1
|
Wang L, Zhao L, Zhang Y, Shao S, Ning Q, Zhao X, Luo M. Comprehensive Analysis of the Expression and Prognosis of chromobox Family Members in Breast Cancer. Clin Breast Cancer 2023; 23:e206-e218. [PMID: 36890004 DOI: 10.1016/j.clbc.2023.02.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 02/04/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023]
Abstract
BACKGROUND Chromobox proteins are canonical components of the Polycomb group family and play pivotal roles in several cancers. However, little is known about the function, prognostic value and drug sensitivity of CBX family members in breast cancer. METHODS In this study we investigated the expression, prognosis value and drug sensitivity of CBX family in breast cancer using the ONCOMINE, GEPIA, Human Protein Atlas and Kaplan-Meier Plotter databases, etc. and preliminary verified the expression of CBX family in breast cancer cell lines by RT-qPCR. RESULTS We found that the expression levels of CBX1/2/3/4/8 members were elevated in breast cancer tissues compared to adjacent normal breast tissues, while the expression levels of CBX6/7 genes were reduced in breast cancer tissue. In vitro qRT-PCR validated the expression differences of CBX1/2/3/4/8 in breast cancer cell lines. Further analysis showed expression of CBX family members was remarkably correlated with cancer subgroups. As nodal metastasis status increased, the mRNA expression of CBX1/2/3/4/8 members tended to be higher, while CBX6/7 tended to be lower. The expression of CBX1/2/3 was higher in patients with TP53 mutation and CBX6/7 expression tended to be lower in patients with TP53 mutation groups. High transcription levels of CBX2/3 were significantly associated with shorter overall survival in breast cancer patients, while lower expression of CBX4/5/6/7 members was associated with unfavorable overall survival. Moreover, a high mutation rate of CBX gene members (43%) was observed in breast cancer patients, and genetic alterations in CBX genes was associated with poor prognosis. CONCLUSION Taken together, our results indicated that CBX2/3/6/7/8 could be considered prognostic and therapeutic biomarkers of breast cancer and are worthy of further study.
Collapse
Affiliation(s)
- Lu Wang
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China
| | - Lin Zhao
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China
| | - Yujiao Zhang
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China
| | - Shan Shao
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China
| | - Qian Ning
- Department of Respiratory, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China
| | - Xinhan Zhao
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China.
| | - Minna Luo
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China.
| |
Collapse
|
2
|
HP1a-mediated heterochromatin formation inhibits high dietary sugar-induced tumor progression. Cell Death Dis 2021; 12:1130. [PMID: 34866135 PMCID: PMC8645608 DOI: 10.1038/s41419-021-04414-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 11/08/2021] [Accepted: 11/22/2021] [Indexed: 12/24/2022]
Abstract
High dietary sugar (HDS) is a modern dietary concern that involves excessive consumption of carbohydrates and added sugars, and increases the risk of metabolic disorders and associated cancers. However, epigenetic mechanisms by which HDS induces tumor progression remain unclear. Here, we investigate the role of heterochromatin, an important yet poorly understood part of the epigenome, in HDS-induced tumor progression of Drosophila Ras/Src and Ras/scrib tumor systems. We found that increased heterochromatin formation with overexpression of heterochromatin protein 1a (HP1a), specifically in tumor cells, not only decreases HDS-induced tumor growth/burden but also drastically improves survival of Drosophila with HDS and Ras/Src or Ras/scrib tumors. Moreover, HDS reduces heterochromatin levels in tumor cells. Mechanistically, we demonstrated that increased heterochromatin formation decreases wingless (wg) and Hippo (Hpo) signaling, thereby promoting apoptosis, via inhibition of Yorkie (Yki) nuclear accumulation and upregulation of apoptotic genes, and reduces DNA damage in tumor cells under HDS. Taken together, our work identified a novel epigenetic mechanism by which HP1a-mediated heterochromatin formation suppresses HDS-induced tumor progression likely by decreasing wingless and Hippo signaling, increasing apoptosis, and maintaining genome stability. Our model explains that the molecular, cellular, and organismal aspects of HDS-aggravated tumor progression are dependent on heterochromatin formation, and highlights heterochromatin as a therapeutic target for cancers associated with HDS-induced metabolic disorders.
Collapse
|
3
|
How HP1 Post-Translational Modifications Regulate Heterochromatin Formation and Maintenance. Cells 2020; 9:cells9061460. [PMID: 32545538 PMCID: PMC7349378 DOI: 10.3390/cells9061460] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 12/12/2022] Open
Abstract
Heterochromatin Protein 1 (HP1) is a highly conserved protein that has been used as a classic marker for heterochromatin. HP1 binds to di- and tri-methylated histone H3K9 and regulates heterochromatin formation, functions and structure. Besides the well-established phosphorylation of histone H3 Ser10 that has been shown to modulate HP1 binding to chromatin, several studies have recently highlighted the importance of HP1 post-translational modifications and additional epigenetic features for the modulation of HP1-chromatin binding ability and heterochromatin formation. In this review, we summarize the recent literature of HP1 post-translational modifications that have contributed to understand how heterochromatin is formed, regulated and maintained.
Collapse
|
4
|
Skipper KA, Hollensen AK, Antoniou MN, Mikkelsen JG. Sustained transgene expression from sleeping beauty DNA transposons containing a core fragment of the HNRPA2B1-CBX3 ubiquitous chromatin opening element (UCOE). BMC Biotechnol 2019; 19:75. [PMID: 31706316 PMCID: PMC6842454 DOI: 10.1186/s12896-019-0570-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 10/15/2019] [Indexed: 12/22/2022] Open
Abstract
Background DNA transposon-based vectors are effective nonviral tools for gene therapy and genetic engineering of cells. However, promoter DNA methylation and a near-random integration profile, which can result in transgene integration into heterochromatin, renders such vectors vulnerable to transcriptional repression. Therefore, to secure persistent transgene expression it may be necessary to protect transposon-embedded transgenes with anti-transcriptional silencing elements. Results We compare four different protective strategies in CHO-K1 cells. Our findings show robust protection from silencing of transgene cassettes mediated by the ubiquitous chromatin-opening element (UCOE) derived from the HNRPA2B1-CBX3 locus. Using a bioinformatic approach, we define a shorter HNRPA2B1-CBX3 UCOE core fragment and demonstrate that this can robustly maintain transgene expression after extended passaging of CHO-K1 cells carrying DNA transposon vectors equipped with this protective feature. Conclusions Our findings contribute to the understanding of the mechanism of HNRPA2B1-CBX3 UCOE-based transgene protection and support the use of a correctly oriented core fragment of this UCOE for DNA transposon vector-based production of recombinant proteins in CHO-K1 cells.
