1
|
Moses RM, Stenhouse C, Halloran KM, Sah N, Hoskins EC, Washburn SE, Johnson GA, Wu G, Bazer FW. Metabolic pathways for glucose and fructose: I synthesis and metabolism of fructose by ovine conceptuses†. Biol Reprod 2024; 111:148-158. [PMID: 38501845 DOI: 10.1093/biolre/ioae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/23/2024] [Accepted: 02/24/2024] [Indexed: 03/20/2024] Open
Abstract
Fructose, the most abundant hexose sugar in fetal fluids and the blood of sheep and other ungulates and cetaceans, is synthesized from glucose via the polyol pathway in trophectoderm and chorion. However, the cell-specific and temporal expression of enzymes for the synthesis and metabolism of fructose in sheep conceptuses (embryo and placental membranes) and placentomes has not been characterized. This study characterized key enzymes involved in fructose synthesis and metabolism by ovine conceptuses throughout pregnancy. Day 17 conceptuses expressed mRNAs for the polyol pathway (SORD and AKR1B1) and glucose and fructose metabolism (HK1, HK2, G6PD, OGT, and FBP), but not those required for gluconeogenesis (G6Pase or PCK). Ovine placentomes also expressed mRNAs for SORD, AKR1B1, HK1, and OGT. Fructose can be metabolized via the ketohexokinase (KHK) pathway, and isoforms, KHK-A and KHK-C, were expressed in ovine conceptuses from Day 16 of pregnancy and placentomes during pregnancy in a cell-specific manner. The KHK-A protein was more abundant in the trophectoderm and cotyledons of placentomes, while KHK-C protein was more abundant in the endoderm of Day 16 conceptuses and the chorionic epithelium in placentomes. Expression of KHK mRNAs in placentomes was greatest at Day 30 of pregnancy (P < 0.05), but not different among days later in gestation. These results provide novel insights into the synthesis and metabolism of fructose via the uninhibited KHK pathway in ovine conceptuses to generate ATP via the tricarboxylic cycle, as well as substrates for the pentose cycle, hexosamine biosynthesis pathway, and one-carbon metabolism required for conceptus development throughout pregnancy.
Collapse
Affiliation(s)
- Robyn M Moses
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
| | - Claire Stenhouse
- Department of Animal Science, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Katherine M Halloran
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Nirvay Sah
- Department of Pathology, University of California-San Diego, San Diego, California, USA
| | - Emily C Hoskins
- Department of Biomedical and Diagnostic Sciences, University of Tennessee, Knoxville, Tennessee, USA
| | - Shannon E Washburn
- Department of Veterinary Physiology and Pathology, Texas A&M University, College Station Texas, USA
| | - Gregory A Johnson
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
2
|
Xu J, Zhao Y, Tyler Mertens R, Ding Y, Xiao P. Sweet regulation - The emerging immunoregulatory roles of hexoses. J Adv Res 2024:S2090-1232(24)00157-7. [PMID: 38631430 DOI: 10.1016/j.jare.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 03/20/2024] [Accepted: 04/13/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND It is widely acknowledged that dietary habits have profound impacts on human health and diseases. As the most important sweeteners and energy sources in human diets, hexoses take part in a broad range of physiopathological processes. In recent years, emerging evidence has uncovered the crucial roles of hexoses, such as glucose, fructose, mannose, and galactose, in controlling the differentiation or function of immune cells. AIM OF REVIEW Herein, we reviewed the latest research progresses in the hexose-mediated modulation of immune responses, provided in-depth analyses of the underlying mechanisms, and discussed the unresolved issues in this field. KEY SCIENTIFIC CONCEPTS OF REVIEW Owing to their immunoregulatory effects, hexoses affect the onset and progression of various types of immune disorders, including inflammatory diseases, autoimmune diseases, and tumor immune evasion. Thus, targeting hexose metabolism is becoming a promising strategy for reversing immune abnormalities in diseases.
