1
|
Gayen S, Mukherjee S, Dasgupta S, Roy S. Emerging druggable targets for immune checkpoint modulation in cancer immunotherapy: the iceberg lies beneath the surface. Apoptosis 2024; 29:1879-1913. [PMID: 39354213 DOI: 10.1007/s10495-024-02022-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2024] [Indexed: 10/03/2024]
Abstract
The immune system serves as a fundamental defender against the initiation and progression of cancer. Failure of the immune system augments immunosuppressive action that leading to cancer manifestation. This immunosuppressive effect causes from significant alterations in immune checkpoint expression associated with tumoral progression. The tumor microenvironment promotes immune escape mechanisms that further amplifying immunosuppressive actions. Notably, substantial targeting of immune checkpoints has been pragmatic in the advancement of cancer research. This study highlights a comprehensive review of emerging druggable targets aimed at modulating immune checkpoint co-inhibitory as well as co-stimulatory molecules in response to immune system activation. This modulation has prompted to the development of newer therapeutic insights, eventually inducing immunogenic cell death through immunomodulatory actions. The study emphasizes the role of immune checkpoints in immunogenic regulation of cancer pathogenesis and explores potential therapeutic avenues in cancer immunotherapy.Modulation of Immunosuppressive and Immunostimulatory pathways of immune checkpoints in cancer immunotherapy.
Collapse
Affiliation(s)
- Sakuntala Gayen
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, 124, B. L. Saha Road, Tara Park, Behala, Kolkata, West Bengal, 700053, India
| | - Swarupananda Mukherjee
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, 124, B. L. Saha Road, Tara Park, Behala, Kolkata, West Bengal, 700053, India
| | - Sandipan Dasgupta
- Department of Pharmaceutical Technology, Maulana Abul Kalam Azad University of Technology, Kolkata, West Bengal, 741249, India
| | - Souvik Roy
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, 124, B. L. Saha Road, Tara Park, Behala, Kolkata, West Bengal, 700053, India.
| |
Collapse
|
2
|
Cai W, Sun T, Qiu C, Sheng H, Chen R, Xie C, Kou L, Yao Q. Stable triangle: nanomedicine-based synergistic application of phototherapy and immunotherapy for tumor treatment. J Nanobiotechnology 2024; 22:635. [PMID: 39420366 PMCID: PMC11488210 DOI: 10.1186/s12951-024-02925-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 10/10/2024] [Indexed: 10/19/2024] Open
Abstract
In recent decades, cancer has posed a challenging obstacle that humans strive to overcome. While phototherapy and immunotherapy are two emerging therapies compared to traditional methods, they each have their advantages and limitations. These limitations include easy metastasis and recurrence, low response rates, and strong side effects. To address these issues, researchers have increasingly focused on combining these two therapies by utilizing a nano-drug delivery system due to its superior targeting effect and high drug loading rate, yielding remarkable results. The combination therapy demonstrates enhanced response efficiency and effectiveness, leading to a preparation that is highly targeted, responsive, and with low recurrence rates. This paper reviews several main mechanisms of anti-tumor effects observed in combination therapy based on the nano-drug delivery system over the last five years. Furthermore, the challenges and future prospects of this combination therapy are also discussed.
Collapse
Affiliation(s)
- Wenjing Cai
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, 325027, China
| | - Tuyue Sun
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Chenyu Qiu
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, 325027, China
| | - Huixiang Sheng
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Ruijie Chen
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, 325027, China
| | - Congying Xie
- Zhejiang Engineering Research Center for Innovation and Application of Intelligent Radiotherapy Technology, Wenzhou, 325000, China.
- Zhejiang-Hong Kong Precision Theranostics of Thoracic Tumors Joint Laboratory, Wenzhou, 325000, China.
| | - Longfa Kou
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, 325027, China.
- Zhejiang Engineering Research Center for Innovation and Application of Intelligent Radiotherapy Technology, Wenzhou, 325000, China.
- Zhejiang-Hong Kong Precision Theranostics of Thoracic Tumors Joint Laboratory, Wenzhou, 325000, China.
| | - Qing Yao
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
3
|
Cil E, Gomes F. Toxicity of Cancer Immunotherapies in Older Patients: Does Age Make a Difference? Drugs Aging 2024; 41:787-794. [PMID: 39368044 DOI: 10.1007/s40266-024-01149-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2024] [Indexed: 10/07/2024]
Abstract
The use of immunotherapy agents especially immune checkpoint inhibitors is growing, and toxicities known as immune-related adverse events affecting any organ system may develop as a consequence of the treatment. With an ageing population, a considerable number of patients who will receive these therapies will be older adults. However, older patients who have highly heterogenous clinical characteristics, age-related changes in the immune system, a higher prevalence of comorbidities and frailty have been poorly represented in clinical trials, leaving gaps in understanding the safety of immune checkpoint inhibitor agents in this subgroup. Therefore, the safety of immune checkpoint inhibitors is a primary point of consideration when treating older patients with cancer. The available evidence is conflicting, but it generally suggests that the incidence of immune-related adverse events is not necessarily higher in older patients, but it may have a different profile. It is important to also note that the management of immune-related adverse events can be a challenge in these patients, owing to the risks associated with the use of corticosteroids and a reduced physiological reserve. A comprehensive characterisation of immune ageing, potential biomarkers to predict immune-related adverse events, the use of measures for frailty, enrolling older patients with cancer to clinical trials and analysis of real-world data are necessary to improve the evidence-based decision making for immune checkpoint inhibitor treatment in a geriatric oncology population.
Collapse
Affiliation(s)
- Emine Cil
- The Christie NHS Foundation Trust, 550 Wilmslow Road, Manchester, M20 4BX, UK
| | - Fabio Gomes
- The Christie NHS Foundation Trust, 550 Wilmslow Road, Manchester, M20 4BX, UK.
| |
Collapse
|
4
|
Wang D, Zhou F, He L, Wang X, Song L, Wang H, Sun S, Guo Z, Ma K, Xu J, Cui C. AML cell-derived exosomes suppress the activation and cytotoxicity of NK cells in AML via PD-1/PD-L1 pathway. Cell Biol Int 2024; 48:1588-1598. [PMID: 39030886 DOI: 10.1002/cbin.12225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 07/22/2024]
Abstract
Exosomes are bilayer lipid bodies and contain a variety of bioactive molecules such as proteins, lipids, and nucleic acids, and so forth. Exosomes derived from solid tumors may play critical roles in tumor development and immune evasion. However, the underlying effects of tumor-derived exosomes on immune function in modulating intercellular crosstalk within the bone marrow niche during acute myeloid leukemia (AML) development and immune evasion remain largely elusive. In this study, we aimed to explore the role of AML-exos in AML immune evasion. First, we isolated tumor-derived exosomes from AML cells (AML-exos) and revealed the presence of programmed cell death ligand-1 (PD-L1) protein in AML-exos. Next, we demonstrated that AML-exos can directly suppress the activation of natural killer (NK) cells and inhibit the cytotoxicity of NK cells, probably through activating the programmed cell death-1 (PD-1)/PD-L1 pathway. Furthermore, the inhibitory effect of AML-exos on NK cells could be alleviated by either PD-L1 inhibitor or antagonist. In summary, we demonstrated that AML-exos possess a PD-L1-dependent tumor-promoting effect which may contribute to immune tolerance in antitumor therapy, but blocking the PD-1/PD-L1 pathway may alleviate the tumor immunosuppression induced by AML-exos. Our findings in this study may offer a new immunotherapy strategy to cure AML.