Collapse
Affiliation(s)
| | - Anne Kruse Hollensen
- Department of Biomedicine, HEALTH, Aarhus University, DK- 8000, Aarhus C, Denmark.,Department of Molecular Biology and Genetics, Science and Technology, Aarhus University, DK-8000, Aarhus C, Denmark
| | - Michael N Antoniou
- Gene Expression and Therapy Group, King's College London, Faculty of Life Sciences & Medicine, Department of Medical and Molecular Genetics, 8th Floor Tower Wing, Guy's Hospital, London, SE1 9RT, UK
| | | |
Collapse
|
5
|
Zhou Y, Liu Y, Hussmann D, Brøgger P, Al-Saaidi RA, Tan S, Lin L, Petersen TS, Zhou GQ, Bross P, Aagaard L, Klein T, Rønn SG, Pedersen HD, Bolund L, Nielsen AL, Sørensen CB, Luo Y. Enhanced genome editing in mammalian cells with a modified dual-fluorescent surrogate system. Cell Mol Life Sci 2016; 73:2543-63. [PMID: 26755436 PMCID: PMC11108510 DOI: 10.1007/s00018-015-2128-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/09/2015] [Accepted: 12/29/2015] [Indexed: 12/15/2022]
Abstract
Programmable DNA nucleases such as TALENs and CRISPR/Cas9 are emerging as powerful tools for genome editing. Dual-fluorescent surrogate systems have been demonstrated by several studies to recapitulate DNA nuclease activity and enrich for genetically edited cells. In this study, we created a single-strand annealing-directed, dual-fluorescent surrogate reporter system, referred to as C-Check. We opted for the Golden Gate Cloning strategy to simplify C-Check construction. To demonstrate the utility of the C-Check system, we used the C-Check in combination with TALENs or CRISPR/Cas9 in different scenarios of gene editing experiments. First, we disrupted the endogenous pIAPP gene (3.0 % efficiency) by C-Check-validated TALENs in primary porcine fibroblasts (PPFs). Next, we achieved gene-editing efficiencies of 9.0-20.3 and 4.9 % when performing single- and double-gene targeting (MAPT and SORL1), respectively, in PPFs using C-Check-validated CRISPR/Cas9 vectors. Third, fluorescent tagging of endogenous genes (MYH6 and COL2A1, up to 10.0 % frequency) was achieved in human fibroblasts with C-Check-validated CRISPR/Cas9 vectors. We further demonstrated that the C-Check system could be applied to enrich for IGF1R null HEK293T cells and CBX5 null MCF-7 cells with frequencies of nearly 100.0 and 86.9 %, respectively. Most importantly, we further showed that the C-Check system is compatible with multiplexing and for studying CRISPR/Cas9 sgRNA specificity. The C-Check system may serve as an alternative dual-fluorescent surrogate tool for measuring DNA nuclease activity and enrichment of gene-edited cells, and may thereby aid in streamlining programmable DNA nuclease-mediated genome editing and biological research.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Alle 4, 8000, Aarhus C, Denmark
| | - Yong Liu
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Alle 4, 8000, Aarhus C, Denmark
| | - Dianna Hussmann
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Alle 4, 8000, Aarhus C, Denmark
| | - Peter Brøgger
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Alle 4, 8000, Aarhus C, Denmark
| | - Rasha Abdelkadhem Al-Saaidi
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and University Hospital, 8200, Aarhus N, Denmark
| | - Shuang Tan
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Alle 4, 8000, Aarhus C, Denmark
- Shenzhen Key Laboratory for Anti-aging and Regenerative Medicine, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Lin Lin
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Alle 4, 8000, Aarhus C, Denmark
| | - Trine Skov Petersen
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Alle 4, 8000, Aarhus C, Denmark
| | - Guang Qian Zhou
- Shenzhen Key Laboratory for Anti-aging and Regenerative Medicine, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Peter Bross
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and University Hospital, 8200, Aarhus N, Denmark
| | - Lars Aagaard
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Alle 4, 8000, Aarhus C, Denmark
| | - Tino Klein
- Department of Histology, Gubra A/S, 2970, Hørsholm, Denmark
| | - Sif Groth Rønn
- Department of Incretin and Obesity Research, Novo Nordisk A/S, 2760, Måløv, Denmark
| | | | - Lars Bolund
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Alle 4, 8000, Aarhus C, Denmark
- BGI-Shenzhen, Shenzhen, 518083, China
- The Danish Regenerative Engineering Alliance for Medicine (DREAM), Aarhus University, Aarhus, Denmark
| | - Anders Lade Nielsen
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Alle 4, 8000, Aarhus C, Denmark
| | - Charlotte Brandt Sørensen
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and University Hospital, 8200, Aarhus N, Denmark
| | - Yonglun Luo
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Alle 4, 8000, Aarhus C, Denmark.
- Department of Incretin and Obesity Research, Novo Nordisk A/S, 2760, Måløv, Denmark.
- The Danish Regenerative Engineering Alliance for Medicine (DREAM), Aarhus University, Aarhus, Denmark.
| |
Collapse
|
6
|
Role of Epigenetics in Stem Cell Proliferation and Differentiation: Implications for Treating Neurodegenerative Diseases. Int J Mol Sci 2016; 17:ijms17020199. [PMID: 26848657 PMCID: PMC4783933 DOI: 10.3390/ijms17020199] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 01/17/2016] [Accepted: 01/27/2016] [Indexed: 12/15/2022] Open
Abstract
The main objectives of this review are to survey the current literature on the role of epigenetics in determining the fate of stem cells and to assess how this information can be used to enhance the treatment strategies for some neurodegenerative disorders, like Huntington’s disease, Parkinson’s disease and Alzheimer’s disease. Some of these epigenetic mechanisms include DNA methylation and histone modifications, which have a direct impact on the way that genes are expressed in stem cells and how they drive these cells into a mature lineage. Understanding how the stem cells are behaving and giving rise to mature cells can be used to inform researchers on effective ways to design stem cell-based treatments. In this review article, the way in which the basic understanding of how manipulating this process can be utilized to treat certain neurological diseases will be presented. Different genetic factors and their epigenetic changes during reprogramming of stem cells into induced pluripotent stem cells (iPSCs) have significant potential for enhancing the efficacy of cell replacement therapies.
