1
|
Lamka GF, Willoughby JR. Habitat remediation followed by managed connectivity reduces unwanted changes in evolutionary trajectory of high extirpation risk populations. PLoS One 2024; 19:e0304276. [PMID: 38814889 PMCID: PMC11139274 DOI: 10.1371/journal.pone.0304276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/09/2024] [Indexed: 06/01/2024] Open
Abstract
As we continue to convert green spaces into roadways and buildings, connectivity between populations and biodiversity will continue to decline. In threatened and endangered species, this trend is particularly concerning because the cessation of immigration can cause increased inbreeding and loss of genetic diversity, leading to lower adaptability and higher extirpation probabilities in these populations. Unfortunately, monitoring changes in genetic diversity from management actions such as assisted migration and predicting the extent of introduced genetic variation that is needed to prevent extirpation is difficult and costly in situ. Therefore, we designed an agent-based model to link population-wide genetic variability and the influx of unique alleles via immigration to population stability and extirpation outcomes. These models showed that management of connectivity can be critical in restoring at-risk populations and reducing the effects of inbreeding depression. However, the rescued populations were more similar to the migrant source population (average FST range 0.05-0.10) compared to the historical recipient population (average FST range 0.23-0.37). This means that these management actions not only recovered the populations from the effects of inbreeding depression, but they did so in a way that changed the evolutionary trajectory that was predicted and expected for these populations prior to the population crash. This change was most extreme in populations with the smallest population sizes, which are representative of critically endangered species that could reasonably be considered candidates for restored connectivity or translocation strategies. Understanding how these at-risk populations change in response to varying management interventions has broad implications for the long-term adaptability of these populations and can improve future efforts for protecting locally adapted allele complexes when connectivity is restored.
Collapse
Affiliation(s)
- Gina F. Lamka
- College of Forestry, Wildlife, and Environment, Auburn University, Auburn, Alabama, United States of America
| | - Janna R. Willoughby
- College of Forestry, Wildlife, and Environment, Auburn University, Auburn, Alabama, United States of America
| |
Collapse
|
2
|
Puckett EE, Davis IS, Harper DC, Wakamatsu K, Battu G, Belant JL, Beyer DE, Carpenter C, Crupi AP, Davidson M, DePerno CS, Forman N, Fowler NL, Garshelis DL, Gould N, Gunther K, Haroldson M, Ito S, Kocka D, Lackey C, Leahy R, Lee-Roney C, Lewis T, Lutto A, McGowan K, Olfenbuttel C, Orlando M, Platt A, Pollard MD, Ramaker M, Reich H, Sajecki JL, Sell SK, Strules J, Thompson S, van Manen F, Whitman C, Williamson R, Winslow F, Kaelin CB, Marks MS, Barsh GS. Genetic architecture and evolution of color variation in American black bears. Curr Biol 2023; 33:86-97.e10. [PMID: 36528024 PMCID: PMC10039708 DOI: 10.1016/j.cub.2022.11.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/08/2022] [Accepted: 11/18/2022] [Indexed: 12/23/2022]
Abstract
Color variation is a frequent evolutionary substrate for camouflage in small mammals, but the underlying genetics and evolutionary forces that drive color variation in natural populations of large mammals are mostly unexplained. The American black bear, Ursus americanus (U. americanus), exhibits a range of colors including the cinnamon morph, which has a similar color to the brown bear, U. arctos, and is found at high frequency in the American southwest. Reflectance and chemical melanin measurements showed little distinction between U. arctos and cinnamon U. americanus individuals. We used a genome-wide association for hair color as a quantitative trait in 151 U. americanus individuals and identified a single major locus (p < 10-13). Additional genomic and functional studies identified a missense alteration (R153C) in Tyrosinase-related protein 1 (TYRP1) that likely affects binding of the zinc cofactor, impairs protein localization, and results in decreased pigment production. Population genetic analyses and demographic modeling indicated that the R153C variant arose 9.36 kya in a southwestern population where it likely provided a selective advantage, spreading both northwards and eastwards by gene flow. A different TYRP1 allele, R114C, contributes to the characteristic brown color of U. arctos but is not fixed across the range.