Collapse
Affiliation(s)
- Dandan Wang
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, Liaoning Province, China
| | - Fanchen Zhou
- Department of Gynecology, Central Hospital of Dalian University of Technology, Dalian, Liaoning Province, China
| | - Leiyu He
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, Liaoning Province, China
| | - Xiaohong Wang
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, Liaoning Province, China
| | - Lingrui Song
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, Liaoning Province, China
| | - Haoyu Wang
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, Liaoning Province, China
| | - Shibo Sun
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, Liaoning Province, China
| | - Zhaoming Guo
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, Liaoning Province, China
| | - Kun Ma
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, Liaoning Province, China
| | - Jianqiang Xu
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, Liaoning Province, China
| | - Changhao Cui
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, Liaoning Province, China
| |
Collapse
|
5
|
Lu Y, Sun Y, Zhang J, Kong M, Zhao Z, Sun B, Wang Y, Jiang Y, Chen S, Wang C, Tong Y, Wen L, Huang M, Wu F, Zhang L. The deubiquitinase USP2a promotes tumor immunosuppression by stabilizing immune checkpoint B7-H4 in lung adenocarcinoma harboring EGFR-activating mutants. Cancer Lett 2024; 596:217020. [PMID: 38849009 DOI: 10.1016/j.canlet.2024.217020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/20/2024] [Accepted: 06/01/2024] [Indexed: 06/09/2024]
Abstract
B7-H4 is an immune checkpoint crucial for inhibiting CD8+ T-cell activity. A clinical trial is underway to investigate B7-H4 as a potential immunotherapeutic agent. However, the regulatory mechanism of B7-H4 degradation via the ubiquitin-proteasome pathway (UPP) remains poorly understood. In this study, we discovered that proteasome inhibitors effectively increased B7-H4 expression, while EGFR-activating mutants promoted B7-H4 expression through the UPP. We screened B7-H4 binding proteins by co-immunoprecipitation and mass spectrometry and found that USP2a acted as a deubiquitinase of B7-H4 by removing K48- and K63-linked ubiquitin chains from B7-H4, leading to a reduction in B7-H4 degradation. EGFR mutants enhanced B7-H4 stability by upregulating USP2a expression. We further investigated the role of USP2a in tumor growth in vivo. Depletion of USP2a in L858R/LLC cells inhibited tumor cell proliferation, consequently suppressing tumor growth in immune-deficient nude mice by destabilizing downstream molecules such as Cyclin D1. In an immune-competent C57BL/6 mouse tumor model, USP2a abrogation facilitated infiltration of CD95+CD8+ effector T cells and hindered infiltration of Tim-3+CD8+ and LAG-3+CD8+ exhausted T cells by destabilizing B7-H4. Clinical lung adenocarcinoma samples showed a significant correlation between B7-H4 abundance and USP2a expression, indicating the contribution of the EGFR/USP2a/B7-H4 axis to tumor immunosuppression. In summary, this study elucidates the dual effects of USP2a in tumor growth by stabilizing Cyclin D1, promoting tumor cell proliferation, and stabilizing B7-H4, contributing to tumor immunosuppression. Therefore, USP2a represents a potential target for tumor therapy.
Collapse
Affiliation(s)
- Youwei Lu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Yu Sun
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Jie Zhang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Miao Kong
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Zhiming Zhao
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Boshu Sun
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Yuan Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Ying Jiang
- Department of Hematology, Shanghai Zhaxin Traditional Chinese and Western Medicine Hospital, Shanghai, China
| | - Shaomu Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Chao Wang
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, China
| | - Yin Tong
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liangzhu Wen
- He Cheng Biotechnology Suzhou Co.Ltd, Suzhou, Jiangsu, China
| | - Moli Huang
- Department of Bioinformatics, School of Biology & Basic Medical Sciences, Soochow University, Suzhou, China
| | - Fengying Wu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Liang Zhang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
6
|
Hu D, Wang Y, Shen X, Mao T, Liang X, Wang T, Shen W, Zhuang Y, Ding J. Genetic landscape and clinical significance of cuproptosis-related genes in liver hepatocellular carcinoma. Genes Dis 2024; 11:516-519. [PMID: 37692498 PMCID: PMC10491882 DOI: 10.1016/j.gendis.2023.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/19/2022] [Accepted: 03/13/2023] [Indexed: 09/12/2023] Open
Affiliation(s)
- Dingtao Hu
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, Shanghai 200433, China
| | - Yichuan Wang
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, Shanghai 200433, China
| | - Xu Shen
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, Shanghai 200433, China
| | - Tiantian Mao
- Department of Emergency, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai 200072, China
| | - Xijun Liang
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, Shanghai 200433, China
| | - Tengjiao Wang
- Bioinformatics Analysis Laboratory, Center for Translational Medicine, Naval Medical University, Shanghai 200433, China
| | - Weifeng Shen
- The Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai 200433, China
| | - Yugang Zhuang
- Department of Emergency, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai 200072, China
| | - Jin Ding
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, Shanghai 200433, China
| |
Collapse
|
7
|
Mittra I. Exploiting the damaging effects of ROS for therapeutic use by deactivating cell-free chromatin: the alchemy of resveratrol and copper. Front Pharmacol 2024; 15:1345786. [PMID: 38455966 PMCID: PMC10917901 DOI: 10.3389/fphar.2024.1345786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/07/2024] [Indexed: 03/09/2024] Open
Abstract
Cell-free chromatin particles (cfChPs) that circulate in blood, or those that are released locally from dying cells, have myriad pathological effects. They can horizontally transfer themselves into healthy cells to induce DNA damage and activate inflammatory and apoptotic pathways. It has been proposed that repeated and lifelong assault on healthy cells by cfChPs may be the underlying cause of ageing and multiple age related disorders including cancer. The damaging effects of cfChPs can be minimized by deactivating them via the medium of ROS generated by admixing the nutraceuticals resveratrol (R) and copper (Cu). The antioxidant R acts as a pro-oxidant in the presence of Cu by its ability to catalyse the reduction of Cu(II) to Cu(I) with the generation of ROS via a Fenton-like reaction which can deactivate extra-cellular cfChPs. This perspective article explores the possibility of using the damaging potential of ROS for therapeutic purposes. It discusses the ability of ROS generating nutraceuticals R-Cu to deactivate the extracellular cfChPs without damaging effects on the genomic DNA. As cfChPs play a key role in activation of various disease associated pathways, R-Cu mediated deactivation of these pathways may open up multiple novel avenues for therapy. These findings have considerable translational implications which deserve further investigation by the way of well-designed randomised clinical trials.
