1
|
Li Y, Luo M, Chang Q, Cao S, Wang Y, Chen Z, Yang J, Liu G. High-intensity interval training and moderate-intensity continuous training alleviate vascular dysfunction in spontaneously hypertensive rats through the inhibition of pyroptosis. Heliyon 2024; 10:e39505. [PMID: 39559220 PMCID: PMC11570304 DOI: 10.1016/j.heliyon.2024.e39505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 09/16/2024] [Accepted: 10/16/2024] [Indexed: 11/20/2024] Open
Abstract
Evidence-based guidelines suggest that High-Intensity Interval Training (HIIT) is more beneficial than aerobic exercise for patients with cardiovascular disease, but the differences in underlying pathophysiological mechanisms require further confirmation. The comparison between HIIT and Moderate-Intensity Continuous Training (MICT) in regulating vascular dysfunction in spontaneously hypertensive rats (SHR), along with their underlying mechanisms, has not been previously reported. The purpose of this study is to provide an experimental basis for exercise prescription therapy in hypertensive patients. In this study, six-week-old male SHR were randomly assigned to a HIIT group, MICT group, or sedentary group. Wistar Kyoto rats (WKY) of the same age were used as the control group. The weight, heart rate, and blood pressure of the rats were monitored weekly throughout twelve weeks of treadmill training. At the end of the protocol, serum and aortic vascular tissues were collected for further vascular function tests and molecular and biochemical analyses. The results show that MICT is more favorable for weight control than HIIT, while both forms of exercise offer equal protection against hypertension. However, MICT demonstrates a greater benefit in preserving vascular morphology, whereas HIIT is more effective in reducing oxidative stress. Both HIIT and MICT ameliorate vascular dysfunction in SHR by suppressing nucleotide-binding domain and leucine-rich repeat pyrin-domain containing protein 3 (NLRP3)-induced pyroptosis. The superior effect of HIIT on vascular dysfunction may be related to the inhibition of oxidative stress injury through AMPKα-SIRT1 activation. This study provides insight into the dose-effect relationship of exercise for cardiovascular health and offers foundational evidence for the development of exercise prescription therapies.
Collapse
Affiliation(s)
- Yongjian Li
- The Affiliated Rehabilitation Hospital of Chongqing Medical University, Chongqing, China
| | - Minghao Luo
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qing Chang
- The College of Exercise Medicine, Chongqing Medical University, Chongqing, China
- The Affiliated Rehabilitation Hospital of Chongqing Medical University, Chongqing, China
| | - Shuyuan Cao
- The College of Basic Medicine,Chongqing Medical University, Chongqing, China
| | - Yang Wang
- The Second Clinical College, Chongqing Medical University, Chongqing, China
| | - Zhi Chen
- The Second Clinical College, Chongqing Medical University, Chongqing, China
| | - Jitang Yang
- College of Foreign Languages, Chongqing Medical University, Chongqing China
| | - Guochun Liu
- The College of Exercise Medicine, Chongqing Medical University, Chongqing, China
- Division of Sports Science and Physical Education, Tsinghua University, Beijing, China
| |
Collapse
|
2
|
Efentakis P, Symeonidi L, Gianniou DD, Mikropoulou EV, Giardoglou P, Valakos D, Vatsellas G, Tsota M, Kostomitsopoulos N, Smyrnioudis I, Trougakos IP, Halabalaki M, Dedoussis GV, Andreadou I. Antihypertensive Potential of Pistacia lentiscus var. Chia: Molecular Insights and Therapeutic Implications. Nutrients 2024; 16:2152. [PMID: 38999899 PMCID: PMC11243328 DOI: 10.3390/nu16132152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024] Open
Abstract
Background: Hypertension poses a significant global health burden and is associated with cardiovascular morbidity. Chios mastic gum (CMG), derived from Pistacia lentiscus var. Chia, shows potential as a phytotherapeutic agent, due to its multifaceted beneficial effects. However, its anti-hypertensive effects and vascular, circulatory, and renal-related dysfunction, have not been thoroughly investigated. Herein, we aimed to explore the antihypertensive potential of CMG, focusing on vascular and renal endothelium, in vivo. Methods: Two models of hypertension in male rats, induced by Angiotensin II and Deoxycorticosterone acetate (DOCA)-high-salt administration, were utilized. CMG was administered at 220 mg/kg daily for four weeks after hypertension onset and blood pressure was measured non-invasively. Whole blood RNA sequencing, metabolomics, real-time PCR, and Western blot analyses of kidney and aorta tissues were additionally performed. Results: CMG significantly lowered systolic, diastolic, and mean blood pressure in both models. RNA sequencing revealed that CMG modulated immunity in the Angiotensin II model and metabolism in the DOCA-HS model. CMG downregulated genes related to oxidative stress and endothelial dysfunction and upregulated endothelial markers such as Vegfa. Metabolomic analysis indicated improved endothelial homeostasis via lysophosphatidylinositol upregulation. Conclusions: CMG emerges as a potent natural antihypertensive therapy, demonstrating beneficial effects on blood pressure and renal endothelial function.
