2
|
Wang H, Liu J, Klaar M, Chen A, Gudmundsson L, Holden J. Anthropogenic climate change has influenced global river flow seasonality. Science 2024; 383:1009-1014. [PMID: 38422144 DOI: 10.1126/science.adi9501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 01/17/2024] [Indexed: 03/02/2024]
Abstract
Riverine ecosystems have adapted to natural discharge variations across seasons. However, evidence suggesting that climate change has already impacted magnitudes of river flow seasonality is limited to local studies, mainly focusing on changes of mean or extreme flows. This study introduces the use of apportionment entropy as a robust measure to assess flow-volume nonuniformity across seasons, enabling a global analysis. We found that ~21% of long-term river gauging stations exhibit significant alterations in seasonal flow distributions, but two-thirds of these are unrelated to trends in annual mean discharge. By combining a data-driven runoff reconstruction with state-of-the-art hydrological simulations, we identified a discernible weakening of river flow seasonality in northern high latitudes (above 50°N), a phenomenon directly linked to anthropogenic climate forcing.
Collapse
Affiliation(s)
- Hong Wang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- water@leeds, School of Geography, University of Leeds, Leeds LS2 9JT, UK
| | - Junguo Liu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- North China University of Water Resources and Electric Power, Zhengzhou 450046, China
- Henan Provincial Key Lab of Hydrosphere and Watershed Water Security, North China University of Water Resources and Electric Power, Zhengzhou 450046, China
| | - Megan Klaar
- water@leeds, School of Geography, University of Leeds, Leeds LS2 9JT, UK
| | - Aifang Chen
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Lukas Gudmundsson
- Institute for Atmospheric and Climate Science, ETH Zürich, 8092 Zürich, Switzerland
| | - Joseph Holden
- water@leeds, School of Geography, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
3
|
Saccò M, Mammola S, Altermatt F, Alther R, Bolpagni R, Brancelj A, Brankovits D, Fišer C, Gerovasileiou V, Griebler C, Guareschi S, Hose GC, Korbel K, Lictevout E, Malard F, Martínez A, Niemiller ML, Robertson A, Tanalgo KC, Bichuette ME, Borko Š, Brad T, Campbell MA, Cardoso P, Celico F, Cooper SJB, Culver D, Di Lorenzo T, Galassi DMP, Guzik MT, Hartland A, Humphreys WF, Ferreira RL, Lunghi E, Nizzoli D, Perina G, Raghavan R, Richards Z, Reboleira ASPS, Rohde MM, Fernández DS, Schmidt SI, van der Heyde M, Weaver L, White NE, Zagmajster M, Hogg I, Ruhi A, Gagnon MM, Allentoft ME, Reinecke R. Groundwater is a hidden global keystone ecosystem. GLOBAL CHANGE BIOLOGY 2024; 30:e17066. [PMID: 38273563 DOI: 10.1111/gcb.17066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 01/27/2024]
Abstract
Groundwater is a vital ecosystem of the global water cycle, hosting unique biodiversity and providing essential services to societies. Despite being the largest unfrozen freshwater resource, in a period of depletion by extraction and pollution, groundwater environments have been repeatedly overlooked in global biodiversity conservation agendas. Disregarding the importance of groundwater as an ecosystem ignores its critical role in preserving surface biomes. To foster timely global conservation of groundwater, we propose elevating the concept of keystone species into the realm of ecosystems, claiming groundwater as a keystone ecosystem that influences the integrity of many dependent ecosystems. Our global analysis shows that over half of land surface areas (52.6%) has a medium-to-high interaction with groundwater, reaching up to 74.9% when deserts and high mountains are excluded. We postulate that the intrinsic transboundary features of groundwater are critical for shifting perspectives towards more holistic approaches in aquatic ecology and beyond. Furthermore, we propose eight key themes to develop a science-policy integrated groundwater conservation agenda. Given ecosystems above and below the ground intersect at many levels, considering groundwater as an essential component of planetary health is pivotal to reduce biodiversity loss and buffer against climate change.