Collapse
Affiliation(s)
- Indraneel Mittra
- Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
- Homi Bhabha National Institute, Navi Mumbai, India
| |
Collapse
|
8
|
Shabrish S, Pal K, Khare NK, Satsangi D, Pilankar A, Jadhav V, Shinde S, Raphael N, Sriram G, Lopes R, Raghuram GV, Tandel H, Mittra I. Cell-free chromatin particles released from dying cancer cells activate immune checkpoints in human lymphocytes: implications for cancer therapy. Front Immunol 2024; 14:1331491. [PMID: 38274821 PMCID: PMC10808321 DOI: 10.3389/fimmu.2023.1331491] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Immune checkpoint blockade is the exciting breakthrough in cancer, but how immune checkpoints are activated is unknown. We have earlier reported that cell-free chromatin particles (cfChPs) that circulate in blood of cancer patients, or those that are released locally from dying cancer cells, are readily internalized by healthy cells with biological consequences. Here we report that treatment of human lymphocytes with cfChPs isolated from sera of cancer patients led to marked activation of the immune checkpoints PD-1, CTLA-4, LAG-3, NKG2A, and TIM-3. This finding was corroborated in vivo in splenocytes of mice when cfChPs were injected intravenously. Significant upregulation of immune checkpoint was also observed when isolated lymphocytes were exposed to conditioned medium containing cfChPs released from hypoxia-induced dying HeLa cells. Immune checkpoint activation could be down-regulated by pre-treating the conditioned media with three different cfChPs deactivating agents. Down-regulation of immune checkpoints by cfChPs deactivating agents may herald a novel form of immunotherapy of cancer.
Collapse
Affiliation(s)
- Snehal Shabrish
- Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Kavita Pal
- Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Naveen Kumar Khare
- Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Dharana Satsangi
- Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Aishwarya Pilankar
- Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Vishalkumar Jadhav
- Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Sushma Shinde
- Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Nimisha Raphael
- Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Gaurav Sriram
- Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Relestina Lopes
- Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Gorantla V. Raghuram
- Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Harshali Tandel
- Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Indraneel Mittra
- Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
9
|
Vo D, Liu Y, Sood AK, Rezvani K, Jazaeri AA, Liu J. EGFR, HLA-G, CD70, c-MET, and NY-ESO1 as potential biomarkers in high grade epithelial ovarian carcinoma. Cancer Biomark 2024; 39:289-298. [PMID: 38250760 DOI: 10.3233/cbm-230200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
High grade epithelial ovarian carcinoma is an aggressive tumor. Treatment includes platinum therapy, however it recurs in most patients due to therapy resistance. In this project, we study the immunohistochemical (IHC) expression of five potential biomarkers/prognostic markers in high grade epithelial ovarian carcinoma: EGFR, HLA-G, CD70, c-MET, and NY-ESO1. A cohort of 274 patients is used. We compare the IHC expression with age, stage, ascites status, family history of cancer, disease free survival (DFS) and overall survival (OS). EGFR expression is significantly correlated with family history and worse OS. HLA-G is associated with worse OS. To confirm the results of EGFR and HLA-G, a second separated cohort of 248 patients is used. Positive EGFR expression again shows worse OS, while HLA-G expression has worse prognostic trend. CD70 has a worse OS trend. C-MET and NY-ESO1 do not have any clinical correlations. EGFR can potentially serve as target in future clinical immune therapy trials.
Collapse
Affiliation(s)
- Duc Vo
- MD Anderson Cancer Center, Department of Anatomical Pathology, Houston, TX, USA
| | - Yan Liu
- MD Anderson Cancer Center, Department of Anatomical Pathology, Houston, TX, USA
| | - Anil K Sood
- MD Anderson Cancer Center, Department of Gynecologic Oncology & Reproductive Medicine, Houston, TX, USA
| | - Katy Rezvani
- MD Anderson Cancer Center, Department of Stem Cell Transplantation, Houston, TX, USA
| | - Amir A Jazaeri
- MD Anderson Cancer Center, Department of Gynecologic Oncology & Reproductive Medicine, Houston, TX, USA
| | - Jinsong Liu
- MD Anderson Cancer Center, Department of Anatomical Pathology, Houston, TX, USA
| |
Collapse
|
10
|
Kan LLY, Chan BCL, Leung PC, Wong CK. Natural-Product-Derived Adjunctive Treatments to Conventional Therapy and Their Immunoregulatory Activities in Triple-Negative Breast Cancer. Molecules 2023; 28:5804. [PMID: 37570775 PMCID: PMC10421415 DOI: 10.3390/molecules28155804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is an invasive and persistent subtype of breast cancer that is likely to be resistant to conventional treatments. The rise in immunotherapy has created new modalities to treat cancer, but due to high costs and unreliable efficacy, adjunctive and complementary treatments have sparked interest in enhancing the efficacy of currently available treatments. Natural products, which are bioactive compounds derived from natural sources, have historically been used to treat or ameliorate inflammatory diseases and symptoms. As TNBC patients have shown little to no response to immunotherapy, the potential of natural products as candidates for adjuvant immunotherapy is being explored, as well as their immunomodulatory effects on cancer. Due to the complexity of TNBC and the ever-changing tumor microenvironment, there are challenges in determining the feasibility of using natural products to enhance the efficacy or counteract the toxicity of conventional treatments. In view of technological advances in molecular docking, pharmaceutical networking, and new drug delivery systems, natural products show promise as potential candidates in adjunctive therapy. In this article, we summarize the mechanisms of action of selected natural-product-based bioactive compounds and analyze their roles and applications in combination treatments and immune regulation.
Collapse
Affiliation(s)
- Lea Ling-Yu Kan
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China; (L.L.-Y.K.); (B.C.-L.C.); (P.-C.L.)
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
| | - Ben Chung-Lap Chan
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China; (L.L.-Y.K.); (B.C.-L.C.); (P.-C.L.)
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
| | - Ping-Chung Leung
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China; (L.L.-Y.K.); (B.C.-L.C.); (P.-C.L.)
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
| | - Chun-Kwok Wong
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China; (L.L.-Y.K.); (B.C.-L.C.); (P.-C.L.)