Collapse
|
7
|
Vad-Nielsen J, Jakobsen KR, Daugaard TF, Thomsen R, Brügmann A, Sørensen BS, Nielsen AL. Regulatory dissection of the CBX5 and hnRNPA1 bi-directional promoter in human breast cancer cells reveals novel transcript variants differentially associated with HP1α down-regulation in metastatic cells. BMC Cancer 2016; 16:32. [PMID: 26791953 PMCID: PMC4721113 DOI: 10.1186/s12885-016-2059-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 01/10/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The three members of the human heterochromatin protein 1 (HP1) family of proteins, HP1α, HP1β, and HPγ, are involved in chromatin packing and epigenetic gene regulation. HP1α is encoded from the CBX5 gene and is a suppressor of metastasis. CBX5 is down-regulated at the transcriptional and protein level in metastatic compared to non-metastatic breast cancer. CBX5 shares a bi-directional promoter structure with the hnRNPA1 gene. But whereas CBX5 expression is down-regulated in metastatic cells, hnRNAP1 expression is constant. Here, we address the regulation of CBX5 in human breast cancer. METHODS Transient transfection and transposon mediated integration of dual-reporter mini-genes containing the bi-directional hnRNPA1 and CBX5 promoter was performed to investigate transcriptional regulation in breast cancer cell lines. Bioinformatics and functional analysis were performed to characterize transcriptional events specifically regulating CBX5 expression. TSA treatment and Chromatin Immunoprecipitation (ChIP) were performed to investigate the chromatin structure along CBX5 in breast cancer cells. Finally, expression of hnRNPA1 and CBX5 mRNA isoforms were measured by quantitative reverse transcriptase PCR (qRT-PCR) in breast cancer tissue samples. RESULTS We demonstrate that an hnRNPA1 and CBX5 bi-directional core promoter fragment does not comprise intrinsic capacity for specific CBX5 down-regulation in metastatic cells. Characterization of transcriptional events in the 20 kb CBX5 intron 1 revealed existence of several novel CBX5 transcripts. Two of these encode consensus HP1α protein but used autonomous promoters in intron 1 by which HP1α expression could be de-coupled from the bi-directional promoter. In addition, another CBX5 transcriptional isoform, STET, was discovered. This transcript includes CBX5 exon 1 and part of intron 1 sequences but lacks inclusion of HP1α encoding exons. Inverse correlation between STET and HP1α coding CBX5 mRNA expression was observed in breast cancer cell lines and tissue samples from breast cancer patients. CONCLUSION We find that HP1α is down-regulated in a mechanism involving CBX5 promoter downstream sequences and that regulation through alternative polyadenylation and splicing generates a transcript, STET, with potential importance in carcinogenesis.
Collapse
Affiliation(s)
- Johan Vad-Nielsen
- Department of Biomedicine, The Bartholin building, Aarhus University, DK-8000, Aarhus C, Denmark
| | - Kristine Raaby Jakobsen
- Department of Biomedicine, The Bartholin building, Aarhus University, DK-8000, Aarhus C, Denmark.,Department of Clinical-Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Tina Fuglsang Daugaard
- Department of Biomedicine, The Bartholin building, Aarhus University, DK-8000, Aarhus C, Denmark
| | - Rune Thomsen
- Department of Biomedicine, The Bartholin building, Aarhus University, DK-8000, Aarhus C, Denmark
| | - Anja Brügmann
- Department of Pathology, Aalborg University Hospital, Aalborg, Denmark
| | - Boe Sandahl Sørensen
- Department of Clinical-Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Anders Lade Nielsen
- Department of Biomedicine, The Bartholin building, Aarhus University, DK-8000, Aarhus C, Denmark.
| |
Collapse
|
8
|
Vad-Nielsen J, Nielsen AL. Beyond the histone tale: HP1α deregulation in breast cancer epigenetics. Cancer Biol Ther 2015; 16:189-200. [PMID: 25588111 DOI: 10.1080/15384047.2014.1001277] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Heterochromatin protein 1α (HP1α) encoded from the CBX5-gene is an evolutionary conserved protein that binds histone H3 di- or tri-methylated at position lysine 9 (H3K9me2/3), a hallmark for heterochromatin, and has an essential role in forming higher order chromatin structures. HP1α has diverse functions in heterochromatin formation, gene regulation, and mitotic progression, and forms complex networks of gene, RNA, and protein interactions. Emerging evidence has shown that HP1α serves a unique biological role in breast cancer related processes and in particular for epigenetic control mechanisms involved in aberrant cell proliferation and metastasis. However, how HP1α deregulation plays dual mechanistic functions for cancer cell proliferation and metastasis suppression and the underlying cellular mechanisms are not yet comprehensively described. In this paper we provide an overview of the role of HP1α as a new sight of epigenetics in proliferation and metastasis of human breast cancer. This highlights the importance of addressing HP1α in breast cancer diagnostics and therapeutics.
Collapse
Key Words
- CBX, chromobox homolog
- CD, chromo domain
- CSC, cancer stem cells
- CSD, cromo shadow domain
- CTE, C-terminal extension
- DNMT, DNA-methyltransferase
- EMT, epithelial-to-mesenchymal transition
- HDMT, histone demethylase
- HMT, histone methyltransferase
- HP1, heterochromatin protein 1
- NTE, N-terminal extension
- PEV, position effect variegation
- SOMU, sumoylation
- TGS, transcriptional gene silencing
- TSS, transcriptional start site
- bp, base pair
- breast-cancer, metastasis
- chromatin
- epigenetics
- histone-modifications
- invasion
- mitosis
- proliferation
Collapse
|
9
|
Lev Maor G, Yearim A, Ast G. The alternative role of DNA methylation in splicing regulation. Trends Genet 2015; 31:274-80. [DOI: 10.1016/j.tig.2015.03.002] [Citation(s) in RCA: 374] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 03/02/2015] [Accepted: 03/03/2015] [Indexed: 12/20/2022]
|
10
|
Azzaz AM, Vitalini MW, Thomas AS, Price JP, Blacketer MJ, Cryderman DE, Zirbel LN, Woodcock CL, Elcock AH, Wallrath LL, Shogren-Knaak MA. Human heterochromatin protein 1α promotes nucleosome associations that drive chromatin condensation. J Biol Chem 2014; 289:6850-6861. [PMID: 24415761 DOI: 10.1074/jbc.m113.512137] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
HP1(Hsα)-containing heterochromatin is located near centric regions of chromosomes and regulates DNA-mediated processes such as DNA repair and transcription. The higher-order structure of heterochromatin contributes to this regulation, yet the structure of heterochromatin is not well understood. We took a multidisciplinary approach to determine how HP1(Hsα)-nucleosome interactions contribute to the structure of heterochromatin. We show that HP1(Hsα) preferentially binds histone H3K9Me3-containing nucleosomal arrays in favor of non-methylated nucleosomal arrays and that nonspecific DNA interactions and pre-existing chromatin compaction promote binding. The chromo and chromo shadow domains of HP1(Hsα) play an essential role in HP1(Hsα)-nucleosome interactions, whereas the hinge region appears to have a less significant role. Electron microscopy of HP1(Hsα)-associated nucleosomal arrays showed that HP1(Hsα) caused nucleosome associations within an array, facilitating chromatin condensation. Differential sedimentation of HP1(Hsα)-associated nucleosomal arrays showed that HP1(Hsα) promotes interactions between arrays. These strand-to-strand interactions are supported by in vivo studies where tethering the Drosophila homologue HP1a to specific sites promotes interactions with distant chromosomal sites. Our findings demonstrate that HP1(Hsα)-nucleosome interactions cause chromatin condensation, a process that regulates many chromosome events.