Collapse
Affiliation(s)
- Junjie Xu
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuening Zhao
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | | | - Yimin Ding
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peng Xiao
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China; The Key Laboratory for Immunity and Inflammatory Diseases of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
3
|
Midorikawa K, Kobayashi K, Kato S, Kawanishi S, Kobayashi H, Oikawa S, Murata M. Oxidative DNA damage: Induction by fructose, in vitro, and its enhancement by hydrogen peroxide. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2024; 893:503719. [PMID: 38272630 DOI: 10.1016/j.mrgentox.2023.503719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 01/27/2024]
Abstract
Sucrose and high-fructose corn syrup comprise nearly equal amounts of glucose and fructose. With the use of high-fructose corn syrup in the food industry, consumption of fructose, which may be a tumor promoter, has increased dramatically. We examined fructose-induced oxidative DNA damage in the presence of Cu(II), with or without the addition of H2O2. With isolated DNA, fructose induced Cu(II)-mediated DNA damage, including formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), to a greater extent than did glucose, and H2O2 enhanced the damage. In cultured human cells, 8-oxodG formation increased significantly following treatment with fructose and the H2O2-generating enzyme glucose oxidase. Fructose may play an important role in oxidative DNA damage, suggesting a possible mechanism for involvement of fructose in carcinogenesis.
Collapse
Affiliation(s)
- Kaoru Midorikawa
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan; Faculty of Child Education, Suzuka University, 663-222, Koriyama, Suzuka, Mie 510-0298, Japan
| | - Kokoro Kobayashi
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan
| | - Shinya Kato
- Radioisotope Experimental Facility, Advanced Science Research Promotion Center, Mie University, Edobashi 2-174, Tsu, Mie 514-8507, Japan
| | - Shosuke Kawanishi
- Faculty of Pharmaceutical Science, Suzuka University of Medical Science, 3500-3, Minamitamagaki, Suzuka, Mie 513-8670, Japan
| | - Hatasu Kobayashi
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan
| | - Shinji Oikawa
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan
| | - Mariko Murata
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan.
| |
Collapse
|
4
|
Cui Y, Liu H, Wang Z, Zhang H, Tian J, Wang Z, Song W, Guo H, Liu L, Tian R, Zuo X, Ren S, Zhang F, Niu R. Fructose promotes angiogenesis by improving vascular endothelial cell function and upregulating VEGF expression in cancer cells. J Exp Clin Cancer Res 2023; 42:184. [PMID: 37507736 PMCID: PMC10375648 DOI: 10.1186/s13046-023-02765-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Fructose is a very common sugar found in natural foods, while current studies demonstrate that high fructose intake is significantly associated with increased risk of multiple cancers and more aggressive tumor behavior, but the relevant mechanisms are not fully understood. METHODS Tumor-grafting experiments and in vitro angiogenesis assays were conducted to detect the effect of fructose and the conditioned medium of fructose-cultured tumor cells on biological function of vascular endothelial cells (VECs) and angiogenesis. 448 colorectal cancer specimens were utilized to analyze the relationship between Glut5 expression levels in VECs and tumor cells and microvascular density (MVD). RESULTS We found that fructose can be metabolized by VECs and activate the Akt and Src signaling pathways, thereby enhancing the proliferation, migration, and tube-forming abilities of VECs and thereby promoting angiogenesis. Moreover, fructose can also improve the expression of vascular endothelial growth factor (VEGF) by upregulating the production of reactive oxygen species (ROS) in colorectal cancer cells, thus indirectly enhancing the biological function of VECs. Furthermore, this pro-angiogenic effect of fructose metabolism has also been well validated in clinical colorectal cancer tissues and mouse models. Fructose contributes to angiogenesis in mouse subcutaneous tumor grafts, and MVD is positively correlated with Glut5 expression levels of both endothelial cells and tumor cells of human colorectal cancer specimens. CONCLUSIONS These findings establish the direct role and mechanism by which fructose promotes tumor progression through increased angiogenesis, and provide reliable evidence for a better understanding of tumor metabolic reprogramming.