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, China
- Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
11
|
Zhang F, Jiang J, Qian H, Yan Y, Xu W. Exosomal circRNA: emerging insights into cancer progression and clinical application potential. J Hematol Oncol 2023; 16:67. [PMID: 37365670 DOI: 10.1186/s13045-023-01452-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/10/2023] [Indexed: 06/28/2023] Open
Abstract
Exosomal circRNA serves a novel genetic information molecule, facilitating communication between tumor cells and microenvironmental cells, such as immune cells, fibroblasts, and other components, thereby regulating critical aspects of cancer progression including immune escape, tumor angiogenesis, metabolism, drug resistance, proliferation and metastasis. Interestingly, microenvironment cells have new findings in influencing tumor progression and immune escape mediated by the release of exosomal circRNA. Given the intrinsic stability, abundance, and broad distribution of exosomal circRNAs, they represent excellent diagnostic and prognostic biomarkers for liquid biopsy. Moreover, artificially synthesized circRNAs may open up new possibilities for cancer therapy, potentially bolstered by nanoparticles or plant exosome delivery strategies. In this review, we summarize the functions and underlying mechanisms of tumor cell and non-tumor cell-derived exosomal circRNAs in cancer progression, with a special focus on their roles in tumor immunity and metabolism. Finally, we examine the potential application of exosomal circRNAs as diagnostic biomarkers and therapeutic targets, highlighting their promise for clinical use.
Collapse
Affiliation(s)
- Fan Zhang
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Zhangjiagang, Suzhou, 215600, Jiangsu, People's Republic of China
- Zhenjiang Key Laboratory of High Technology Research on sEVs Foundation and Transformation Application, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Jiajia Jiang
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Zhangjiagang, Suzhou, 215600, Jiangsu, People's Republic of China
- Zhenjiang Key Laboratory of High Technology Research on sEVs Foundation and Transformation Application, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Hui Qian
- Zhenjiang Key Laboratory of High Technology Research on sEVs Foundation and Transformation Application, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Yongmin Yan
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Zhangjiagang, Suzhou, 215600, Jiangsu, People's Republic of China.
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, No. 2 North Yongning Road, Changzhou, 213017, Jiangsu, People's Republic of China.
| | - Wenrong Xu
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Zhangjiagang, Suzhou, 215600, Jiangsu, People's Republic of China.
- Zhenjiang Key Laboratory of High Technology Research on sEVs Foundation and Transformation Application, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China.
| |
Collapse
|
12
|
Oya K, Nakamura Y, Watanabe R, Tanaka R, Ichimura Y, Kubota N, Matsumura Y, Tahara H, Okiyama N, Fujimoto M, Nomura T, Fujisawa Y. Eribulin mesylate exerts antitumor effects via CD103. Oncoimmunology 2023; 12:2218782. [PMID: 37261089 PMCID: PMC10228394 DOI: 10.1080/2162402x.2023.2218782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 04/30/2023] [Accepted: 05/23/2023] [Indexed: 06/02/2023] Open
Abstract
Eribulin mesylate (ERB) is a synthetic analog of halichondrin B, inhibiting tumor cell growth by disrupting microtubule function. Recently, anticancer drugs have been shown to not only act directly on tumor cells but also to exert antitumor effects by modifying the tumor environment. Although ERB has also been speculated to modify the tumor microenvironment including the immune response to tumors, the precise mechanism remains unclear. In our study, ERB suppressed the tumor growth of MC38 colon cancer in wildtype mice, whereas ERB failed to inhibit the tumor growth in Rag1-deficient mice which lack both B and T cells. Moreover, depletion of either CD4+ or CD8+ T cells abrogated the antitumor effect of ERB, indicating that both CD4+ and CD8+ T cells play an important role in ERB-induced antitumor effects. Furthermore, ERB treatment increased the number of tumor infiltrating lymphocytes (TILs) as well as the expression of activation markers (CD38 and CD69), immune checkpoint molecules (LAG3, TIGIT and Tim3) and cytotoxic molecules (granzyme B and perforin) in TILs. ERB upregulated E-cadherin expression in MC38. CD103 is a ligand of E-cadherin and induces T-cell activation. ERB increased the proportion of CD103+ cells in both CD4+ and CD8+ TILs. The ERB-induced antitumor effect with the increased TIL number and the increased expression of activation markers, inhibitory checkpoint molecules and cytotoxic molecules in TILs was abrogated in CD103-deficient mice. Collectively, these results suggest that ERB exerts antitumor effects by upregulation of E-cadherin expression in tumor cells and subsequent activation of CD103+ TILs.
Collapse
Affiliation(s)
- Kazumasa Oya
- The Department of Dermatology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yoshiyuki Nakamura
- The Department of Dermatology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Rei Watanabe
- The Department of Dermatology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Ryota Tanaka
- The Department of Dermatology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yuki Ichimura
- The Department of Dermatology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Noriko Kubota
- The Department of Dermatology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yutaka Matsumura
- The Department of Dermatology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hideaki Tahara
- Project Division of Cancer Biomolecular Therapy, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Cancer Drug Discovery and Development, Osaka International Cancer Center, Osaka, Japan
| | - Naoko Okiyama
- Department of Dermatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Manabu Fujimoto
- The Department of Dermatology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Toshifumi Nomura
- The Department of Dermatology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yasuhiro Fujisawa
- The Department of Dermatology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
13
|
Boulhen C, AIT SSI S, Benthami H, Razzouki I, Lakhdar A, Karkouri M, Badou A. TMIGD2 as a potential therapeutic target in glioma patients. Front Immunol 2023; 14:1173518. [PMID: 37261362 PMCID: PMC10227580 DOI: 10.3389/fimmu.2023.1173518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/21/2023] [Indexed: 06/02/2023] Open
Abstract
Introduction Among all types of central nervous system cancers, glioma remains the most frequent primary brain tumor in adults. Despite significant advances in immunomodulatory therapies, notably immune checkpoint inhibitors, their effectiveness remains constrained due to glioma resistance. The discovery of TMIGD2 (Transmembrane and Immunoglobulin Domain Containing 2) as an immuno-stimulatory receptor, constitutively expressed on naive T cells and most natural killer (NK) cells, has emerged as an attractive immunotherapy target in a variety of cancers. The expression profile of TMIGD2 and its significance in the overall survival of glioma patients remains unknown. Methods In the present study, we first assessed TMIGD2 mRNA expression using the Cancer Genome Atlas (TCGA) glioma transcriptome dataset (667 patients), followed by validation with the Chinese Glioma Genome Atlas (CGGA) cohort (693 patients). Secondly, we examined TMIGD2 protein staining in a series of 25 paraffin-embedded blocks from Moroccan glioma patients. The statistical analysis was performed using GraphPad Prism 8 software. Results TMIGD2 expression was found to be significantly higher in astrocytoma, IDH-1 mutations, low-grade, and young glioma patients. TMIGD2 was expressed on immune cells and, surprisingly, on tumor cells of glioma patients. Interestingly, our study demonstrated that TMIGD2 expression was negatively correlated with angiogenesis, hypoxia, G2/M checkpoint, and epithelial to mesenchymal transition signaling pathways. We also demonstrated that dendritic cells, monocytes, NK cells, gd T cells, and naive CD8 T cell infiltration correlates positively with TMIGD2 expression. On the other hand, Mantel-Cox analysis demonstrated that increased expression of TMIGD2 in human gliomas is associated with good overall survival. Cox multivariable analysis revealed that TMIGD2 is an independent predictor of a good prognosis in glioma patients. Discussion Taken together, our results highlight the tight implication of TMIGD2 in glioma progression and show its promising therapeutic potential as a stimulatory target for immunotherapy.