Collapse
Affiliation(s)
- Mattia Saccò
- Subterranean Research and Groundwater Ecology (SuRGE) Group, Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Perth, Western Australia, Australia
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Stefano Mammola
- Molecular Ecology Group (MEG), Water Research Institute (CNR-IRSA), National Research Council, Verbania Pallanza, Italy
- Laboratory for Integrative Biodiversity Research (LIBRe), Finnish Museum of Natural History (LUOMUS), University of Helsinki, Helsinki, Finland
- National Biodiversity Future Center, Palermo, Italy
| | - Florian Altermatt
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| | - Roman Alther
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| | - Rossano Bolpagni
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Anton Brancelj
- Department of Organisms and Ecosystems Research, National Institute of Biology, Ljubljana, Slovenia
- Department for Environmental Science, University of Nova Gorica, Nova Gorica, Slovenia
| | - David Brankovits
- Molecular Ecology Group (MEG), Water Research Institute (CNR-IRSA), National Research Council, Verbania Pallanza, Italy
| | - Cene Fišer
- SubBio Lab, Biotechnical Faculty, Department of Biology, University of Ljubljana, Ljubljana, Slovenia
| | - Vasilis Gerovasileiou
- Faculty of Environment, Department of Environment, Ionian University, Zakynthos, Greece
- Biotechnology and Aquaculture (IMBBC), Thalassocosmos, Institute of Marine Biology, Hellenic Centre for Marine Research (HCMR), Heraklion, Greece
| | - Christian Griebler
- Department of Functional & Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Simone Guareschi
- Estación Biologica de Doñana (EBD-CSIC), Seville, Spain
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Grant C Hose
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Kathryn Korbel
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Elisabeth Lictevout
- International Groundwater Resources Assessment Center (IGRAC), Delft, The Netherlands
| | - Florian Malard
- Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, Univ Lyon, Villeurbanne, France
| | - Alejandro Martínez
- Molecular Ecology Group (MEG), Water Research Institute (CNR-IRSA), National Research Council, Verbania Pallanza, Italy
| | - Matthew L Niemiller
- Department of Biological Sciences, The University of Alabama in Huntsville, Huntsville, Alabama, USA
| | - Anne Robertson
- School of Life and Health Sciences, Roehampton University, London, UK
| | - Krizler C Tanalgo
- Ecology and Conservation Research Laboratory (Eco/Con Lab), Department of Biological Sciences, College of Science and Mathematics, University of Southern Mindanao, Kabacan, Cotabato, Philippines
| | - Maria Elina Bichuette
- Laboratory of Subterranean Studies (LES), Department of Ecology and Evolutionary Biology, Federal University of São Carlos, São Carlos, Brazil
| | - Špela Borko
- SubBio Lab, Biotechnical Faculty, Department of Biology, University of Ljubljana, Ljubljana, Slovenia
| | - Traian Brad
- Emil Racovita Institute of Speleology, Cluj-Napoca, Romania
| | - Matthew A Campbell
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Perth, Western Australia, Australia
| | - Pedro Cardoso
- Laboratory for Integrative Biodiversity Research (LIBRe), Finnish Museum of Natural History (LUOMUS), University of Helsinki, Helsinki, Finland
- Departamento de Biologia Animal, and Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Fulvio Celico
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Steven J B Cooper
- South Australian Museum, North Terrace, Adelaide, South Australia, Australia
- Department of Ecology and Evolutionary Biology, School of Biological Sciences and Environment Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - David Culver
- Department of Environmental Science, American University, Washington, DC, USA
| | - Tiziana Di Lorenzo
- National Biodiversity Future Center, Palermo, Italy
- Research Institute on Terrestrial Ecosystems of the National Research Council of Italy (IRET CNR), Florence, Italy
| | - Diana M P Galassi
- Department of Life, Health and Environmental Sciences (MESVA), University of L'Aquila, L'Aquila, Italy
| | - Michelle T Guzik
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Adam Hartland
- Lincoln Agritech Ltd, Ruakura, Kirikiriroa, Aotearoa, New Zealand
| | - William F Humphreys
- School of Biological Sciences, University of Western Australia, Crawley, Western Australia, Australia
- Western Australian Museum, Welshpool, Western Australia, Australia
| | - Rodrigo Lopes Ferreira
- Centro de Estudos em Biologia Subterrânea, Departamento de Ecologia e Conservação, Instituto de Ciências Naturais, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil
| | - Enrico Lunghi
- Department of Life, Health and Environmental Sciences (MESVA), University of L'Aquila, L'Aquila, Italy
| | - Daniele Nizzoli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Giulia Perina
- Subterranean Research and Groundwater Ecology (SuRGE) Group, Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Perth, Western Australia, Australia
| | - Rajeev Raghavan
- Department of Fisheries Resource Management, Kerala University of Fisheries and Ocean Studies, Kochi, India
| | - Zoe Richards