Collapse
Affiliation(s)
- Yanfen Cui
- Public Laboratory, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Hui Liu
- Public Laboratory, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Zhaosong Wang
- Laboratory Animal Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - He Zhang
- Public Laboratory, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Jianfei Tian
- Public Laboratory, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Zhiyong Wang
- Public Laboratory, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Weijie Song
- Laboratory Animal Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Hui Guo
- Public Laboratory, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Liming Liu
- Public Laboratory, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Ruinan Tian
- Public Laboratory, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Xiaoyan Zuo
- Public Laboratory, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Sixin Ren
- Public Laboratory, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Fei Zhang
- Public Laboratory, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| | - Ruifang Niu
- Public Laboratory, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| |
Collapse
|
5
|
Moses RM, Halloran KM, Stenhouse C, Sah N, Kramer AC, McLendon BA, Seo H, Johnson GA, Wu G, Bazer FW. Ovine conceptus homogenates metabolize fructose for metabolic support during the peri-implantation period of pregnancy. Biol Reprod 2022; 107:1084-1096. [PMID: 35835585 DOI: 10.1093/biolre/ioac144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/22/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
Roles of fructose in elongating ovine conceptuses are poorly understood, despite it being the major hexose sugar in fetal fluids and plasma throughout gestation. Therefore, we determined if elongating ovine conceptuses utilize fructose via metabolic pathways for survival and development. Immunohistochemical analyses revealed that trophectoderm and extra-embryonic endoderm express ketohexokinase and aldolase B during the peri-implantation period of pregnancy for conversion of fructose into fructose-1-phosphate for entry into glycolysis and related metabolic pathways. Conceptus homogenates were cultured with 14C-labeled glucose and/or fructose under oxygenated and hypoxic conditions to assess contributions of glucose and fructose to the pentose cycle (PC), tricarboxylic acid cycle, glycoproteins, and lipid synthesis. Results indicated that both glucose and fructose contributed carbons to each of these pathways, except for lipid synthesis, and metabolized to pyruvate and lactate, with lactate being the primary product of glycolysis under oxygenated and hypoxic conditions. We also found that: 1) conceptuses preferentially oxidized glucose over fructose (P < 0.05); 2) incorporation of fructose and glucose at 4 mM each into the PC by Day 17 conceptus homogenates was similar in the presence or absence of glucose, but incorporation of glucose into the PC was enhanced by the presence of fructose (P < 0.05); 3) incorporation of fructose into the PC in the absence of glucose was greater under oxygenated conditions (P < 0.01); and 4) incorporation of glucose into the PC under oxygenated conditions was greater in the presence of fructose (P = 0.05). These results indicate that fructose is an important metabolic substrate for ovine conceptuses.
Collapse
Affiliation(s)
- Robyn M Moses
- Department of Animal Science, Texas A&M University, College Station, TX
| | | | - Claire Stenhouse
- Department of Animal Science, Texas A&M University, College Station, TX
| | - Nirvay Sah
- Department of Animal Science, Texas A&M University, College Station, TX
| | - Avery C Kramer
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX
| | - Bryan A McLendon
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX
| | - Heewon Seo
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX
| | - Gregory A Johnson
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX
| |
Collapse
|
6
|
Moses RM, Kramer AC, Seo H, Wu G, Johnson GA, Bazer FW. A Role for Fructose Metabolism in Development of Sheep and Pig Conceptuses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1354:49-62. [PMID: 34807436 DOI: 10.1007/978-3-030-85686-1_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The period of conceptus (embryo and extraembryonic membrane) development between fertilization and implantation in mammalian species is critical as it sets the stage for placental and fetal development. The trophectoderm and endoderm of pre-implantation ovine and porcine conceptuses undergo elongation, which requires rapid proliferation, migration, and morphological modification of the trophectoderm cells. These complex events occur in a hypoxic intrauterine environment and are supported through the transport of secretions from maternal endometrial glands to the conceptus required for the biochemical processes of cell proliferation, migration, and differentiation. The conceptus utilizes glucose provided by the mother to initiate metabolic pathways that provide energy and substrates for other metabolic pathways. Fructose, however, is in much greater abundance than glucose in amniotic and allantoic fluids, and fetal blood during pregnancy. Despite this, the role(s) of fructose is largely unknown even though a switch to fructosedriven metabolism in subterranean rodents and some cancers are key to their adaptation to hypoxic environments.