Collapse
Affiliation(s)
- Chaimae Boulhen
- Immuno-Genetics and Human Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Saadia AIT SSI
- Immuno-Genetics and Human Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Hamza Benthami
- Immuno-Genetics and Human Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Ibtissam Razzouki
- Laboratory of Pathological Anatomy, University Hospital Center (CHU) Ibn Rochd, Hassan II University, Casablanca, Morocco
| | - Abdelhakim Lakhdar
- Department of Neurosurgery, Faculty of Medicine and Pharmacy, University of Hassan II, Casablanca, Morocco
| | - Mehdi Karkouri
- Laboratory of Pathological Anatomy, University Hospital Center (CHU) Ibn Rochd, Hassan II University, Casablanca, Morocco
| | - Abdallah Badou
- Immuno-Genetics and Human Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
- Mohammed VI Center for Research and Innovation, Rabat, Morocco and Mohammed VI University of Sciences and Health, Casablanca, Morocco
| |
Collapse
|
14
|
Hu M, Li X, Jiang Z, Xia Q, Hu Y, Guo J, Fu L. Exosomes and circular RNAs: promising partners in hepatocellular carcinoma from bench to bedside. Discov Oncol 2023; 14:60. [PMID: 37154831 PMCID: PMC10167081 DOI: 10.1007/s12672-023-00672-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/26/2023] [Indexed: 05/10/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is characterized by high morbidity and mortality, and a low 5-year survival rate. Exploring the potential molecular mechanisms, finding diagnostic biomarkers with high sensitivity and specificity, and determining new therapeutic targets for HCC are urgently needed. Circular RNAs (circRNAs) have been found to play a key role in the occurrence and development of HCC, while exosomes play an important role in intercellular communication; thus, the combination of circRNAs and exosomes may have inestimable potential in early diagnosis and curative therapy. Previous studies have shown that exosomes can transfer circRNAs from normal or abnormal cells to surrounding or distant cells; thereafter, circRNAs influence target cells. This review summarizes the recent progress regarding the roles of exosomal circRNAs in the diagnosis, prognosis, occurrence and development and immune checkpoint inhibitor and tyrosine kinase inhibitor resistance of HCC to provide inspiration for further research.
Collapse
Affiliation(s)
- Mengyuan Hu
- School of Medicine, Ningbo University, Ningbo, 315211, China
- Department of Infection and Hepatology, Ningbo No. 2 Hospital, Ningbo, 315010, China
| | - Xue Li
- Wenzhou Medical University, Wenzhou, 325035, China
| | - Zhenluo Jiang
- Department of Emergency, Ningbo No. 2 Hospital, Ningbo, 315010, China
| | - Qing Xia
- Department of Hepatopancreatobiliary Surgery, Ningbo No. 2 Hospital, Ningbo, 315010, China
| | - Yaoren Hu
- School of Medicine, Ningbo University, Ningbo, 315211, China
- Department of Infection and Hepatology, Ningbo No. 2 Hospital, Ningbo, 315010, China
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, 315010, China
| | - Junming Guo
- School of Medicine, Ningbo University, Ningbo, 315211, China
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, 315211, China
| | - Liyun Fu
- School of Medicine, Ningbo University, Ningbo, 315211, China.
- Department of Infection and Hepatology, Ningbo No. 2 Hospital, Ningbo, 315010, China.
- Wenzhou Medical University, Wenzhou, 325035, China.
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, 315010, China.
- Ningbo Clinical Research Center for Digestive System Tumors, Ningbo, 315010, China.
| |
Collapse
|
15
|
Ma GL, Lin WF. Immune checkpoint inhibition mediated with liposomal nanomedicine for cancer therapy. Mil Med Res 2023; 10:20. [PMID: 37106400 PMCID: PMC10142459 DOI: 10.1186/s40779-023-00455-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
Immune checkpoint blockade (ICB) therapy for cancer has achieved great success both in clinical results and on the market. At the same time, success drives more attention from scientists to improve it. However, only a small portion of patients are responsive to this therapy, and it comes with a unique spectrum of side effects termed immune-related adverse events (irAEs). The use of nanotechnology could improve ICBs' delivery to the tumor, assist them in penetrating deeper into tumor tissues and alleviate their irAEs. Liposomal nanomedicine has been investigated and used for decades, and is well-recognized as the most successful nano-drug delivery system. The successful combination of ICB with liposomal nanomedicine could help improve the efficacy of ICB therapy. In this review, we highlighted recent studies using liposomal nanomedicine (including new emerging exosomes and their inspired nano-vesicles) in associating ICB therapy.
Collapse
Affiliation(s)
- Guang-Long Ma
- Faculty of Medicine, Centre for Cancer Immunology, University of Southampton, Southampton, SO16 6YD UK
| | - Wei-Feng Lin
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, 76100 Rehovot, Israel
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191 China
| |
Collapse
|
16
|
Harnessing the Potential of Plant Expression System towards the Production of Vaccines for the Prevention of Human Papillomavirus and Cervical Cancer. Vaccines (Basel) 2022; 10:vaccines10122064. [PMID: 36560473 PMCID: PMC9782824 DOI: 10.3390/vaccines10122064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Cervical cancer is the most common gynecological malignant tumor worldwide, and it remains a major health problem among women, especially in developing countries. Despite the significant research efforts employed for tumor prevention, cervical cancer ranks as the leading cause of cancer death. Human papillomavirus (HPV) is the most important risk factor for cervical cancer. Cervical cancer is a preventable disease, for which early detection could increase survival rates. Immunotherapies represent a promising approach in the treatment of cancer, and several potential candidates are in clinical trials, while some are available in the market. However, equal access to available HPV vaccines is limited due to their high cost, which remains a global challenge for cervical cancer prevention. The implementation of screening programs, disease control systems, and medical advancement in developed countries reduce the serious complications associated with the disease somewhat; however, the incidence and prevalence of cervical cancer in low-income and middle-income countries continues to gradually increase, making it the leading cause of mortality, largely due to the unaffordable and inaccessible anti-cancer therapeutic options. In recent years, plants have been considered as a cost-effective production system for the development of vaccines, therapeutics, and other biopharmaceuticals. Several proof-of-concept studies showed the possibility of producing recombinant biopharmaceuticals for cancer immunotherapy in a plant platform. This review summarizes the current knowledge and therapeutic options for the prevention of cervical cancer and discusses the potential of the plant expression platform to produce affordable HPV vaccines.