Collapse
Affiliation(s)
- Panagiotis Efentakis
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, 15771 Zografou, Greece; (P.E.); (L.S.)
| | - Lydia Symeonidi
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, 15771 Zografou, Greece; (P.E.); (L.S.)
| | - Despoina D. Gianniou
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece; (D.D.G.); (I.P.T.)
| | - Eleni V. Mikropoulou
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece; (E.V.M.); (M.H.)
| | - Panagiota Giardoglou
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University of Athens, 17671 Athens, Greece; (P.G.); (M.T.); (G.V.D.)
| | - Dimitrios Valakos
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece; (D.V.); (N.K.)
| | - Giannis Vatsellas
- Greek Genome Centre, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece;
| | - Maria Tsota
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University of Athens, 17671 Athens, Greece; (P.G.); (M.T.); (G.V.D.)
| | - Nikolaos Kostomitsopoulos
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece; (D.V.); (N.K.)
| | | | - Ioannis P. Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece; (D.D.G.); (I.P.T.)
| | - Maria Halabalaki
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece; (E.V.M.); (M.H.)
| | - Georgios V. Dedoussis
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University of Athens, 17671 Athens, Greece; (P.G.); (M.T.); (G.V.D.)
| | - Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, 15771 Zografou, Greece; (P.E.); (L.S.)
| |
Collapse
|
3
|
Fedele G, Castiglioni S, Trapani V, Zafferri I, Bartolini M, Casati SM, Ciuffreda P, Wolf FI, Maier JA. Impact of Inducible Nitric Oxide Synthase Activation on Endothelial Behavior under Magnesium Deficiency. Nutrients 2024; 16:1406. [PMID: 38794644 PMCID: PMC11124182 DOI: 10.3390/nu16101406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/26/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Endothelial dysfunction is a crucial event in the early pathogenesis of cardiovascular diseases and is linked to magnesium (Mg) deficiency. Indeed, in endothelial cells, low Mg levels promote the acquisition of a pro-inflammatory and pro-atherogenic phenotype. This paper investigates the mechanisms by which Mg deficiency promotes oxidative stress and affects endothelial behavior in human umbilical vascular endothelial cells (HUVECs). Our data show that low Mg levels trigger oxidative stress initially by increasing NAPDH oxidase activity and then by upregulating the pro-oxidant thioredoxin-interacting protein TXNIP. The overproduction of reactive oxygen species (ROS) activates NF-κB, leading to its increased binding to the inducible nitric oxide synthase (iNOS) promoter, with the consequent increase in iNOS expression. The increased levels of nitric oxide (NO) generated by upregulated iNOS contribute to disrupting endothelial cell function by inhibiting growth and increasing permeability. In conclusion, we provide evidence that multiple mechanisms contribute to generate a pro-oxidant state under low-Mg conditions, ultimately affecting endothelial physiology. These data add support to the notion that adequate Mg levels play a significant role in preserving cardiovascular health and may suggest new approaches to prevent or manage cardiovascular diseases.