Collapse
Affiliation(s)
- Abdelhamid M Azzaz
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011
| | | | - Andrew S Thomas
- Department of Biochemistry, University of Iowa, Iowa City, Iowa 52241
| | - Jason P Price
- Department of Biochemistry, University of Iowa, Iowa City, Iowa 52241
| | - Melissa J Blacketer
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011
| | - Diane E Cryderman
- Department of Biochemistry, University of Iowa, Iowa City, Iowa 52241
| | - Luka N Zirbel
- Department of Biochemistry, University of Iowa, Iowa City, Iowa 52241
| | | | - Adrian H Elcock
- Department of Biochemistry, University of Iowa, Iowa City, Iowa 52241
| | - Lori L Wallrath
- Department of Biochemistry, University of Iowa, Iowa City, Iowa 52241.
| | - Michael A Shogren-Knaak
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011.
| |
Collapse
|
11
|
Fagan RL, Cryderman DE, Kopelovich L, Wallrath LL, Brenner C. Laccaic acid A is a direct, DNA-competitive inhibitor of DNA methyltransferase 1. J Biol Chem 2013; 288:23858-67. [PMID: 23839987 DOI: 10.1074/jbc.m113.480517] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Methylation of cytosines in CpG dinucleotides is the predominant epigenetic mark on vertebrate DNA. DNA methylation is associated with transcriptional repression. The pattern of DNA methylation changes during development and with disease. Human DNA methyltransferase 1 (Dnmt1), a 1616-amino acid multidomain enzyme, is essential for maintenance of DNA methylation in proliferating cells and is considered an important cancer drug target. Using a fluorogenic, endonuclease-coupled DNA methylation assay with an activated form of Dnmt1 engineered to lack the replication foci targeting sequence domain, we discovered that laccaic acid A (LCA), a highly substituted anthraquinone natural product, is a direct inhibitor with a 310 nm Ki. LCA is competitive with the DNA substrate in in vitro methylation assays and alters the expression of methylated genes in MCF-7 breast cancer cells synergistically with 5-aza-2'-deoxycytidine. LCA represents a novel class of Dnmt-targeted molecular probes, with biochemical properties that allow it to distinguish between non DNA-bound and DNA-bound Dnmt1.
Collapse
Affiliation(s)
- Rebecca L Fagan
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | |
Collapse
|
12
|
Abstract
Heterochromatin is the enigmatic eukaryotic genome compartment found mostly at telomeres and centromeres. Conventional approaches to sequence assembly and genetic manipulation fail in this highly repetitive, gene-sparse, and recombinationally silent DNA. In contrast, genetic and molecular analyses of euchromatin-encoded proteins that bind, remodel, and propagate heterochromatin have revealed its vital role in numerous cellular and evolutionary processes. Utilizing the 12 sequenced Drosophila genomes, Levine et al1 took a phylogenomic approach to discover new such protein “surrogates” of heterochromatin function and evolution. This paper reported over 20 new members of what was traditionally believed to be a small and static Heterochromatin Protein 1 (HP1) gene family. The newly identified HP1 proteins are structurally diverse, lineage-restricted, and expressed primarily in the male germline. The birth and death of HP1 genes follows a “revolving door” pattern, where new HP1s appear to replace old HP1s. Here, we address alternative evolutionary models that drive this constant innovation.
Collapse
Affiliation(s)
- Mia T Levine
- Division of Basic Sciences; Howard Hughes Medical Institute; Fred Hutchinson Cancer Research Center; Seattle, WA USA
| | | |
Collapse
|
13
|
Reyes-Dominguez Y, Boedi S, Sulyok M, Wiesenberger G, Stoppacher N, Krska R, Strauss J. Heterochromatin influences the secondary metabolite profile in the plant pathogen Fusarium graminearum. Fungal Genet Biol 2012; 49:39-47. [PMID: 22100541 PMCID: PMC3278594 DOI: 10.1016/j.fgb.2011.11.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 11/02/2011] [Accepted: 11/03/2011] [Indexed: 01/07/2023]
Abstract
Chromatin modifications and heterochromatic marks have been shown to be involved in the regulation of secondary metabolism gene clusters in the fungal model system Aspergillus nidulans. We examine here the role of HEP1, the heterochromatin protein homolog of Fusarium graminearum, for the production of secondary metabolites. Deletion of Hep1 in a PH-1 background strongly influences expression of genes required for the production of aurofusarin and the main tricothecene metabolite DON. In the Hep1 deletion strains AUR genes are highly up-regulated and aurofusarin production is greatly enhanced suggesting a repressive role for heterochromatin on gene expression of this cluster. Unexpectedly, gene expression and metabolites are lower for the trichothecene cluster suggesting a positive function of Hep1 for DON biosynthesis. However, analysis of histone modifications in chromatin of AUR and DON gene promoters reveals that in both gene clusters the H3K9me3 heterochromatic mark is strongly reduced in the Hep1 deletion strain. This, and the finding that a DON-cluster flanking gene is up-regulated, suggests that the DON biosynthetic cluster is repressed by HEP1 directly and indirectly. Results from this study point to a conserved mode of secondary metabolite (SM) biosynthesis regulation in fungi by chromatin modifications and the formation of facultative heterochromatin.
Collapse
Affiliation(s)
- Yazmid Reyes-Dominguez
- Fungal Genetics and Genomics Unit, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Science Vienna, University and Research Center Campus Tulln-Technopol, Konrad Lorenz Strasse 24, A-3430 Tulln, Austria
| | - Stefan Boedi
- Fungal Genetics and Genomics Unit, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Science Vienna, University and Research Center Campus Tulln-Technopol, Konrad Lorenz Strasse 24, A-3430 Tulln, Austria
| | - Michael Sulyok
- Center for Analytical Chemistry, Department for Agrobiotechnology, University of Natural Resources and Life Science Vienna, University and Research Center Campus Tulln-Technopol, Konrad Lorenz Strasse 24, A-3430 Tulln, Austria
| | - Gerlinde Wiesenberger
- Molecular Plant-Pathogen Interactions, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Science Vienna, University and Research Center Campus Tulln-Technopol, Konrad Lorenz Strasse 24, A-3430 Tulln, Austria
| | - Norbert Stoppacher
- Center for Analytical Chemistry, Department for Agrobiotechnology, University of Natural Resources and Life Science Vienna, University and Research Center Campus Tulln-Technopol, Konrad Lorenz Strasse 24, A-3430 Tulln, Austria
| | - Rudolf Krska
- Center for Analytical Chemistry, Department for Agrobiotechnology, University of Natural Resources and Life Science Vienna, University and Research Center Campus Tulln-Technopol, Konrad Lorenz Strasse 24, A-3430 Tulln, Austria
| | - Joseph Strauss
- Fungal Genetics and Genomics Unit, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Science Vienna, University and Research Center Campus Tulln-Technopol, Konrad Lorenz Strasse 24, A-3430 Tulln, Austria,Health and Environment Department, Austrian Institute of Technology GmbH - AIT, University and Research Center Campus Tulln-Technopol, Konrad Lorenz Strasse 24, A-3430 Tulln, Austria,Corresponding author at: Fungal Genetics and Genomics Unit, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Science Vienna, University and Research Center Campus Tulln-Technopol, Konrad Lorenz Strasse 24, A-3430 Tulln, Austria. Fax: +43 1 47654 6392.