- Coral Conservation and Research Group, Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Ana Sofia P S Reboleira
- Departamento de Biologia Animal, and Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Melissa M Rohde
- Rohde Environmental Consulting, LLC, Seattle, Washington, USA
- Graduate Program in Environmental Science, State University of New York College of Environmental Science and Forestry, Syracuse, New York, USA
| | | | - Susanne I Schmidt
- Department of Lake Research, Helmholtz Centre for Environmental Research, Magdeburg, Germany
| | - Mieke van der Heyde
- Subterranean Research and Groundwater Ecology (SuRGE) Group, Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Perth, Western Australia, Australia
| | - Louise Weaver
- Water & Environment Group, Institute of Environmental Science & Research Ltd., Christchurch, New Zealand
| | - Nicole E White
- Subterranean Research and Groundwater Ecology (SuRGE) Group, Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Perth, Western Australia, Australia
| | - Maja Zagmajster
- SubBio Lab, Biotechnical Faculty, Department of Biology, University of Ljubljana, Ljubljana, Slovenia
| | - Ian Hogg
- School of Science, University of Waikato, Hamilton, New Zealand
- Canadian High Arctic Research Station, Polar Knowledge Canada, Cambridge Bay, Nunavut, Canada
| | - Albert Ruhi
- Department of Environmental Science, Policy & Management, University of California, Berkeley, California, USA
| | - Marthe M Gagnon
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Morten E Allentoft
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Perth, Western Australia, Australia
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Robert Reinecke
- Institute of Geography, Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
5
|
Doody TM, Gao S, Vervoort W, Pritchard J, Davies M, Nolan M, Nagler PL. A river basin spatial model to quantitively advance understanding of riverine tree response dynamics to water availability and hydrological management. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 332:117393. [PMID: 36739773 DOI: 10.1016/j.jenvman.2023.117393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 01/11/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Ecological condition continues to decline in arid and semi-arid river basins globally due to hydrological over-abstraction combined with changing climatic conditions. Whilst provision of water for the environment has been a primary approach to alleviate ecological decline, how to accurately monitor changes in riverine trees at fine spatial and temporal scales, remains a substantial challenge. This is further complicated by constantly changing water availability across expansive river basins with varying climatic zones. Within, we combine rare, fine-scale, high frequency temporal in-situ field collected data with machine learning and remote sensing, to provide a robust model that enables broadscale monitoring of physiological tree water stress response to environmental changes via actual evapotranspiration (ET). Physiological variation of Eucalyptus camaldulensis (River Red Gum) and E. largiflorens (Black Box) trees across 10 study locations in the southern Murray-Darling Basin, Australia, was captured instantaneously using sap flow sensors, substantially reducing tree response lags encountered by monitoring visual canopy changes. Actual ET measurement of both species was used to bias correct a national spatial ET product where a Random Forest model was trained using continuous timeseries of in-situ data of up to four years. Precise monthly AMLETT (Australia-wide Machine Learning ET for Trees) ET outputs in 30 m pixel resolution from 2012 to 2021, were derived by incorporating additional remote sensing layers such as soil moisture, land surface temperature, radiation and EVI and NDVI in the Random Forest model. Landsat and Sentinal-2 correlation results between in-situ ET and AMLETT ET returned R2 of 0.94 (RMSE 6.63 mm period-1) and 0.92 (RMSE 6.89 mm period-1), respectively. In comparison, correlation between in-situ ET and a national ET product returned R2 of 0.44 (RMSE 34.08 mm period-1) highlighting the need for bias correction to generate accurate absolute ET values. The AMLETT method presented here, enhances environmental management in river basins worldwide. Such robust broadscale monitoring can inform water accounting and importantly, assist decisions on where to prioritize water for the environment to restore and protect key ecological assets and preserve floodplain and riparian ecological function.
Collapse
Affiliation(s)
- Tanya M Doody
- CSIRO, Land and Water, Waite Campus, Adelaide, South Australia, Australia.
| | - Sicong Gao
- CSIRO, Land and Water, Waite Campus, Adelaide, South Australia, Australia; University of Canberra, Canberra, Australian Capital Territory, Australia
| | - Willem Vervoort
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Jodie Pritchard
- CSIRO, Land and Water, Waite Campus, Adelaide, South Australia, Australia
| | - Micah Davies
- CSIRO, Land and Water, Canberra, Australian Capital Territory, Australia
| | - Martin Nolan
- CSIRO, Land and Water, Waite Campus, Adelaide, South Australia, Australia
| | - Pamela L Nagler
- U.S. Geological Survey, Southwest Biological Science Center, Tucson, AZ, USA
| |
Collapse
|