Collapse
Affiliation(s)
- Giorgia Fedele
- Department of Biomedical and Clinical Sciences, Università di Milano, 20157 Milano, Italy; (G.F.); (S.C.); (I.Z.); (M.B.); (S.M.C.); (P.C.)
| | - Sara Castiglioni
- Department of Biomedical and Clinical Sciences, Università di Milano, 20157 Milano, Italy; (G.F.); (S.C.); (I.Z.); (M.B.); (S.M.C.); (P.C.)
| | - Valentina Trapani
- Alleanza Contro il Cancro, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Isabella Zafferri
- Department of Biomedical and Clinical Sciences, Università di Milano, 20157 Milano, Italy; (G.F.); (S.C.); (I.Z.); (M.B.); (S.M.C.); (P.C.)
| | - Marco Bartolini
- Department of Biomedical and Clinical Sciences, Università di Milano, 20157 Milano, Italy; (G.F.); (S.C.); (I.Z.); (M.B.); (S.M.C.); (P.C.)
| | - Silvana M. Casati
- Department of Biomedical and Clinical Sciences, Università di Milano, 20157 Milano, Italy; (G.F.); (S.C.); (I.Z.); (M.B.); (S.M.C.); (P.C.)
| | - Pierangela Ciuffreda
- Department of Biomedical and Clinical Sciences, Università di Milano, 20157 Milano, Italy; (G.F.); (S.C.); (I.Z.); (M.B.); (S.M.C.); (P.C.)
| | - Federica I. Wolf
- Department of Medicine, Saint Camillus International Medical School (UniCamillus), Via di Sant’Alessandro 8, 00131 Rome, Italy;
| | - Jeanette A. Maier
- Department of Biomedical and Clinical Sciences, Università di Milano, 20157 Milano, Italy; (G.F.); (S.C.); (I.Z.); (M.B.); (S.M.C.); (P.C.)
| |
Collapse
|
4
|
Campeau MA, Leask RL. Empagliflozin reduces endoplasmic reticulum stress associated TXNIP/NLRP3 activation in tunicamycin-stimulated aortic endothelial cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:267-279. [PMID: 37421429 DOI: 10.1007/s00210-023-02607-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 06/26/2023] [Indexed: 07/10/2023]
Abstract
Sodium-glucose cotransporter 2 inhibitors (SGLT2i) have proven to be of therapeutic significance for cardiovascular diseases beyond the treatment of type 2 diabetes. Recent studies have demonstrated the beneficial effects of SGLT2i on endothelial cell (EC) dysfunction, but the underlying cellular mechanisms remain to be clarified. In this study, we sought to understand the effect of empagliflozin (EMPA; Jardiance®) on cell homeostasis and endoplasmic reticulum (ER) stress signaling. ER stress was induced by tunicamycin (Tm) in human abdominal aortic ECs treated with EMPA over 24 h. Tm-induced ER stress caused increases in the protein expression of thioredoxin interacting protein (TXNIP), NLR-family pyrin domain-containing protein 3 (NLRP3), C/EBP homologous protein (CHOP), and in the ratio of phospho-eIF2α/eIF2α. EMPA (50-100 µM) resulted in a dampened downstream activation of ER stress as seen by the reduced expression of CHOP and TXNIP/NLRP3 in a dose-dependent manner. Nuclear factor erythroid 2-related factor 2 (nrf2) translocation was also attenuated in EMPA-treated ECs. These results suggest that EMPA improves redox signaling under ER stress which in turn attenuates the activation of TXNIP/NLRP3.
Collapse
Affiliation(s)
| | - Richard L Leask
- Department of Chemical Engineering, McGill University, Montreal, QC, Canada.
- McGill University Health Centre, Montreal, QC, Canada.