Collapse
|
17
|
Anderson TS, Wooster AL, Piersall SL, Okpalanwaka IF, Lowe DB. Disrupting cancer angiogenesis and immune checkpoint networks for improved tumor immunity. Semin Cancer Biol 2022; 86:981-996. [PMID: 35149179 PMCID: PMC9357867 DOI: 10.1016/j.semcancer.2022.02.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/11/2022] [Accepted: 02/05/2022] [Indexed: 01/27/2023]
Abstract
Immune checkpoint inhibitors (ICIs) have advanced the field of cancer immunotherapy in patients by sustaining effector immune cell activity within the tumor microenvironment. However, the approach in general is still faced with issues related to ICI response duration/resistance, treatment eligibility, and safety, which indicates a need for further refinements. As immune checkpoint upregulation is inextricably linked to cancer-induced angiogenesis, newer clinical efforts have demonstrated the feasibility of disrupting both tumor-promoting networks to mediate enhanced immune-driven protection. This review focuses on such key evidence stipulating the necessity of co-applying ICI and anti-angiogenic strategies in cancer patients, with particular interest in highlighting newer engineered antibody approaches that may provide theoretically superior multi-pronged and safe therapeutic combinations.
Collapse
Affiliation(s)
- Trevor S Anderson
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, 79601, United States
| | - Amanda L Wooster
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, 79601, United States
| | - Savanna L Piersall
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, 79601, United States
| | - Izuchukwu F Okpalanwaka
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, 79601, United States
| | - Devin B Lowe
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, 79601, United States.
| |
Collapse
|
18
|
Wurster S, Watowich SS, Kontoyiannis DP. Checkpoint inhibitors as immunotherapy for fungal infections: Promises, challenges, and unanswered questions. Front Immunol 2022; 13:1018202. [PMID: 36389687 PMCID: PMC9640966 DOI: 10.3389/fimmu.2022.1018202] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/11/2022] [Indexed: 09/22/2023] Open
Abstract
Opportunistic fungal infections have high mortality in patients with severe immune dysfunction. Growing evidence suggests that the immune environment of invasive fungal infections and cancers share common features of immune cell exhaustion through activation of immune checkpoint pathways. This observation gave rise to several preclinical studies and clinical case reports describing blockade of the Programmed Cell Death Protein 1 and Cytotoxic T-Lymphocyte Antigen 4 immune checkpoint pathways as an adjunct immune enhancement strategy to treat opportunistic fungal infections. The first part of this review summarizes the emerging evidence for contributions of checkpoint pathways to the immunopathology of fungal sepsis, opportunistic mold infections, and dimorphic fungal infections. We then review the potential merits of immune checkpoint inhibitors (ICIs) as an antifungal immunotherapy, including the incomplete knowledge of the mechanisms involved in both immuno-protective effects and toxicities. In the second part of this review, we discuss the limitations of the current evidence and the many unknowns about ICIs as an antifungal immune enhancement strategy. Based on these gaps of knowledge and lessons learned from cancer immunology studies, we outline a research agenda to determine a "sweet spot" for ICIs in medical mycology. We specifically discuss the importance of more nuanced animal models, the need to study ICI-based combination therapy, potential ICI resistance, the role of the immune microenvironment, and the impact of ICIs given as part of oncological therapies on the natural immunity to various pathogenic fungi.
Collapse
Affiliation(s)
- Sebastian Wurster
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Stephanie S. Watowich
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Dimitrios P. Kontoyiannis
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
19
|
Tuo B, Chen Z, Dang Q, Chen C, Zhang H, Hu S, Sun Z. Roles of exosomal circRNAs in tumour immunity and cancer progression. Cell Death Dis 2022; 13:539. [PMID: 35676257 PMCID: PMC9177590 DOI: 10.1038/s41419-022-04949-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/06/2022] [Accepted: 05/12/2022] [Indexed: 02/07/2023]
Abstract
Tumour immunity plays an important role in the development of cancer. Tumour immunotherapy is an important component of antitumour therapy. Exosomes, a type of extracellular vesicle, act as mediators of intercellular communication and molecular transfer and play an essential role in tumour immunity. Circular RNAs (circRNAs) are a new type of noncoding RNA that are enriched within exosomes. In this review, we describe the effects of exosomal circRNAs on various immune cells and the mechanisms of these effects, including macrophages, neutrophils, T cells, and Natural killer (NK) cells. Next, we elaborate on the latest progress of exosome extraction. In addition, the function of exosomal circRNAs as a potential prognostic and drug sensitivity marker is described. We present the great promise of exosomal circRNAs in regulating tumour immunity, predicting patient outcomes, and evaluating drug efficacy.
Collapse
Affiliation(s)
- Baojing Tuo
- grid.412633.10000 0004 1799 0733Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China ,grid.207374.50000 0001 2189 3846Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Zhuang Chen
- grid.412633.10000 0004 1799 0733Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Qin Dang
- grid.412633.10000 0004 1799 0733Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Chen Chen
- grid.207374.50000 0001 2189 3846School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan China
| | - Hao Zhang
- grid.412633.10000 0004 1799 0733Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Shengyun Hu
- grid.412633.10000 0004 1799 0733Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Zhenqiang Sun
- grid.412633.10000 0004 1799 0733Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| |
Collapse
|
20
|
Gao G, Wang L, Li C. Circ_0006790 carried by bone marrow mesenchymal stem cell-derived exosomes regulates S100A11 DNA methylation through binding to CBX7 in pancreatic ductal adenocarcinoma. Am J Cancer Res 2022; 12:1934-1959. [PMID: 35693076 PMCID: PMC9185628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/28/2022] [Indexed: 06/15/2023] Open
Abstract
Extracellular vesicles, particularly exosomes, play a vital role via their cargoes. Their potential in pancreatic ductal adenocarcinoma (PDAC), one of the leading causes of cancer-related mortality worldwide is attracting interests. However, the roles and underlying mechanisms of exosomal circular RNAs (circRNAs) in the development of PDAC remain unclear yet. We aimed to illuminate the mechanisms of exosomal hsa_circ_0006790 (thereafter termed circ_6790) released by exosomes (Exo) derived from bone marrow mesenchymal stem cell (BM-MSC) during immune escape in PDAC in this study. BM-MSC-derived Exo inhibited growth, metastasis, and immune escape in PDAC. Exo enhanced circ_6790 expression in PDAC cells. Knockdown of circ_6790 in Exo significantly attenuated the anti-tumor effect of Exo. Circ_6790 facilitated the nuclear translocation of chromobox 7 (CBX7). CBX7 increased the DNA methylation of S100A11 by recruiting DNA methyltransferases to its promoter region, thereby inhibiting the transcription of S100A11. Inhibition of CBX7 or overexpression of S100A11 annulled the inhibitory effects of Exo on PDAC growth, metastasis, and immune escape. In conclusion, our results suggest that MSC-derived exosomal circ_6790 could downregulate S100A11 in PDAC cells and hamper immune escape via CBX7-catalyzed DNA hypermethylation.