| |
Collapse
|
14
|
Qian CJ, Yao J, Si JM. Nuclear JAK2: form and function in cancer. Anat Rec (Hoboken) 2011; 294:1446-59. [PMID: 21809458 DOI: 10.1002/ar.21443] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 05/19/2011] [Indexed: 12/23/2022]
Abstract
The conventional view of Janus kinase 2 (JAK2) is a nonreceptor tyrosine kinase which transmits information to the nucleus via the signal transducer and activator of transcriptions (STATs) without leaving the cytoplasm. However, accumulating data suggest that JAK2 may signal by exporting from cytoplasm to nucleus, where it guides the transcriptional machinery independent of STATs protein. Recent studies demonstrated that JAK2 is a crucial component of signaling pathways operating in the nucleus. Especially the latest landmark discovery confirmed that JAK2 goes into the nucleus and directly interacts with nucleoproteins, such as histone H3 at tyrosine 41 (H3Y41), nuclear factor 1-C2 (NF1-C2) and SWI/SNF-related helicases/ATPases (RUSH)-1α, indicating that JAK2 has a fresh nuclear function. Nuclear JAK2 is linked to a variety of cellular functions, such as cell cycle progression, apoptosis and genetic instability. The balance between these functions is an essential factor in determining whether a cell remains benign or becomes malignant. The aim of this review is intended to summarize the state of our knowledge on nuclear localization of JAK2 and nuclear JAK2 pathways, and to highlight the emerging roles for nuclear JAK2 in carcinogenesis.
Collapse
Affiliation(s)
- Cui-Juan Qian
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | | | | |
Collapse
|
15
|
Tell R, Rivera CA, Eskra J, Taglia LN, Blunier A, Wang QT, Benya RV. Gastrin-releasing peptide signaling alters colon cancer invasiveness via heterochromatin protein 1Hsβ. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:672-8. [PMID: 21281799 DOI: 10.1016/j.ajpath.2010.10.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 09/09/2010] [Accepted: 10/01/2010] [Indexed: 01/08/2023]
Abstract
Epithelial cells lining the adult colon do not normally express gastrin-releasing peptide (GRP) or its receptor (GRPR). In contrast, GRP/GRPR can be aberrantly expressed in colon cancer where they are associated with improved patient survival rates. However, the mechanism of action whereby these proteins mediate their beneficial effects is not known. Heterochromatin protein 1 is an epigenetic modifier of gene transcription for which three different isoforms exist in humans: HP1(Hsα), HP1(Hsβ), and HP1(Hsγ). In breast cancer and melanoma, respectively, HP1(Hsα) and HP1(Hsβ) have been shown to modulate the aggressiveness of tumor cells in vivo. In contrast, the role of HP1 in colon cancer has not been elucidated, and a mechanism of regulating the expression of any HP1 isoform in any context has not yet been identified. In this article we demonstrate that abrogating GRP/GRPR signaling specifically down-regulates HP1(Hsβ) expression and that inhibiting GRPR signaling, or ablating HP1(Hsβ) expression, increases colon cancer cell invasiveness in vitro. These findings identify for the first time a signaling pathway regulating heterochromatin protein expression and suggest a mechanism whereby aberrantly expressed GRPR might alter the outcome of patients with colorectal cancer.
Collapse
Affiliation(s)
- Robert Tell
- Departments of Medicine and Biological Sciences, UIC Cancer Center, University of Illinois at Chicago, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Identification of ChIP-seq mapped targets of HP1β due to bombesin/GRP receptor activation. Clin Epigenetics 2011; 2:331-8. [PMID: 22704345 PMCID: PMC3365384 DOI: 10.1007/s13148-011-0027-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 03/03/2011] [Indexed: 01/25/2023] Open
Abstract
Epithelial cells lining the adult colon do not normally express gastrin-releasing peptide (GRP) or its receptor (GRPR). In contrast, GRP/GRPR can be aberrantly expressed in human colorectal cancer (CRC) including Caco-2 cells. We have previously shown that GRPR activation results in the up-regulation of HP1β, an epigenetic modifier of gene transcription. The aim of this study was to identify the genes whose expression is altered by HP1β subsequent to GRPR activation. We determined HP1β binding positions throughout the genome using chromatin immunoprecipitation followed by massively parallel DNA sequencing (ChIP-seq). After exposure to GRP, we identified 9,625 genomic positions occupied by HP1β. We performed gene microarray analysis on Caco-2 cells in the absence and presence of a GRPR specific antagonist as well as siRNA to HP1β. The expression of 97 genes was altered subsequent to GRPR antagonism, while the expression of 473 genes was altered by HP1β siRNA exposure. When these data were evaluated in concert with our ChIP-seq findings, 9 genes showed evidence of possible altered expression as a function of GRPR signaling via HP1β. Of these, genomic PCR of immunoprecipitated chromatin demonstrated that GRPR signaling affected the expression of IL1RAPL2, FAM13A, GBE1, PLK3, and SLCO1B3. These findings provide the first evidence by which GRPR aberrantly expressed in CRC might affect tumor progression.
Collapse
|
17
|
Thomsen R, Christensen DB, Rosborg S, Linnet TE, Blechingberg J, Nielsen AL. Analysis of HP1α regulation in human breast cancer cells. Mol Carcinog 2011; 50:601-13. [PMID: 21374739 DOI: 10.1002/mc.20755] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 01/10/2011] [Accepted: 01/27/2011] [Indexed: 12/20/2022]
Abstract
The three mammalian HP1 proteins, HP1α/CBX5, HP1β/CBX1, and HPγ/CBX3, are involved in chromatin packing and gene regulation. The HP1α protein is down-regulated in invasive compared to non-invasive breast cancer cells and HP1α is a suppressor of cell migration and invasion. In this report, we examined the background for HP1α protein down-regulation in invasive breast cancer cells. We identified a strict correlation between HP1α down-regulation at the protein level and the mRNA level. The HP1α mRNA down-regulation in invasive cancer cells was not caused by mRNA destabilization. Chromatin immunoprecipitation analysis of the HP1α gene showed a decrease in the histone mark for transcriptional activity H3-K36 tri-methylation and RNA polymerase II in invasive breast cancer cells which correlated with a decreased abundance of basal transcription factors at the HP1α promoter. E2F transcription factors regulate HP1α transcription and we identified that E2F5 depletion increased HP1α expression in invasive breast cancer cells. Finally, we have characterized two HP1α mRNA isoforms and both HP1α mRNA isoforms were down-regulated to a similar extend at the transcriptional level in invasive breast cancer cells. Collectively the presented results show that HP1α down-regulation in invasive breast cancer cells is primary a transcriptional effect and demonstrates a novel set of mechanisms involved in HP1α transcriptional regulation. The finding that HP1α is down-regulated primarily at the transcriptional level provides a new insight for the further elucidation of the detailed molecular mechanisms causing the HP1α down-regulation in invasive breast cancer cells.