| |
Collapse
|
5
|
Jung E, Baek EB, Hong EJ, Kang JH, Park S, Park S, Hong EJ, Cho YE, Ko JW, Won YS, Kwon HJ. TXNIP in liver sinusoidal endothelial cells ameliorates alcohol-associated liver disease via nitric oxide production. Int J Biol Sci 2024; 20:606-620. [PMID: 38169654 PMCID: PMC10758096 DOI: 10.7150/ijbs.90781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/02/2023] [Indexed: 01/05/2024] Open
Abstract
Dysregulation of liver sinusoidal endothelial cell (LSEC) differentiation and function has been reported in alcohol-associated liver disease (ALD). Impaired nitric oxide (NO) production stimulates LSEC capillarization and dysfunction; however, the mechanism underlying NO production remains unclear. Here, we investigated the role of thioredoxin-interacting protein (TXNIP), an important regulator of redox homeostasis, in endothelial cell NO production and its subsequent effects on ALD progression. We found that hepatic TXNIP expression was upregulated in patients with ALD and in ethanol diet-fed mice with high expression in LSECs. Endothelial cell-specific Txnip deficiency (TxnipΔEC) in mice exacerbated alcohol-induced liver injury, inflammation, fibrosis, and hepatocellular carcinoma development. Deletion of Txnip in LSECs led to sinusoidal capillarization, downregulation of NO production, and increased release of proinflammatory cytokines and adhesion molecules, whereas TXNIP overexpression had the opposite effects. Mechanistically, TXNIP interacted with transforming growth factor β-activated kinase 1 (TAK1) and subsequently suppressed the TAK1 pathway. Inhibition of TAK1 activation restored NO production and decreased the levels of proinflammatory cytokines, thereby, blocking liver injury and inflammation in TxnipΔEC mice. Our findings indicate that upregulated TXNIP expression in LSECs serves a protective role in ameliorating ALD. Enhancing TXNIP expression could, therefore, be a potential therapeutic approach for ALD.
Collapse
Affiliation(s)
- Eunhye Jung
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Eun Bok Baek
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Eun-Ju Hong
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jee Hyun Kang
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Suyoung Park
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Sehee Park
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Chungbuk 28116, Republic of Korea
| | - Eui-Ju Hong
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Young-Eun Cho
- Andong National University, Andong 36729, Republic of Korea
| | - Je-Won Ko
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Young-Suk Won
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Chungbuk 28116, Republic of Korea
| | - Hyo-Jung Kwon
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
6
|
Obikane H, Shimodai-Yamada S, Koizumi N, Ogino H, Nagao T, Hao H. Histopathological Evaluation of Pulmonary Thromboendarterectomy Specimens of Chronic Thromboembolic Pulmonary Hypertension. J Atheroscler Thromb 2023; 30:1661-1673. [PMID: 37005330 PMCID: PMC10627741 DOI: 10.5551/jat.63973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 02/28/2023] [Indexed: 04/03/2023] Open
Abstract
AIMS Chronic thromboembolic pulmonary hypertension (CTEPH) is a condition with a poor prognosis in which the pulmonary arteries are occluded by organized thrombi. Pulmonary thromboendarterectomy (PEA) is an effective treatment for CTEPH; however, the literature on its histopathological examination is lacking. This study aimed to investigate the histopathological findings and protein and gene expression in PEA specimens, establish an optimal histopathological evaluation method, and clarify the mechanisms of thrombus organization and disease progression in CTEPH. METHODS In total, 50 patients with CTEPH who underwent PEA were analyzed. The patients were categorized according to their clinical data into two groups: good and poor postoperative courses. The relationship between their histopathological findings and the clinical course was examined. Immunohistochemical studies confirmed the expression of oxidants, antioxidants, and smooth muscle cell (SMC) differentiation markers and their changes during the progression of thrombus organization. The mRNA expression analysis of 102 samples from 27 cases included oxidants, antioxidants, and vasoconstrictor endothelin-1. RESULTS In the PEA specimens, colander-like lesions (aggregations of recanalized blood vessels with well-differentiated SMCs) were significantly more common in the good postoperative course group than in the poor postoperative course group; analysis of proteins and genes proposed that oxidative and antioxidant mechanisms were involved. In the colander-like lesions, there was an increase in endothelin-1 mRNA and protein expression of endothelin receptor A. CONCLUSIONS Colander-like lesions in PEA specimens must be identified. Additionally, SMC differentiation in recanalized vessels and the expression of vasoconstrictors and their receptors may contribute to the progression of CTEPH.