Collapse
Affiliation(s)
- Emily E Puckett
- Department of Biological Sciences, University of Memphis, Memphis, TN 38152, USA.
| | - Isis S Davis
- Department of Biological Sciences, University of Memphis, Memphis, TN 38152, USA
| | - Dawn C Harper
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Kazumasa Wakamatsu
- Institute for Melanin Chemistry, Fujita Health University, Toyoake, Japan
| | - Gopal Battu
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Jerrold L Belant
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824, USA
| | - Dean E Beyer
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824, USA
| | - Colin Carpenter
- West Virginia Division of Natural Resources, Beckley, WV 25801, USA
| | - Anthony P Crupi
- Division of Wildlife Conservation, Alaska Department of Fish and Game, Douglas, Juneau, AK 99824, USA
| | - Maria Davidson
- The Louisiana Department of Wildlife and Fisheries, Baton Rouge, LA 70898, USA
| | - Christopher S DePerno
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695-7646, USA
| | - Nicholas Forman
- New Mexico Department of Game and Fish, Santa Fe, NM 87507, USA
| | - Nicholas L Fowler
- Division of Wildlife Conservation, Alaska Department of Fish and Game, Douglas, Juneau, AK 99824, USA
| | - David L Garshelis
- Minnesota Department of Natural Resources, Grand Rapids, MN 55744, USA; IUCN SSC Bear Specialist Group
| | - Nicholas Gould
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695-7646, USA
| | - Kerry Gunther
- National Park Service, Yellowstone National Park, WY 82190-0168, USA
| | - Mark Haroldson
- U.S. Geological Survey, Northern Rocky Mountain Science Center, Interagency Grizzly Bear Study Team, Bozeman, MT 59715, USA
| | - Shosuke Ito
- Institute for Melanin Chemistry, Fujita Health University, Toyoake, Japan
| | - David Kocka
- Virginia Department of Wildlife Resources, Verona, VA 24482, USA
| | - Carl Lackey
- Nevada Department of Wildlife, Reno, NV 89512, USA
| | - Ryan Leahy
- National Park Service, Yosemite National Park Wildlife Management, Yosemite, CA 95389, USA
| | - Caitlin Lee-Roney
- National Park Service, Yosemite National Park Wildlife Management, Yosemite, CA 95389, USA
| | - Tania Lewis
- National Park Service, Glacier Bay National Park, Gustavus, AK 99826, USA
| | - Ashley Lutto
- U.S. Fish and Wildlife Service, Kenai National Wildlife Refuge, Soldotna, AK 99669, USA
| | - Kelly McGowan
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | | | - Mike Orlando
- Florida Fish and Wildlife Conservation Commission, Tallahassee, FL 32399, USA
| | - Alexander Platt
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew D Pollard
- Department of Biological Sciences, University of Memphis, Memphis, TN 38152, USA
| | - Megan Ramaker
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | | | - Jaime L Sajecki
- Virginia Department of Wildlife Resources, Verona, VA 24482, USA
| | - Stephanie K Sell
- Division of Wildlife Conservation, Alaska Department of Fish and Game, Douglas, Juneau, AK 99824, USA
| | - Jennifer Strules
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695-7646, USA
| | - Seth Thompson
- Virginia Department of Wildlife Resources, Verona, VA 24482, USA
| | - Frank van Manen
- U.S. Geological Survey, Northern Rocky Mountain Science Center, Interagency Grizzly Bear Study Team, Bozeman, MT 59715, USA
| | - Craig Whitman
- U.S. Geological Survey, Northern Rocky Mountain Science Center, Interagency Grizzly Bear Study Team, Bozeman, MT 59715, USA
| | - Ryan Williamson
- National Park Service, Great Smoky Mountains National Park, Gatlinburg, TN 37738, USA
| | | | - Christopher B Kaelin
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Michael S Marks
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Departments of Pathology and Laboratory Medicine and of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gregory S Barsh
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA; Department of Genetics, School of Medicine, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
5
|
de Azevedo CS, Young RJ. Animal Personality and Conservation: Basics for Inspiring New Research. Animals (Basel) 2021; 11:ani11041019. [PMID: 33916547 PMCID: PMC8065675 DOI: 10.3390/ani11041019] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/19/2021] [Accepted: 04/01/2021] [Indexed: 01/24/2023] Open
Abstract
Simple Summary The study of animal personality is important to conserve animals because it can help in selecting the most appropriate individuals to be released into the wild. Individuals not so bold or aggressive, less stressed, who explore their new environment with greater caution are often more likely to survive after release into the wild. In contrast, bolder and more aggressive animals reproduce more successfully and, therefore, can be released with the aim of rapid repopulation of an area. These and other aspects of how animal personality can help in conservation programs, as well as how to collect personality data are covered in this paper. Abstract The number of animal species threatened with extinction are increasing every year, and biologists are conducting animal translocations, as one strategy, to try to mitigate this situation. Furthermore, researchers are evaluating methods to increase translocation success, and one area that shows promise is the study of animal personality. Animal personality can be defined as behavioral and physiological differences between individuals of the same species, which are stable in time and across different contexts. In the present paper, we discuss how animal personality can increase the success of translocation, as well as in the management of animals intended for translocation by evaluating personality characteristics of the individuals. Studies of the influence of birthplace, parental behavior, stress resilience, and risk assessment can be important to select the most appropriate individuals to be released. Finally, we explain the two methods used to gather personality data.