Collapse
Affiliation(s)
- Rune Thomsen
- Department of Human Genetics, Aarhus University, Denmark
| | | | | | | | | | | |
Collapse
|
18
|
Velichko AK, Kantidze OL, Razin SV. HP1α is not necessary for the structural maintenance of centromeric heterochromatin. Epigenetics 2011; 6:380-7. [PMID: 20962594 DOI: 10.4161/epi.6.3.13866] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Heterochromatin protein 1 (HP1) was discovered as a protein essential for maintaining the silent transcriptional status of genes located within or close to centromeric regions of Drosophila chromosomes. Mammals express three variants of HP1; of these, HP1α is a direct homolog of Drosophila HP1. The prevailing view states that HP1 is a structural component of heterochromatin and is essential for compact DNA packaging. HP1 contains a chromodomain that binds to di- and- tri-methylated lysine 9 of histone H3. Additionally, it contains a chromoshadow domain that allows HP1 to dimerize and interact with other proteins. HP1 is thought to form "bridges" between neighboring rows of nucleosomes in heterochromatin. In mammalian cells, a significant portion of HP1α is located in the centromeric regions of chromosomes. In this study, we show that the majority of HP1α is removed from centromeres upon heat shock. This occurs without a loss of H3K9 trimethylation and does not correlate with a decompaction of centromeres. Furthermore, HP1α is not degraded and remains bound to chromatin. Therefore, it is likely that HP1α is simply redistributed to euchromatic regions. We propose that this redistribution is essential for reversal of the transcriptional status of euchromatic and heterochromatic compartments.
Collapse
Affiliation(s)
- Artem K Velichko
- Laboratory of Structural and Functional Organization of Chromosomes, Institute of Gene Biology of the Russian Academy of Sciences, Moscow, Russia
| | | | | |
Collapse
|
19
|
Lieberthal JG, Kaminsky M, Parkhurst CN, Tanese N. The role of YY1 in reduced HP1alpha gene expression in invasive human breast cancer cells. Breast Cancer Res 2009; 11:R42. [PMID: 19566924 PMCID: PMC2716511 DOI: 10.1186/bcr2329] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Revised: 05/31/2009] [Accepted: 06/30/2009] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Heterochromatin protein 1 (HP1) associates with chromatin by binding to histone H3 and contributes to gene silencing. There are three isoforms of HP1 in mammals: HP1alpha, beta, and gamma. Studies have shown that the level of HP1alpha is reduced in invasive human breast cancer cell lines such as MDA-MB-231 and HS578T compared with non-invasive cell lines such as MCF7 and T47D. It is hypothesized that reduced HP1alpha expression may lead to impaired epigenetic silencing of genes that are important in the acquisition of an invasive phenotype. We set out to determine whether reduced expression of HP1alpha in invasive breast cancer cell lines occurs at the level of transcription. METHODS We used transient transfection assays to investigate the mechanism of differential transcriptional activity of the human HP1alpha gene promoter in different cell lines. Mutational analysis of putative transcription factor binding sites in an HP1alpha gene reporter construct was performed to identify transcription factors responsible for the differential activity. SiRNA-mediated knockdown and chromatin immunoprecipitation experiments were performed to determine the role of a specific transcription factor in regulating the HP1alpha gene. RESULTS The transcription factor yin yang 1 (YY1) was found to play a role in differential transcriptional activity of the HP1alpha gene. Examination of the YY1 protein and mRNA levels revealed that both were reduced in the invasive cell line HS578T compared with MCF7 cells. YY1 knockdown in MCF7 cells resulted in a decreased level of HP1alpha mRNA, indicating that YY1 positively regulates HP1alpha expression. Chromatin immunoprecipitation experiments verified YY1 occupancy at the HP1alpha gene promoter in MCF7 cells but not HS578T cells. Overexpression of YY1 in HS578T cells decreased cell migration in a manner independent of HP1alpha overexpression. CONCLUSIONS Our data suggests that a reduction of YY1 expression in breast cancer cells could contribute to the acquisition of an invasive phenotype through increased cell migration as well as by reduced expression of HP1alpha.
Collapse
Affiliation(s)
- Jason G Lieberthal
- Department of Microbiology and NYU Cancer Institute, New York University School of Medicine, 550 First Avenue, New York, NY 10016
| | - Marissa Kaminsky
- Department of Microbiology and NYU Cancer Institute, New York University School of Medicine, 550 First Avenue, New York, NY 10016
| | - Christopher N Parkhurst
- Department of Microbiology and NYU Cancer Institute, New York University School of Medicine, 550 First Avenue, New York, NY 10016
| | - Naoko Tanese
- Department of Microbiology and NYU Cancer Institute, New York University School of Medicine, 550 First Avenue, New York, NY 10016
| |
Collapse
|
20
|
Anaka M, Lynn A, McGinn P, Lloyd VK. Genomic imprinting in Drosophila has properties of both mammalian and insect imprinting. Dev Genes Evol 2009; 219:59-66. [PMID: 19031081 DOI: 10.1007/s00427-008-0267-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Accepted: 10/29/2008] [Indexed: 11/30/2022]
Abstract
Genomic imprinting is a process that marks DNA, causing a change in gene or chromosome behavior, depending on the sex of the transmitting parent. In mammals, most examples of genomic imprinting affect the transcription of individual or small clusters of genes whereas in insects, genomic imprinting tends to silence entire chromosomes. This has been interpreted as evidence of independent evolutionary origins for imprinting. To investigate how these types of imprinting are related, we performed a phenotypic, molecular, and cytological analysis of an imprinted chromosome in Drosophila melanogaster. Analysis of this chromosome reveals that the imprint results in transcriptional silencing. Yet, the domain of transcriptional silencing is very large, extending at least 1.2 Mb and encompassing over 100 genes, and is associated with decreased somatic polytenization of the entire chromosome. We propose that repression of somatic replication in polytenized cells, as a secondary response to the imprint, acts to extend the size of the imprinted domain to an entire chromosome. Thus, imprinting in Drosophila has properties of both typical mammalian and insect imprinting which suggests that genomic imprinting in Drosophila and mammals is not fundamentally different; imprinting is manifest as transcriptional silencing of a few genes or silencing of an entire chromosome depending on secondary processes such as differences in gene density and polytenization.