Collapse
Affiliation(s)
- Hiyo Obikane
- Department of Anatomic Pathology, Tokyo Medical University, Tokyo, Japan
- Division of Human Pathology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Sayaka Shimodai-Yamada
- Division of Human Pathology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Nobusato Koizumi
- Department of Cardiovascular Surgery, Tokyo Medical University, Tokyo, Japan
| | - Hitoshi Ogino
- Department of Cardiovascular Surgery, Tokyo Medical University, Tokyo, Japan
| | - Toshitaka Nagao
- Department of Anatomic Pathology, Tokyo Medical University, Tokyo, Japan
| | - Hiroyuki Hao
- Division of Human Pathology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
7
|
Scrimieri R, Locatelli L, Cazzaniga A, Cazzola R, Malucelli E, Sorrentino A, Iotti S, Maier JA. Ultrastructural features mirror metabolic derangement in human endothelial cells exposed to high glucose. Sci Rep 2023; 13:15133. [PMID: 37704683 PMCID: PMC10499809 DOI: 10.1038/s41598-023-42333-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/08/2023] [Indexed: 09/15/2023] Open
Abstract
High glucose-induced endothelial dysfunction is the early event that initiates diabetes-induced vascular disease. Here we employed Cryo Soft X-ray Tomography to obtain three-dimensional maps of high D-glucose-treated endothelial cells and their controls at nanometric spatial resolution. We then correlated ultrastructural differences with metabolic rewiring. While the total mitochondrial mass does not change, high D-glucose promotes mitochondrial fragmentation, as confirmed by the modulation of fission-fusion markers, and dysfunction, as demonstrated by the drop of membrane potential, the decreased oxygen consumption and the increased production of reactive oxygen species. The 3D ultrastructural analysis also indicates the accumulation of lipid droplets in cells cultured in high D-glucose. Indeed, because of the decrease of fatty acid β-oxidation induced by high D-glucose concentration, triglycerides are esterified into fatty acids and then stored into lipid droplets. We propose that the increase of lipid droplets represents an adaptive mechanism to cope with the overload of glucose and associated oxidative stress and metabolic dysregulation.
Collapse
Affiliation(s)
- Roberta Scrimieri
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157, Milan, Italy.
| | - Laura Locatelli
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157, Milan, Italy
| | - Alessandra Cazzaniga
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157, Milan, Italy
| | - Roberta Cazzola
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157, Milan, Italy
| | - Emil Malucelli
- Department of Pharmacy and Biotechnology, Università di Bologna, 40127, Bologna, Italy
| | - Andrea Sorrentino
- Mistral Beamline, ALBA Synchrotron Light Source, Cerdanyola del Valles, 08290, Barcelona, Spain
| | - Stefano Iotti
- Department of Pharmacy and Biotechnology, Università di Bologna, 40127, Bologna, Italy
- National Institute of Biostructures and Biosystems, Viale Delle Medaglie d'Oro 305, 00136, Rome, Italy
| | - Jeanette A Maier
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157, Milan, Italy.
| |
Collapse
|
8
|
Cohen-Hagai K, Kashua H, Benchetrit S, Zitman-Gal T. Hemodialysis Serum Stimulates the TXNIP-eNOS-STAT3 Inflammatory Pathway In Vitro. Antioxidants (Basel) 2023; 12:antiox12051109. [PMID: 37237975 DOI: 10.3390/antiox12051109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/27/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Endothelial dysfunction, vascular inflammation and accelerated atherosclerosis have been investigated extensively in patients with chronic kidney disease (CKD). These conditions, as well as protein-energy malnutrition and oxidative stress, impair kidney function and contribute to increased morbidity and mortality among patients with end-stage kidney disease undergoing hemodialysis (HD). TXNIP, a key regulator of oxidative stress, has been linked to inflammation and suppresses eNOS activity. STAT3 activation adds to endothelial cell dysfunction, macrophage polarization, immunity and inflammation. Therefore, it is critically involved in atherosclerosis. This study evaluated the effect of sera from HD patients on the TXNIP-eNOS-STAT3 pathway using an in vitro model of human umbilical vein endothelial cells (HUVECs). METHODS Thirty HD patients with end-stage kidney disease and ten healthy volunteers were recruited. Serum samples were taken at dialysis initiation. HUVECs were treated with HD or healthy serum (10% v/v) for 24 h. Then, cells were collected for mRNA and protein analysis. RESULTS TXNIP mRNA and protein expression were significantly increased in HUVECs treated with HD serum compared to healthy controls (fold changes: 2.41 ± 1.84 vs. 1.41 ± 0.5 and 2.04 ± 1.16 vs. 0.92 ± 0.29, respectively), as were IL-8 mRNA (fold changes: 2.22 ± 1.09 vs. 0.98 ± 0.64) and STAT3 protein expression (fold changes: 1.31 ± 0.75 vs. 0.57 ± 0.43). The expression of eNOS mRNA and protein (fold changes: 0.64 ± 0.11 vs. 0.95 ± 0.24; 0.56 ± 0.28 vs. 4.35 ± 1.77, respectively) and that of SOCS3 and SIRT1 proteins were decreased. Patients' nutritional status, reflected by their malnutrition-inflammation scores, did not affect these inflammatory markers. CONCLUSIONS This study showed that sera from HD patients stimulated a novel inflammatory pathway, regardless of their nutritional status.