Collapse
Affiliation(s)
- Cristiano Schetini de Azevedo
- Departamento de Biodiversidade, Evolução e Meio Ambiente, Instituto de Ciências Exatas e Biológicas, Campus Morro do Cruzeiro, Universidade Federal de Ouro Preto, s/n Bauxita, Ouro Preto, MG 35.400-000, Brazil
- Correspondence:
| | - Robert John Young
- School of Science, Engineering and Environment, University of Salford Manchester, Peel Building—Room G51, Salford M5 4WT, UK;
| |
Collapse
|
6
|
Knox J, Ruppert K, Frank B, Sponarski CC, Glikman JA. Usage, definition, and measurement of coexistence, tolerance and acceptance in wildlife conservation research in Africa. AMBIO 2021; 50:301-313. [PMID: 32557171 PMCID: PMC7782642 DOI: 10.1007/s13280-020-01352-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/27/2020] [Accepted: 05/27/2020] [Indexed: 06/11/2023]
Abstract
The terms 'coexistence', 'tolerance,' and 'acceptance' appear frequently in conservation literature, but lack consistent characterization, making them difficult to apply across intervention frameworks. This review aims to describe the common characterizations of these three terms using Africa-based research as a case study. Through systematic lexical searches, we identified 392 papers containing one or more of the three terms. We assessed their usage, definition, and measurement (or lack thereof) in wildlife conservation. Coexistence was used in 46% of papers, but was defined in only 2% and measured in 4%. Tolerance and acceptance were used in 63% and 61% of the papers in which they appeared, respectively, defined in 4% and 2%, and measured in 19% and 5%. These results confirm the lack of clear understanding of these concepts and evidence the need for a precise lexicon. This would allow conservationists to cohesively describe their work and increase replicability of research across contexts.
Collapse
Affiliation(s)
- Jillian Knox
- Institute for Conservation Research, San Diego Zoo, 15600 San Pasqual Valley Road, Escondido, CA 92027 USA
- Arizona State University’s Sandra Day O’Connor College of Law, 111 E Taylor Street, Phoenix, AZ 85287 USA
| | - Kirstie Ruppert
- Institute for Conservation Research, San Diego Zoo, 15600 San Pasqual Valley Road, Escondido, CA 92027 USA
- Department of Wildlife, Fisheries, and Conservation Biology, University of Maine, Orono, ME 04469 USA
| | - Beatrice Frank
- Capital Regional District-Regional Parks Canada, Victoria, BC V9B2Z8 Canada
| | - Carly C. Sponarski
- Department of Wildlife, Fisheries, and Conservation Biology, University of Maine, Orono, ME 04469 USA
| | - Jenny Anne Glikman
- Institute for Conservation Research, San Diego Zoo, 15600 San Pasqual Valley Road, Escondido, CA 92027 USA
- Present Address: Instituto de Estudios Sociales Avanzados (IESA-CSIC), Campo Santo de los Mártires 7, 14004 Córdoba, Spain
| |
Collapse
|