Collapse
Affiliation(s)
- Matthew Anaka
- Department of Biology, Mt. Allison University, 63B York Street, Sackville, New Brunswick, Canada
| | | | | | | |
Collapse
|
21
|
Dialynas GK, Vitalini MW, Wallrath LL. Linking Heterochromatin Protein 1 (HP1) to cancer progression. Mutat Res 2008; 647:13-20. [PMID: 18926834 DOI: 10.1016/j.mrfmmm.2008.09.007] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
All cells of a given organism contain nearly identical genetic information, yet tissues display unique gene expression profiles. This specificity is in part due to transcriptional control by epigenetic mechanisms that involve post-translational modifications of histones. These modifications affect the folding of the chromatin fiber and serve as binding sites for non-histone chromosomal proteins. Here we discuss functions of the Heterochromatin Protein 1 (HP1) family of proteins that recognize H3K9me, an epigenetic mark generated by the histone methyltransferases SU(VAR)3-9 and orthologues. Loss of HP1 proteins causes chromosome segregation defects and lethality in some organisms; a reduction in levels of HP1 family members is associated with cancer progression in humans. These consequences are likely due to the role of HP1 in centromere stability, telomere capping and the regulation of euchromatic and heterochromatic gene expression.
Collapse
Affiliation(s)
- George K Dialynas
- Department of Biochemistry, 3136 MERF, University of Iowa, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
22
|
Zhou J, Wang Q, Chen LL, Carmichael GG. On the mechanism of induction of heterochromatin by the RNA-binding protein vigilin. RNA (NEW YORK, N.Y.) 2008; 14:1773-1781. [PMID: 18648073 PMCID: PMC2525967 DOI: 10.1261/rna.1036308] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Accepted: 05/22/2008] [Indexed: 05/26/2023]
Abstract
Vigilin is an RNA-binding protein localized to both the cytoplasm and the nucleus and has been previously implicated in heterochromatin formation and chromosome segregation. We demonstrate here that the C-terminal domain of human vigilin binds to the histone methyltransferase SUV39H1 in vivo. This association is independent of RNA and maps to a site on vigilin that is not involved in its interaction with several other known protein partners. Cells that express high levels of the C-terminal fragment display chromosome segregation defects, and ChIP analyses show changes in the status of pericentric beta-satellite and rDNA chromatin from heterochromatic to more euchromatic form. Finally, a cell line with inducible expression of the vigilin C-terminal fragment displays inducible alterations in beta-satellite chromatin. These and other results lead us to present a new model for vigilin-mediated, RNA-induced gene silencing.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Genetics and Developmental Biology, University of Connecticut Stem Cell Institute, University of Connecticut Health Center, Farmington, Connecticut 06030-3301, USA
| | | | | | | |
Collapse
|
23
|
Moss TJ, Wallrath LL. Connections between epigenetic gene silencing and human disease. Mutat Res 2007; 618:163-74. [PMID: 17306846 PMCID: PMC1892579 DOI: 10.1016/j.mrfmmm.2006.05.038] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Accepted: 05/25/2006] [Indexed: 04/15/2023]
Abstract
Alterations in epigenetic gene regulation are associated with human disease. Here, we discuss connections between DNA methylation and histone methylation, providing examples in which defects in these processes are linked with disease. Mutations in genes encoding DNA methyltransferases and proteins that bind methylated cytosine residues cause changes in gene expression and alterations in the patterns of DNA methylation. These changes are associated with cancer and congenital diseases due to defects in imprinting. Gene expression is also controlled through histone methylation. Altered levels of methyltransferases that modify lysine 27 of histone H3 (K27H3) and lysine 9 of histone H3 (K9H3) correlate with changes in Rb signaling and disruption of the cell cycle in cancer cells. The K27H3 mark recruits a Polycomb complex involved in regulating stem cell pluripotency, silencing of developmentally regulated genes, and controlling cancer progression. The K9H3 methyl mark recruits HP1, a structural protein that plays a role in heterochromatin formation, gene silencing, and viral latency. Cells exhibiting altered levels of HP1 are predicted to show a loss of silencing at genes regulating cancer progression. Gene silencing through K27H3 and K9H3 can involve histone deacetylation and DNA methylation, suggesting cross talk between epigenetic silencing systems through direct interactions among the various players. The reversible nature of these epigenetic modifications offers therapeutic possibilities for a wide spectrum of disease.
Collapse
Affiliation(s)
- Timothy J Moss
- Department of Biochemistry, 3136 MERF, University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
24
|
Abstract
Genomic imprinting is a process that genetically distinguishes maternal and paternal genomes, and can result in parent-of-origin-dependent monoallelic expression of a gene that is dependent on the parent of origin. As such, an otherwise functional maternally inherited allele may be silenced so that the gene is expressed exclusively from the paternal allele, or vice versa. Once thought to be restricted to mammals, genomic imprinting has been documented in angiosperm plants (J.L. Kermicle. 1970. Genetics, 66: 69-85), zebrafish (C.C. Martin and R. McGowan. 1995. Genet. Res. 65: 21-28), insects, and C. elegans (C.J. Bean, C.E. Schaner, and W.G. Kelly. 2004. Nat. Genet. 36: 100-105.). In each case, it appears to rely on differential chromatin structure. Aberrant imprinting has been implicated in various human cancers and has been detected in a number of cloned mammals, potentially limiting the usefulness of somatic nuclear transfer. Here we show that genomic imprinting associated with a mini-X chromosome is lost in Drosophila melanogaster clones.
Collapse
Affiliation(s)
- Andrew J Haigh
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | |
Collapse
|
25
|
Abstract
Mutations in >30 genes that regulate different pathways and developmental processes are reported to cause a melanotic phenotype in larvae. The observed melanotic masses were generally linked to the hemocyte-mediated immune response. To investigate whether all black masses are associated with the cellular immune response, we characterized melanotic masses from mutants in 14 genes. We found that the melanotic masses can be subdivided into melanotic nodules engaging the hemocyte-mediated encapsulation and into melanizations that are not encapsulated by hemocytes. With rare exception, the encapsulation is carried out by lamellocytes. Encapsulated nodules are found in the hemocoel or in association with the lymph gland, while melanizations are located in the gut, salivary gland, and tracheae. In cactus mutants we found an additional kind of melanized mass containing various tissues. The development of these tissue agglomerates is dependent on the function of the dorsal gene. Our results show that the phenotype of each mutant not only reflects its connection to a particular genetic pathway but also points to the tissue-specific role of the individual gene.