Collapse
Affiliation(s)
- Keren Cohen-Hagai
- Department of Nephrology and Hypertension, Meir Medical Center, Kfar Saba 44281, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Hadil Kashua
- Department of Pediatric, Meir Medical Center, Kfar Saba 44281, Israel
| | - Sydney Benchetrit
- Department of Nephrology and Hypertension, Meir Medical Center, Kfar Saba 44281, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Tali Zitman-Gal
- Department of Nephrology and Hypertension, Meir Medical Center, Kfar Saba 44281, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
9
|
Locatelli L, Fedele G, Maier JA. The Role of Txnip in Mediating Low-Magnesium-Driven Endothelial Dysfunction. Int J Mol Sci 2023; 24:ijms24098351. [PMID: 37176057 PMCID: PMC10179684 DOI: 10.3390/ijms24098351] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Magnesium deficiency is associated with a greater risk of developing cardiovascular diseases since this cation is fundamental in regulating vascular function. This clinical evidence is sustained by in vitro studies showing that culturing endothelial cells in low concentrations of magnesium promotes the acquisition of a pro-oxidant and pro-inflammatory phenotype. Here, we show that the increase in reactive oxygen species in endothelial cells in low-magnesium-containing medium is due to the upregulation of the pro-oxidant protein thioredoxin interacting protein (TXNIP), with a consequent accumulation of lipid droplets and increase in endothelial permeability through the downregulation and relocalization of junctional proteins. Silencing TXNIP restores the endothelial barrier and lipid content. Because (i) mitochondria serve multiple roles in shaping cell function, health and survival and (ii) mitochondria are the main intracellular stores of magnesium, it is of note that no significant alterations were detected in their morphology and dynamics in our experimental model. We conclude that TXNIP upregulation contributes to low-magnesium-induced endothelial dysfunction in vitro.
Collapse
Affiliation(s)
- Laura Locatelli
- Department of Biomedical and Clinical Sciences, Università di Milano, Via GB Grassi 74, 20157 Milano, Italy
| | - Giorgia Fedele
- Department of Biomedical and Clinical Sciences, Università di Milano, Via GB Grassi 74, 20157 Milano, Italy
| | - Jeanette A Maier
- Department of Biomedical and Clinical Sciences, Università di Milano, Via GB Grassi 74, 20157 Milano, Italy
| |
Collapse
|
10
|
Zhou P, Ma YY, Zhao XN, Hua F. Phytochemicals as potential target on thioredoxin-interacting protein (TXNIP) for the treatment of cardiovascular diseases. Inflammopharmacology 2023; 31:207-220. [PMID: 36609715 DOI: 10.1007/s10787-022-01130-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/27/2022] [Indexed: 01/09/2023]
Abstract
Cardiovascular diseases (CVDs) are currently the major cause of death and morbidity on a global scale. Thioredoxin-interacting protein (TXNIP) is a marker related to metabolism, oxidation, and inflammation induced in CVDs. The overexpression of TXNIP is closely related to the occurrence and development of CVDs. Hence, TXNIP inhibition is critical for reducing the overactivation of its downstream signaling pathway and, as a result, myocardial cell damage. Due to the chemical variety of dietary phytochemicals, they have garnered increased interest for CVDs prevention and therapy. Phytochemicals are a source of medicinal compounds for a variety of conditions, which aids in the development of effective and safe TXNIP-targeting medications. The objective of this article is to find and virtual screen novel safe, effective, and economically viable TXNIP inhibitors from flavonoids, phenols, and alkaloids derived from foods and plants. The results of the docking study revealed that silibinin, rutin, luteolin, baicalin, procyanidin B2, hesperetin, icariin, and tilianin in flavonoids, polydatin, resveratrol, and salidroside in phenols, and neferine in alkaloids had the highest Vina scores, indicating that these compounds are the active chemicals on TXNIP. In particular, silibinin can be utilized as a lead chemical in the process of structural alteration. These dietary phytochemicals may aid in the discovery of lead compounds for the development of innovative TXNIP agents for the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Peng Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, People's Republic of China
| | - Yao-Yao Ma
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, People's Republic of China
| | - Xiao-Ni Zhao
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, People's Republic of China
| | - Fang Hua
- School of Pharmacy, Anhui Xinhua University, Hefei, Anhui, People's Republic of China.