Collapse
Affiliation(s)
- Robyn M Moses
- Departments of Animal Science and Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - Avery C Kramer
- Departments of Animal Science and Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - Heewon Seo
- Departments of Animal Science and Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - Guoyao Wu
- Departments of Animal Science and Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - Gregory A Johnson
- Departments of Animal Science and Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - Fuller W Bazer
- Departments of Animal Science and Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
7
|
Chang CJ, Zhang J, Tsai YL, Chen CB, Lu CW, Huo YP, Liou HM, Ji C, Chung WH. Compositional Features of Distinct Microbiota Base on Serum Extracellular Vesicle Metagenomics Analysis in Moderate to Severe Psoriasis Patients. Cells 2021; 10:2349. [PMID: 34571998 PMCID: PMC8467001 DOI: 10.3390/cells10092349] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/26/2021] [Accepted: 08/31/2021] [Indexed: 01/14/2023] Open
Abstract
The bacterial microbiota in the skin and intestine of patients with psoriasis were different compared with that of healthy individuals. However, the presence of a distinct blood microbiome in patients with psoriasis is yet to be investigated. In this study, we investigated the differences in bacterial communities in plasma-derived extracellular vesicles (EVs) between patients with moderate to severe psoriasis (PSOs) and healthy controls (HCs). The plasma EVs from the PSO (PASI > 10) (n = 20) and HC (n = 8) groups were obtained via a series of centrifugations, and patterns were examined and confirmed using transmission electron microscopy (TEM) and EV-specific markers. The taxonomic composition of the microbiota was determined by using full-length 16S ribosomal RNA gene sequencing. The PSO group had lower bacterial diversity and richness compared with HC group. Principal coordinate analysis (PCoA)-based clustering was used to assess diversity and validated dysbiosis for both groups. Differences at the level of amplicon sequence variant (ASV) were observed, suggesting alterations in specific ASVs according to health conditions. The HC group had higher levels of the phylum Firmicutes and Fusobacteria than in the PSO group. The order Lactobacillales, family Brucellaceae, genera Streptococcus, and species Kingella oralis and Aquabacterium parvum were highly abundant in the HC group compared with the PSO group. Conversely, the order Bacillales and the genera Staphylococcus and Sphihgomonas, as well as Ralstonia insidiosa, were more abundant in the PSO group. We further predicted the microbiota functional capacities, which revealed significant differences between the PSO and HC groups. In addition to previous studies on microbiome changes in the skin and gut, we demonstrated compositional differences in the microbe-derived EVs in the plasma of PSO patients. Plasma EVs could be an indicator for assessing the composition of the microbiome of PSO patients.
Collapse
Affiliation(s)
- Chih-Jung Chang
- Medical Research Center and Xiamen Chang Gung Allergology Consortium, Xiamen Chang Gung Hospital, Xiamen 361028, China;
- Drug Hypersensitivity Clinical and Research Center, Department of Dermatology, Chang Gung Memorial Hospital, Linkou, Taoyuan 333423, Taiwan; (C.-B.C.); (C.-W.L.)
| | - Jing Zhang
- Department of Dermatology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China;
| | - Yu-Ling Tsai
- Department of Pathology, Tri-Service General Hospital, Taipei 114202, Taiwan;
| | - Chun-Bing Chen
- Drug Hypersensitivity Clinical and Research Center, Department of Dermatology, Chang Gung Memorial Hospital, Linkou, Taoyuan 333423, Taiwan; (C.-B.C.); (C.-W.L.)
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Department of Medical Research, Chang Gung Memorial Hospital, Linkou, Taoyuan 333423, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung 20445, Taiwan
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan 333323, Taiwan
- Department of Dermatology, Xiamen Chang Gung Hospital, Xiamen 361028, China; (Y.-P.H.); (H.-M.L.)
| | - Chun-Wei Lu
- Drug Hypersensitivity Clinical and Research Center, Department of Dermatology, Chang Gung Memorial Hospital, Linkou, Taoyuan 333423, Taiwan; (C.-B.C.); (C.-W.L.)
- College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan 333323, Taiwan
| | - Yu-Ping Huo
- Department of Dermatology, Xiamen Chang Gung Hospital, Xiamen 361028, China; (Y.-P.H.); (H.-M.L.)
| | - Huey-Ming Liou
- Department of Dermatology, Xiamen Chang Gung Hospital, Xiamen 361028, China; (Y.-P.H.); (H.-M.L.)
| | - Chao Ji
- Department of Dermatology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China;
| | - Wen-Hung Chung
- Medical Research Center and Xiamen Chang Gung Allergology Consortium, Xiamen Chang Gung Hospital, Xiamen 361028, China;
- Drug Hypersensitivity Clinical and Research Center, Department of Dermatology, Chang Gung Memorial Hospital, Linkou, Taoyuan 333423, Taiwan; (C.-B.C.); (C.-W.L.)