Collapse
Affiliation(s)
- Svetlana Minakhina
- Waksman Institute, Department of Molecular Biology and Biochemistry, Cancer Institute of New Jersey, Rutgers University, Piscataway, New Jersey 08854-8020, USA
| | | |
Collapse
|
26
|
Norwood LE, Moss TJ, Margaryan NV, Cook SL, Wright L, Seftor EA, Hendrix MJC, Kirschmann DA, Wallrath LL. A requirement for dimerization of HP1Hsalpha in suppression of breast cancer invasion. J Biol Chem 2006; 281:18668-76. [PMID: 16648629 DOI: 10.1074/jbc.m512454200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The development and progression of cancer is controlled by gene expression, often regulated through chromatin packaging. Heterochromatin protein 1(Hsalpha) (HP1(Hsalpha)), one of three human HP1 family members, participates in heterochromatin formation and gene regulation. HP1(Hsalpha) possesses an amino-terminal chromodomain, which binds methylated lysine 9 of histone H3 (meK9 H3), and a carboxyl-terminal chromoshadow domain (CSD) that is required for dimerization and interaction with partner proteins. HP1(Hsalpha) is down-regulated in invasive metastatic breast cancer cells compared with poorly invasive nonmetastatic breast cancer cells. Expression of EGFP-HP1(Hsalpha) in highly invasive MDA-MB-231 cells causes a reduction in in vitro invasion, without affecting cell growth. Conversely, knock-down of HP1(Hsalpha) levels in the poorly invasive breast cancer cell line MCF-7 increased invasion, without affecting cell growth. To determine whether functions of the CSD were required for the regulation of invasion, mutant forms of HP1(Hsalpha) were expressed in MDA-MB-231 cells. A W174A mutation that disrupts interactions between HP1(Hsalpha) and PXVXL-containing partner proteins reduced invasion similar to that of the wild type protein. In contrast, an I165E mutation that disrupts dimerization of HP1(Hsalpha) did not decrease invasion. No gross changes in localization and abundance of HP1(Hsbeta), HP1(Hsgamma), and meK9 H3 were observed upon expression of wild type and mutant forms of HP1(Hsalpha) in MDA-MB-231 cells. Taken together, these data demonstrate that modulation of HP1(Hsalpha) alters the invasive potential of breast cancer cells through mechanisms requiring HP1 dimerization, but not interactions with PXVXL-containing proteins.
Collapse
Affiliation(s)
- Laura E Norwood
- Department of Biochemistry, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Huisinga KL, Brower-Toland B, Elgin SCR. The contradictory definitions of heterochromatin: transcription and silencing. Chromosoma 2006; 115:110-22. [PMID: 16506022 DOI: 10.1007/s00412-006-0052-x] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Revised: 01/11/2006] [Accepted: 01/12/2006] [Indexed: 01/30/2023]
Abstract
Eukaryotic genomes are packaged in two general varieties of chromatin: gene-rich euchromatin and gene-poor heterochromatin. Each type of chromatin has been defined by the presence of distinct chromosomal proteins and posttranslational histone modifications. This review addresses recent findings that appear to blur the definitions of euchromatin and heterochromatin by pointing to the presence of typically heterochromatic modifications (including H3K9me) in euchromatin and typically euchromatic enzymes (including RNA polymerases) in heterochromatin. We discuss the implications of these new findings for the current definition of heterochromatin.
Collapse
Affiliation(s)
- Kathryn L Huisinga
- Department of Biology, Washington University, Saint Louis, MO 63130, USA
| | | | | |
Collapse
|
28
|
Abstract
Heterochromatin Protein 1 (HP1) was first discovered in Drosophila as a dominant suppressor of position-effect variegation and a major component of heterochromatin. The HP1 family is evolutionarily conserved, with members in fungi, plants and animals but not prokaryotes, and there are multiple members within the same species. The amino-terminal chromodomain binds methylated lysine 9 of histone H3, causing transcriptional repression. The highly conserved carboxy-terminal chromoshadow domain enables dimerization and also serves as a docking site for proteins involved in a wide variety of nuclear functions, from transcription to nuclear architecture. In addition to heterochromatin packaging, it is becoming increasingly clear that HP1 proteins have diverse roles in the nucleus, including the regulation of euchromatic genes. HP1 proteins are amenable to posttranslational modifications that probably regulate these distinct functions, thereby creating a subcode within the context of the 'histone code' of histone posttranslational modifications.
Collapse
Affiliation(s)
- Gwen Lomberk
- Gastroenterology Research Unit, Saint Mary's Hospital, Mayo Clinic, Rochester, MN 55905, USA
| | - Lori Wallrath
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Raul Urrutia
- Gastroenterology Research Unit, Saint Mary's Hospital, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
29
|
Wang Q, Zhang Z, Blackwell K, Carmichael GG. Vigilins bind to promiscuously A-to-I-edited RNAs and are involved in the formation of heterochromatin. Curr Biol 2005; 15:384-91. [PMID: 15723802 DOI: 10.1016/j.cub.2005.01.046] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2004] [Revised: 11/27/2004] [Accepted: 11/30/2004] [Indexed: 01/09/2023]
Abstract
The fate of double-stranded RNA (dsRNA) in the cell depends on both its length and location . The expression of dsRNA in the nucleus leads to several distinct consequences. First, the promiscuous deamination of adenosines to inosines by dsRNA-specific adenosine deaminase (ADAR) can lead to the nuclear retention of edited transcripts . Second, dsRNAs might induce heterochromatic gene silencing through an RNAi-related mechanism . Is RNA editing also connected to heterochromatin? We report that members of the conserved Vigilin class of proteins have a high affinity for inosine-containing RNAs. In agreement with other work , we find that these proteins localize to heterochromatin and that mutation or depletion of the Drosophila Vigilin, DDP1, leads to altered nuclear morphology and defects in heterochromatin and chromosome segregation. Furthermore, nuclear Vigilin is found in complexes containing not only the editing enzyme ADAR1 but also RNA helicase A and Ku86/70. In the presence of RNA, the Vigilin complex recruits the DNA-PKcs enzyme, which appears to phosphorylate a discrete set of targets, some or all of which are known to participate in chromatin silencing. These results are consistent with a mechanistic link between components of the DNA-repair machinery and RNA-mediated gene silencing.
Collapse
Affiliation(s)
- Qiaoqiao Wang
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, CT 06030 USA
| | | | | | | |
Collapse
|
30
|
Abstract
Heterochromatin Protein 1 (HP1) is a structural component of silent chromatin at telomeres and centromeres. Euchromatic genes repositioned near heterochromatin by chromosomal rearrangements are typically silenced in an HP1-dependent manner. Silencing is thought to involve the spreading of heterochromatin proteins over the rearranged genes. HP1 associates with centric heterochromatin through an interaction with methylated lysine 9 of histone H3, a modification generated by SU(VAR)3-9. The current model for spreading of silent chromatin involves HP1-dependent recruitment of SU(VAR)3-9, resulting in the methylation of adjacent nucleosomes and association of HP1 along the chromatin fiber. To address mechanisms of silent chromatin formation and spreading, HP1 was fused to the DNA-binding domain of the E. coli lacI repressor and expressed in Drosophila melanogaster stocks carrying heat shock reporter genes positioned 1.9 and 3.7 kb downstream of lac operator repeats. Association of lacI-HP1 with the repeats resulted in silencing of both reporter genes and correlated with a closed chromatin structure consisting of regularly spaced nucleosomes, similar to that observed in centric heterochromatin. Chromatin immunoprecipitation experiments demonstrated that HP1 spread bi-directionally from the tethering site and associated with the silenced reporter transgenes. To examine mechanisms of spreading, the effects of a mutation in Su(var)3-9 were investigated. Silencing was minimally affected at 1.9 kb, but eliminated at 3.7 kb, suggesting that HP1-mediated silencing can operate in a SU(VAR)3-9-independent and -dependent manner.
Collapse
Affiliation(s)
- John R Danzer
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|