| |
Collapse
|
11
|
Oberacker T, Fritz P, Schanz M, Alscher MD, Ketteler M, Schricker S. Enhanced Oxidative DNA-Damage in Peritoneal Dialysis Patients via the TXNIP/TRX Axis. Antioxidants (Basel) 2022; 11:1124. [PMID: 35740021 PMCID: PMC9220040 DOI: 10.3390/antiox11061124] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 02/04/2023] Open
Abstract
Peritoneal dialysis (PD) is an effective method of renal replacement therapy, providing a high level of patient autonomy. Nevertheless, the long-term use of PD is limited due to deleterious effects of PD fluids to the structure and function of the peritoneal membrane leading to loss of dialysis efficacy. PD patients show excessive oxidative stress compared to controls or chronic kidney disease (CKD) patients not on dialysis. Therefore, defense systems against detrimental events play a pivotal role in the integrity of the peritoneal membrane. The thioredoxin-interacting-protein (TXNIP)/thioredoxin (TRX) system also plays a major role in maintaining the redox homeostasis. We hypothesized that the upregulation of TXNIP negatively influences TRX activity, resulting in enhanced oxidative DNA-damage in PD patients. Therefore, we collected plasma samples and human peritoneal biopsies of healthy controls and PD patients as well. Using ELISA-analysis and immunohistochemistry, we showed that PD patients had elevated TXNIP levels compared to healthy controls. Furthermore, we demonstrated that PD patients had a reduced TRX activity, thereby leading to increased oxidative DNA-damage. Hence, targeting the TXNIP/TRX system as well as the use of oxidative stress scavengers could become promising therapeutic approaches potentially applicable in clinical practice in order to sustain and improve peritoneal membrane function.
Collapse
Affiliation(s)
- Tina Oberacker
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology and University of Tuebingen, Auerbachstr. 112, 70376 Stuttgart, Germany
| | - Peter Fritz
- Department of General Internal Medicine and Nephrology, Robert-Bosch-Hospital, Auerbachstr. 110, 70376 Stuttgart, Germany; (P.F.); (M.S.); (M.D.A.); (M.K.); (S.S.)
| | - Moritz Schanz
- Department of General Internal Medicine and Nephrology, Robert-Bosch-Hospital, Auerbachstr. 110, 70376 Stuttgart, Germany; (P.F.); (M.S.); (M.D.A.); (M.K.); (S.S.)
| | - Mark Dominik Alscher
- Department of General Internal Medicine and Nephrology, Robert-Bosch-Hospital, Auerbachstr. 110, 70376 Stuttgart, Germany; (P.F.); (M.S.); (M.D.A.); (M.K.); (S.S.)
| | - Markus Ketteler
- Department of General Internal Medicine and Nephrology, Robert-Bosch-Hospital, Auerbachstr. 110, 70376 Stuttgart, Germany; (P.F.); (M.S.); (M.D.A.); (M.K.); (S.S.)
| | - Severin Schricker
- Department of General Internal Medicine and Nephrology, Robert-Bosch-Hospital, Auerbachstr. 110, 70376 Stuttgart, Germany; (P.F.); (M.S.); (M.D.A.); (M.K.); (S.S.)