Collapse
Affiliation(s)
- Ge Gao
- Department of Pathology, The China-Japan Union Hospital of Jilin University, Jilin UniversityChangchun 130022, Jilin, P. R. China
| | - Liqiang Wang
- Department of Endoscopy Center, The China-Japan Union Hospital of Jilin University, Jilin UniversityChangchun 130022, Jilin, P. R. China
| | - Changfeng Li
- Department of Endoscopy Center, The China-Japan Union Hospital of Jilin University, Jilin UniversityChangchun 130022, Jilin, P. R. China
| |
Collapse
|
21
|
Human endogenous retrovirus-H long terminal repeat-associating 2: The next immune checkpoint for antitumour therapy. EBioMedicine 2022; 79:103987. [PMID: 35439678 PMCID: PMC9035628 DOI: 10.1016/j.ebiom.2022.103987] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 12/11/2022] Open
Abstract
Human endogenous retrovirus-H long terminal repeat-associating 2 (HHLA2) is a newly emerging immune checkpoint that belongs to B7 family. HHLA2 has a co-stimulatory receptor transmembrane and immunoglobulin domain containing 2 (TMIGD2) and a newly discovered co-inhibitory receptor killer cell Ig-like receptor, three Ig domains, and long cytoplasmic tail (KIR3DL3), which endows it with both immunostimulant and immunosuppression functions in cancer development. In this review, we summarize the HHLA2 expression profile in human cancers, its association with cancer prognosis and clinical features, and its dual roles in regulating cancer immune response through up-to-date literatures. Furthermore, we highlight that precision cancer immunotherapy through manipulating HHLA2-KIR3DL3/TMIGD2 interaction is a promising antitumour strategy.
Collapse
|
22
|
Bączkowska M, Dutsch-Wicherek MM, Przytuła E, Faryna J, Wojtyła C, Ali M, Knafel A, Ciebiera M. Expression of the Costimulatory Molecule B7-H4 in the Decidua and Placental Tissues in Patients with Placental Abruption. Biomedicines 2022; 10:biomedicines10040918. [PMID: 35453668 PMCID: PMC9033103 DOI: 10.3390/biomedicines10040918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 12/10/2022] Open
Abstract
B7 homolog 4 protein (B7-H4), a member of the B7 family, is a immunomodulatory membrane protein. The aim of the study was to evaluate the expression of this protein in the decidua and placental tissues in case of placental abruption (PA) compared to cases of retained placental tissue (RPT) and controls. Tissue samples were obtained from 47 patients with PA, 60 patients with RPT, and 41 healthy controls. The samples were stained for B7-H4 expression, analyzed by an expert pathologist, and a semi-quantitative scale was applied. A statistical analysis revealed that the expression of B7-H4 was significantly higher in the decidua in PA samples compared to samples from patients with RPT (p-value < 0.001) and healthy controls (p-value < 0.001). The expression of B7-H4 in the placental chorionic villus was significantly higher in PA samples in relation to samples from healthy controls (p-value < 0.001) but not in relation to RPT samples (p-value = 0.0853). This finding suggests that B7-H4 might play an important role in mechanisms restoring reproductive tract homeostasis. Further research is necessary in regard to the role of B7-H4 in PA.
Collapse
Affiliation(s)
- Monika Bączkowska
- Centre of Postgraduate Medical Education, Second Department of Obstetrics and Gynecology, 01-809 Warsaw, Poland; (M.B.); (A.K.)
| | | | - Ewa Przytuła
- Department of Pathology, Bielański Hospital, 01-809 Warsaw, Poland; (E.P.); (J.F.)
| | - Jan Faryna
- Department of Pathology, Bielański Hospital, 01-809 Warsaw, Poland; (E.P.); (J.F.)
| | - Cezary Wojtyła
- International Prevention Research Institute-Collaborating Centre, Calisia University, 62-800 Kalisz, Poland;
| | - Mohamed Ali
- Clinical Pharmacy Department, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt;
| | - Anna Knafel
- Centre of Postgraduate Medical Education, Second Department of Obstetrics and Gynecology, 01-809 Warsaw, Poland; (M.B.); (A.K.)
| | - Michał Ciebiera
- Centre of Postgraduate Medical Education, Second Department of Obstetrics and Gynecology, 01-809 Warsaw, Poland; (M.B.); (A.K.)
- Correspondence: ; Tel.: +48-607-155-177
| |
Collapse
|
23
|
The biogenesis and secretion of exosomes and multivesicular bodies (MVBs): Intercellular shuttles and implications in human diseases. Genes Dis 2022. [PMID: 37492712 PMCID: PMC10363595 DOI: 10.1016/j.gendis.2022.03.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Exosomes carry and transmit signaling molecules used for intercellular communication. The generation and secretion of exosomes is a multistep interlocking process that allows simultaneous control of multiple regulatory sites. Protein molecules, mainly RAB GTPases, cytoskeletal proteins and soluble N-ethylmaleimide-sensitive fusion attachment protein receptor (SNARE), are specifically regulated in response to pathological conditions such as altered cellular microenvironment, stimulation by pathogenic factors, or gene mutation. This interferes with the smooth functioning of endocytosis, translocation, degradation, docking and fusion processes, leading to changes in the secretion of exosomes. Large numbers of secreted exosomes are disseminated by the flow of body fluids and absorbed by the recipient cells. By transmitting characteristic functional proteins and genetic information produced under disease conditions, exosomes can change the physiological state of the recipient cells and their microenvironment. The microenvironment, in turn, affects the occurrence and development of disease. Therefore, this review will discuss the mechanism by which exosome secretion is regulated in cells following the formation of mature secretory multivesicular bodies (MVBs). The overall aim is to find ways to eliminate disease-derived exosomes at their source, thereby providing an important new basis for the clinical treatment of disease.
Collapse
|
24
|
Yadav D, Kwak M, Chauhan PS, Puranik N, Lee PCW, Jin JO. Cancer immunotherapy by immune checkpoint blockade and its advanced application using bio-nanomaterials. Semin Cancer Biol 2022; 86:909-922. [PMID: 35181474 DOI: 10.1016/j.semcancer.2022.02.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/09/2022] [Accepted: 02/13/2022] [Indexed: 02/07/2023]
Abstract
Cancer is the second leading cause of death worldwide. Traditional approaches, such as surgery, chemotherapy, and radiotherapy have been the main cancer therapeutic modalities in recent years. Cancer immunotherapy is a novel therapeutic modality that potentiates the immune responses of patients against malignancy. Immune checkpoint proteins expressed on T cells or tumor cells serve as a target for inhibiting T cell overactivation, maintaining the balance between self-reactivity and autoimmunity. Tumors essentially hijack the immune checkpoint pathway in order to survive and spread. Immune checkpoint inhibitors (ICIs) are being developed as a result to reactivate the anti-tumor immune response. Recent advances in nanotechnology have contributed to the development of successful, safe, and efficient anticancer drug systems based on nanoparticles. Nanoparticle-based cancer immunotherapy overcomes numerous challenges and offers novel strategies for improving conventional immunotherapies. The fundamental and physiochemical properties of nanoparticles depend on various cancer therapeutic strategies, such as chemotherapeutics, nucleic acid-based treatments, photothermal therapy, and photodynamic agents. The review discusses the use of nanoparticles as carriers for delivering immune checkpoint inhibitors and their efficacy in cancer combination therapy.
