent cancer type globally. Despite their common categorisation, HNCs are a heterogeneous group of malignancies arising in various anatomical sites within the head and neck region. These cancers exhibit different clinical and biological manifestations, and this heterogeneity also contributes to the high rates of treatment failure and mortality. To evaluate patients who will respond to a particular treatment, there is a need to develop in vitro model systems that replicate in vivo tumour status. Among the methods developed, patient-derived cancer organoids, also known as tumouroids, recapitulate in vivo tumour characteristics including tumour architecture. Tumouroids have been used for general disease modelling and genetic instability studies in pan-cancer research. However, a limited number of studies have thus far been conducted using tumouroid-based drug screening. Studies have concluded that tumouroids can play an essential role in bringing precision medicine for highly heterogenous cancer types such as HNC.
Collapse
|
3
|
Hamilton MC, Fife JD, Akinci E, Yu T, Khowpinitchai B, Cha M, Barkal S, Thi TT, Yeo GH, Ramos Barroso JP, Jake Francoeur M, Velimirovic M, Gifford DK, Lettre G, Yu H, Cassa CA, Sherwood RI. Systematic elucidation of genetic mechanisms underlying cholesterol uptake. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.09.500804. [PMID: 36711952 PMCID: PMC9881906 DOI: 10.1101/2023.01.09.500804] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Genetic variation contributes greatly to LDL cholesterol (LDL-C) levels and coronary artery disease risk. By combining analysis of rare coding variants from the UK Biobank and genome-scale CRISPR-Cas9 knockout and activation screening, we have substantially improved the identification of genes whose disruption alters serum LDL-C levels. We identify 21 genes in which rare coding variants significantly alter LDL-C levels at least partially through altered LDL-C uptake. We use co-essentiality-based gene module analysis to show that dysfunction of the RAB10 vesicle transport pathway leads to hypercholesterolemia in humans and mice by impairing surface LDL receptor levels. Further, we demonstrate that loss of function of OTX2 leads to robust reduction in serum LDL-C levels in mice and humans by increasing cellular LDL-C uptake. Altogether, we present an integrated approach that improves our understanding of genetic regulators of LDL-C levels and provides a roadmap for further efforts to dissect complex human disease genetics.
Collapse
Affiliation(s)
- Marisa C. Hamilton
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - James D. Fife
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ersin Akinci
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Tian Yu
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Benyapa Khowpinitchai
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Minsun Cha
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Sammy Barkal
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Thi Tun Thi
- Precision Medicine Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Cardiovascular Disease Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Grace H.T. Yeo
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Juan Pablo Ramos Barroso
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Matthew Jake Francoeur
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Minja Velimirovic
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - David K. Gifford
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Guillaume Lettre
- Montreal Heart Institute, Montréal, Québec, H1T 1C8, Canada
- Faculté de Médecine, Université de Montréal, Montréal, Québec, H3T 1J4, Canada
| | - Haojie Yu
- Precision Medicine Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Cardiovascular Disease Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Christopher A. Cassa
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Richard I. Sherwood
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
4
|
Auwerx C, Sadler MC, Reymond A, Kutalik Z. From pharmacogenetics to pharmaco-omics: Milestones and future directions. HGG ADVANCES 2022; 3:100100. [PMID: 35373152 PMCID: PMC8971318 DOI: 10.1016/j.xhgg.2022.100100] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The origins of pharmacogenetics date back to the 1950s, when it was established that inter-individual differences in drug response are partially determined by genetic factors. Since then, pharmacogenetics has grown into its own field, motivated by the translation of identified gene-drug interactions into therapeutic applications. Despite numerous challenges ahead, our understanding of the human pharmacogenetic landscape has greatly improved thanks to the integration of tools originating from disciplines as diverse as biochemistry, molecular biology, statistics, and computer sciences. In this review, we discuss past, present, and future developments of pharmacogenetics methodology, focusing on three milestones: how early research established the genetic basis of drug responses, how technological progress made it possible to assess the full extent of pharmacological variants, and how multi-dimensional omics datasets can improve the identification, functional validation, and mechanistic understanding of the interplay between genes and drugs. We outline novel strategies to repurpose and integrate molecular and clinical data originating from biobanks to gain insights analogous to those obtained from randomized controlled trials. Emphasizing the importance of increased diversity, we envision future directions for the field that should pave the way to the clinical implementation of pharmacogenetics.
Collapse
Affiliation(s)
- Chiara Auwerx
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- University Center for Primary Care and Public Health, Lausanne, Switzerland
| | - Marie C. Sadler
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- University Center for Primary Care and Public Health, Lausanne, Switzerland
| | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Zoltán Kutalik
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- University Center for Primary Care and Public Health, Lausanne, Switzerland
| |
Collapse
|
5
|
Murray D, Petrey D, Honig B. Integrating 3D structural information into systems biology. J Biol Chem 2021; 296:100562. [PMID: 33744294 PMCID: PMC8095114 DOI: 10.1016/j.jbc.2021.100562] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/18/2021] [Accepted: 03/17/2021] [Indexed: 12/12/2022] Open
Abstract
Systems biology is a data-heavy field that focuses on systems-wide depictions of biological phenomena necessarily sacrificing a detailed characterization of individual components. As an example, genome-wide protein interaction networks are widely used in systems biology and continuously extended and refined as new sources of evidence become available. Despite the vast amount of information about individual protein structures and protein complexes that has accumulated in the past 50 years in the Protein Data Bank, the data, computational tools, and language of structural biology are not an integral part of systems biology. However, increasing effort has been devoted to this integration, and the related literature is reviewed here. Relationships between proteins that are detected via structural similarity offer a rich source of information not available from sequence similarity, and homology modeling can be used to leverage Protein Data Bank structures to produce 3D models for a significant fraction of many proteomes. A number of structure-informed genomic and cross-species (i.e., virus–host) interactomes will be described, and the unique information they provide will be illustrated with a number of examples. Tissue- and tumor-specific interactomes have also been developed through computational strategies that exploit patient information and through genetic interactions available from increasingly sensitive screens. Strategies to integrate structural information with these alternate data sources will be described. Finally, efforts to link protein structure space with chemical compound space offer novel sources of information in drug design, off-target identification, and the identification of targets for compounds found to be effective in phenotypic screens.
Collapse
Affiliation(s)
- Diana Murray
- Department of Systems Biology, Columbia University, New York, New York, USA
| | - Donald Petrey
- Department of Systems Biology, Columbia University, New York, New York, USA
| | - Barry Honig
- Department of Systems Biology, Department of Biochemistry and Molecular Biophysics, Department of Medicine, Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, New York, USA.
| |
Collapse
|