| |
Collapse
|
12
|
Endothelial thioredoxin interacting protein (TXNIP) modulates endothelium-dependent vasorelaxation in hyperglycemia. Microvasc Res 2022; 143:104396. [PMID: 35644243 DOI: 10.1016/j.mvr.2022.104396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/24/2022]
Abstract
Endothelial dysfunction, hallmarked by an imbalance between vasoconstriction and vasorelaxation, is associated with diabetes. Thioredoxin Interacting protein (TXNIP), controlled by an exquisitely glucose sensitive gene, is increasingly recognized for its role in diabetes. However, the role of TXNIP in modulating diabetes-related endothelial dysfunction remains unclear. To elucidate the role of TXNIP, we generated two novel mouse strains; endothelial-specific TXNIP knockout (EKO) and a Tet-O inducible, endothelial-specific TXNIP overexpression (EKI). Hyperglycemia was induced by streptozotocin (STZ) treatment in floxed control (fl/fl) and EKO mice. Doxycycline (DOX) was given to EKI mice to induce endothelial TXNIP overexpression. The ablation of endothelial TXNIP improved glucose tolerance in EKO mice. Acetylcholine-induced, endothelium-dependent vasorelaxation was impaired in STZ-treated fl/fl mice while this STZ impaired vasorelaxation was attenuated in EKO mice. Hyperglycemia induction of NLRP3 and reductions in Akt and eNOS phosphorylation were also mitigated in EKO mice. Overexpression of endothelial TXNIP did not impair glucose tolerance in DOX-treated EKI mice, however induction of endothelial TXNIP led to impaired vasorelaxation in EKI mice. This was associated with increased NLRP3 and reduced Akt and eNOS activation. In conclusion, deletion of endothelial TXNIP is protective against and overexpression of endothelial TXNIP induces endothelial dysfunction; thus, endothelial TXNIP plays a critical role in modulating endothelial dysfunction.
Collapse
|
13
|
Scrimieri R, Cazzaniga A, Castiglioni S, Maier JAM. Vitamin D Prevents High Glucose-Induced Lipid Droplets Accumulation in Cultured Endothelial Cells: The Role of Thioredoxin Interacting Protein. Biomedicines 2021; 9:1874. [PMID: 34944690 PMCID: PMC8698366 DOI: 10.3390/biomedicines9121874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 12/21/2022] Open
Abstract
Vitamin D (VitD) exerts protective effects on the endothelium, which is fundamental for vascular integrity, partly by inhibiting free radical formation. We found that VitD prevents high glucose-induced Thioredoxin Interacting Protein (TXNIP) upregulation. Increased amounts of TXNIP are responsible for the accumulation of reactive oxygen species and, as a consequence, of lipid droplets. This is associated with increased amounts of triglycerides as the result of increased lipogenesis and reduced fatty acid oxidation. Remarkably, VitD rebalances the redox equilibrium, restores normal lipid content, and prevents the accumulation of lipid droplets. Our results highlight TXNIP as one of the targets of VitD in high glucose-cultured endothelial cells and shed some light on the protective effect of VitD on the endothelium.
Collapse
Affiliation(s)
- Roberta Scrimieri
- Department of Biomedical and Clinical Sciences “Luigi Sacco”, Università di Milano, 20157 Milano, Italy; (A.C.); (S.C.); (J.A.M.M.)
| | - Alessandra Cazzaniga
- Department of Biomedical and Clinical Sciences “Luigi Sacco”, Università di Milano, 20157 Milano, Italy; (A.C.); (S.C.); (J.A.M.M.)
| | - Sara Castiglioni
- Department of Biomedical and Clinical Sciences “Luigi Sacco”, Università di Milano, 20157 Milano, Italy; (A.C.); (S.C.); (J.A.M.M.)
| | - Jeanette A. M. Maier
- Department of Biomedical and Clinical Sciences “Luigi Sacco”, Università di Milano, 20157 Milano, Italy; (A.C.); (S.C.); (J.A.M.M.)
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (CIMaINa), Università di Milano, 20133 Milano, Italy
| |
Collapse
|