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Department of Medical Research, Chang Gung Memorial Hospital, Linkou, Taoyuan 333423, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung 20445, Taiwan
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan 333323, Taiwan
- Department of Dermatology, Xiamen Chang Gung Hospital, Xiamen 361028, China; (Y.-P.H.); (H.-M.L.)
- School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
8
|
Muriel P, López-Sánchez P, Ramos-Tovar E. Fructose and the Liver. Int J Mol Sci 2021; 22:6969. [PMID: 34203484 PMCID: PMC8267750 DOI: 10.3390/ijms22136969] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic diseases represent a major challenge in world health. Metabolic syndrome is a constellation of disturbances affecting several organs, and it has been proposed to be a liver-centered condition. Fructose overconsumption may result in insulin resistance, oxidative stress, inflammation, elevated uric acid levels, increased blood pressure, and increased triglyceride concentrations in both the blood and liver. Non-alcoholic fatty liver disease (NAFLD) is a term widely used to describe excessive fatty infiltration in the liver in the absence of alcohol, autoimmune disorders, or viral hepatitis; it is attributed to obesity, high sugar and fat consumption, and sedentarism. If untreated, NAFLD can progress to nonalcoholic steatohepatitis (NASH), characterized by inflammation and mild fibrosis in addition to fat infiltration and, eventually, advanced scar tissue deposition, cirrhosis, and finally liver cancer, which constitutes the culmination of the disease. Notably, fructose is recognized as a major mediator of NAFLD, as a significant correlation between fructose intake and the degree of inflammation and fibrosis has been found in preclinical and clinical studies. Moreover, fructose is a risk factor for liver cancer development. Interestingly, fructose induces a number of proinflammatory, fibrogenic, and oncogenic signaling pathways that explain its deleterious effects in the body, especially in the liver.
Collapse
Affiliation(s)
- Pablo Muriel
- Laboratory of Experimental Hepatology, Department of Pharmacology, Cinvestav-IPN, Apartado Postal 14-740, Mexico City 07300, Mexico;
| | - Pedro López-Sánchez
- Postgraduate Studies and Research Section, School of Higher Education in Medicine-IPN, Plan de San Luis y Díaz Mirón s/n, Casco de Santo Tomás, Mexico City 11340, Mexico;
| | - Erika Ramos-Tovar
- Postgraduate Studies and Research Section, School of Higher Education in Medicine-IPN, Plan de San Luis y Díaz Mirón s/n, Casco de Santo Tomás, Mexico City 11340, Mexico;
| |
Collapse
|
9
|
Blockade of fructose transporter protein GLUT5 inhibits proliferation of colon cancer cells: proof of concept for a new class of anti-tumor therapeutics. Pharmacol Rep 2021; 73:939-945. [PMID: 34052986 PMCID: PMC8180478 DOI: 10.1007/s43440-021-00281-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/30/2021] [Accepted: 05/18/2021] [Indexed: 12/14/2022]
Abstract
Background Despite the fact that colorectal cancer (CRC) is one of the most commonly diagnosed cancers in men and women, its current treatment remains unsatisfactory and therefore novel studies proposing new approaches are necessary. A high sugar diet is believed to promote carcinogenesis. Fructose is absorbed from the gastrointestinal tract by members of the glucose transporter family—GLUT. The aim of the study was to characterize the expression of GLUT5 at mRNA level in CRC patients. Moreover, our goal was to elucidate the molecular role of GLUT5 in CRC and assess whether GLUT5 inhibitor may affect the viability of colon cancer cells. Methods The expression of GLUT5 at mRNA level was characterized based on 30 samples from resected colorectal cancers and 30 healthy colonic mucosa specimens from surgical margins. The inhibitory effect of N-[4-(methylsulfonyl)-2-nitrophenyl]-1,3-benzodioxol-5-amine (MSBNA) was assessed on a colon cancer cell line, HT-29, and normal colon epithelium cells—CCD 841 CoN Cells. Results GLUT5 expression was found in 96.7% of cancer specimens and only in 53.3% of healthy mucosa fragments. In cancer tissue, real-time PCR analysis showed almost 2, fivefold (p< 0.001) increase of GLUT5 mRNA expression level compared with the healthy intestinal mucosa. GLUT5 inhibitor, MSNBA (10 µM) significantly decreased the viability of colon cancer cells, while barely affected the viability of normal colon epithelium cells. Conclusions Our study suggests that a strong focus should be put on GLUT5 and its inhibitors for both diagnostic and therapeutic purposes in CRC.