Collapse
Affiliation(s)
- Dhananjay Yadav
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Minseok Kwak
- Department of Chemistry and Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, South Korea
| | | | - Nidhi Puranik
- Biological Sciences Department, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Peter C W Lee
- Department of Biomedical Sciences, University of Ulsan College of Medicine, ASAN Medical Center, Seoul, South Korea.
| | - Jun-O Jin
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea.
| |
Collapse
|
25
|
Zhao Y, Liu X, Liu X, Yu J, Bai X, Wu X, Guo X, Liu Z, Liu X. Combination of phototherapy with immune checkpoint blockade: Theory and practice in cancer. Front Immunol 2022; 13:955920. [PMID: 36119019 PMCID: PMC9478587 DOI: 10.3389/fimmu.2022.955920] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 08/19/2022] [Indexed: 12/21/2022] Open
Abstract
Immune checkpoint blockade (ICB) therapy has evolved as a revolutionized therapeutic modality to eradicate tumor cells by releasing the brake of the antitumor immune response. However, only a subset of patients could benefit from ICB treatment currently. Phototherapy usually includes photothermal therapy (PTT) and photodynamic therapy (PDT). PTT exerts a local therapeutic effect by using photothermal agents to generate heat upon laser irradiation. PDT utilizes irradiated photosensitizers with a laser to produce reactive oxygen species to kill the target cells. Both PTT and PDT can induce immunogenic cell death in tumors to activate antigen-presenting cells and promote T cell infiltration. Therefore, combining ICB treatment with PTT/PDT can enhance the antitumor immune response and prevent tumor metastases and recurrence. In this review, we summarized the mechanism of phototherapy in cancer immunotherapy and discussed the recent advances in the development of phototherapy combined with ICB therapy to treat malignant tumors. Moreover, we also outlined the significant progress of phototherapy combined with targeted therapy or chemotherapy to improve ICB in preclinical and clinical studies. Finally, we analyzed the current challenges of this novel combination treatment regimen. We believe that the next-generation technology breakthrough in cancer treatment may come from this combinational win-win strategy of photoimmunotherapy.
Collapse
Affiliation(s)
- Yujie Zhao
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xu Liu
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Head, Neck and Mammary Gland Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xinyu Liu
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Yu
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Bai
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xi Wu
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xinyu Guo
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Zhihui Liu
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaowei Liu
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
26
|
Huang X, Zhang W, Pu F, Zhang Z. LncRNA MEG3 promotes chemosensitivity of osteosarcoma by regulating antitumor immunity via miR-21-5p/p53 pathway and autophagy. Genes Dis 2021; 10:531-541. [DOI: 10.1016/j.gendis.2021.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 10/12/2021] [Accepted: 11/07/2021] [Indexed: 12/01/2022] Open
|
27
|
Cunha Pereira T, Rodrigues-Santos P, Almeida JS, Rêgo Salgueiro F, Monteiro AR, Macedo F, Soares RF, Domingues I, Jacinto P, Sousa G. Immunotherapy and predictive immunologic profile: the tip of the iceberg. Med Oncol 2021; 38:51. [PMID: 33788049 DOI: 10.1007/s12032-021-01497-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/14/2021] [Indexed: 12/14/2022]
Abstract
The interplay between cancer and the immune system has been under investigation for more than a century. Immune checkpoint inhibitors have changed the outcome of several tumors; however, there is a significant percentage of patients presenting resistance to immunotherapy. Besides the action mechanism, it is essential to unravel this complex interplay between host immune system and tumorigenesis to determine an immune profile as a predictive factor to immune checkpoint blockade agents. Tumor expression of programmed death-ligand 1 (PD-L1), tumor mutational burden, or mismatch repair deficiency are recognized predictive biomarkers to immunotherapy but are insufficient to explain the response rates and heterogeneity across tumor sites. Therefore, it is crucial to explore the role of the tumor microenvironment in the diversity and clonality of tumor-infiltrating immune cells since different checkpoint molecules play an influential role in cytotoxic T cell activation. Moreover, cytokines, chemokines, and growth factors regulated by epigenetic factors play a complex part. Peripheral immune cells expressing PD-1/PD-L1 and the biologic roles of soluble immune checkpoint molecules are the subject of new lines of investigation. This article addresses some of the new molecules and mechanisms studied as possible predictive biomarkers to immunotherapy, linked with the concept of immune dynamics monitoring.
Collapse
Affiliation(s)
- Tatiana Cunha Pereira
- Medical Oncology Department, Portuguese Oncolology Institute of Coimbra Francisco Gentil, Avenida Bissaya Barreto, 98, 3000-075, Coimbra, Portugal.
| | - Paulo Rodrigues-Santos
- Immunology Institute, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Laboratory of Immunology and Oncology, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - Jani Sofia Almeida
- Immunology Institute, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Laboratory of Immunology and Oncology, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - Fábio Rêgo Salgueiro
- Medical Oncology Department, Portuguese Oncolology Institute of Coimbra Francisco Gentil, Avenida Bissaya Barreto, 98, 3000-075, Coimbra, Portugal
| | - Ana Raquel Monteiro
- Medical Oncology Department, Portuguese Oncolology Institute of Coimbra Francisco Gentil, Avenida Bissaya Barreto, 98, 3000-075, Coimbra, Portugal
| | - Filipa Macedo
- Medical Oncology Department, Portuguese Oncolology Institute of Coimbra Francisco Gentil, Avenida Bissaya Barreto, 98, 3000-075, Coimbra, Portugal
| | - Rita Félix Soares
- Medical Oncology Department, Portuguese Oncolology Institute of Coimbra Francisco Gentil, Avenida Bissaya Barreto, 98, 3000-075, Coimbra, Portugal
| | - Isabel Domingues
- Medical Oncology Department, Portuguese Oncolology Institute of Coimbra Francisco Gentil, Avenida Bissaya Barreto, 98, 3000-075, Coimbra, Portugal
| | - Paula Jacinto
- Medical Oncology Department, Portuguese Oncolology Institute of Coimbra Francisco Gentil, Avenida Bissaya Barreto, 98, 3000-075, Coimbra, Portugal
| | - Gabriela Sousa
- Medical Oncology Department, Portuguese Oncolology Institute of Coimbra Francisco Gentil, Avenida Bissaya Barreto, 98, 3000-075, Coimbra, Portugal
| |
Collapse
|