Collapse
|
10
|
Jones N, Blagih J, Zani F, Rees A, Hill DG, Jenkins BJ, Bull CJ, Moreira D, Bantan AIM, Cronin JG, Avancini D, Jones GW, Finlay DK, Vousden KH, Vincent EE, Thornton CA. Fructose reprogrammes glutamine-dependent oxidative metabolism to support LPS-induced inflammation. Nat Commun 2021; 12:1209. [PMID: 33619282 PMCID: PMC7900179 DOI: 10.1038/s41467-021-21461-4] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 01/14/2021] [Indexed: 12/18/2022] Open
Abstract
Fructose intake has increased substantially throughout the developed world and is associated with obesity, type 2 diabetes and non-alcoholic fatty liver disease. Currently, our understanding of the metabolic and mechanistic implications for immune cells, such as monocytes and macrophages, exposed to elevated levels of dietary fructose is limited. Here, we show that fructose reprograms cellular metabolic pathways to favour glutaminolysis and oxidative metabolism, which are required to support increased inflammatory cytokine production in both LPS-treated human monocytes and mouse macrophages. A fructose-dependent increase in mTORC1 activity drives translation of pro-inflammatory cytokines in response to LPS. LPS-stimulated monocytes treated with fructose rely heavily on oxidative metabolism and have reduced flexibility in response to both glycolytic and mitochondrial inhibition, suggesting glycolysis and oxidative metabolism are inextricably coupled in these cells. The physiological implications of fructose exposure are demonstrated in a model of LPS-induced systemic inflammation, with mice exposed to fructose having increased levels of circulating IL-1β after LPS challenge. Taken together, our work underpins a pro-inflammatory role for dietary fructose in LPS-stimulated mononuclear phagocytes which occurs at the expense of metabolic flexibility.
Collapse
Affiliation(s)
- Nicholas Jones
- Institute of Life Science, Swansea University Medical School, Swansea University, Swansea, UK
| | | | | | - April Rees
- Institute of Life Science, Swansea University Medical School, Swansea University, Swansea, UK
| | - David G Hill
- Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Benjamin J Jenkins
- Institute of Life Science, Swansea University Medical School, Swansea University, Swansea, UK
| | - Caroline J Bull
- Cellular and Molecular Medicine, University of Bristol, Bristol, UK
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Diana Moreira
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Azari I M Bantan
- Institute of Life Science, Swansea University Medical School, Swansea University, Swansea, UK
| | - James G Cronin
- Institute of Life Science, Swansea University Medical School, Swansea University, Swansea, UK
| | - Daniele Avancini
- San Raffaele Telethon Institute for Gene Therapy, San Raffaele Scientific Institute, Milan, Italy
| | - Gareth W Jones
- Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - David K Finlay
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | | | - Emma E Vincent
- Cellular and Molecular Medicine, University of Bristol, Bristol, UK.
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK.
| | - Catherine A Thornton
- Institute of Life Science, Swansea University Medical School, Swansea University, Swansea, UK.
| |
Collapse
|
11
|
Narayanankutty A, Kuzhivelil BT, Raghavamenon AC. A High-Fructose Diet Formulated with Thermally Oxidized Monounsaturated Fat Aggravates Metabolic Dysregulation in Colon Epithelial Tissues of Rats. J Am Coll Nutr 2020; 41:38-49. [DOI: 10.1080/07315724.2020.1846145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Arunaksharan Narayanankutty
- Department of Biochemistry, Amala Cancer Research Centre (Recognized Centre of University of Calicut), Thrissur, Kerala, India
| | - Balu T. Kuzhivelil
- Department of Zoology, Applied Biochemistry and Biotechnology Laboratory, Christ College, University of Calicut, Irinjalakuda, Kerala, India
| | - Achuthan C. Raghavamenon
- Department of Biochemistry, Amala Cancer Research Centre (Recognized Centre of University of Calicut), Thrissur, Kerala, India
| |
Collapse
|