1
|
Liu R, Liang X, Guo H, Li S, Yao W, Dong C, Wu J, Lu Y, Tang J, Zhang H. STNM1 in human cancers: role, function and potential therapy sensitizer. Cell Signal 2023:110775. [PMID: 37331415 DOI: 10.1016/j.cellsig.2023.110775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/23/2023] [Accepted: 06/14/2023] [Indexed: 06/20/2023]
Abstract
STMN1 belongs to the stathmin gene family, it encodes a cytoplasmic phosphorylated protein, stathmin1, which is commonly observed in vertebrate cells. STMN1 is a structural microtubule-associated protein (MAP) that binds to microtubule protein dimers rather than microtubules, with each STMN1 binding two microtubule protein dimers and preventing their aggregation, leading to microtubule instability. STMN1 expression is elevated in a number of malignancies, and inhibition of its expression can interfere with tumor cell division. Its expression can change the division of tumor cells, thereby arresting cell growth in the G2/M phase. Moreover, STMN1 expression affects tumor cell sensitivity to anti-microtubule drug analogs, including vincristine and paclitaxel. The research on MAPs is limited, and new insights on the mechanism of STMN1 in different cancers are emerging. The effective application of STMN1 in cancer prognosis and treatment requires further understanding of this protein. Here, we summarize the general characteristics of STMN1 and outline how STMN1 plays a role in cancer development, targeting multiple signaling networks and acting as a downstream target for multiple microRNAs, circRNAs, and lincRNAs. We also summarize recent findings on the function role of STMN1 in tumor resistance and as a therapeutic target for cancer.
Collapse
Affiliation(s)
- Ruiqi Liu
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou Medical College, Hangzhou, Zhejiang, China; Graduate Department, Bengbu Medical College, Bengbu, Anhui, China
| | - Xiaodong Liang
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou Medical College, Hangzhou, Zhejiang, China; Graduate Department, Bengbu Medical College, Bengbu, Anhui, China
| | - Haiwei Guo
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital, (Affiliated People's Hospital Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Shuang Li
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Weiping Yao
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou Medical College, Hangzhou, Zhejiang, China; Graduate Department, Bengbu Medical College, Bengbu, Anhui, China
| | - Chenfang Dong
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou Medical College, Hangzhou, Zhejiang, China; Zhejiang Key Laboratory for Disease Proteomics, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiajun Wu
- Graduate Department, Bengbu Medical College, Bengbu, Anhui, China; Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital, (Affiliated People's Hospital Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Yanwei Lu
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jianming Tang
- Department of Radiation Oncology, The First Hospital of Lanzhou University, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Haibo Zhang
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Lyu J, Yang EJ, Zhang B, Wu C, Pardeshi L, Shi C, Mou PK, Liu Y, Tan K, Shim JS. Synthetic lethality of RB1 and aurora A is driven by stathmin-mediated disruption of microtubule dynamics. Nat Commun 2020; 11:5105. [PMID: 33037191 PMCID: PMC7547687 DOI: 10.1038/s41467-020-18872-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 09/16/2020] [Indexed: 11/13/2022] Open
Abstract
RB1 mutational inactivation is a cancer driver in various types of cancer including lung cancer, making it an important target for therapeutic exploitation. We performed chemical and genetic vulnerability screens in RB1-isogenic lung cancer pair and herein report that aurora kinase A (AURKA) inhibition is synthetic lethal in RB1-deficient lung cancer. Mechanistically, RB1-/- cells show unbalanced microtubule dynamics through E2F-mediated upregulation of the microtubule destabilizer stathmin and are hypersensitive to agents targeting microtubule stability. Inhibition of AURKA activity activates stathmin function via reduced phosphorylation and facilitates microtubule destabilization in RB1-/- cells, heavily impacting the bipolar spindle formation and inducing mitotic cell death selectively in RB1-/- cells. This study shows that stathmin-mediated disruption of microtubule dynamics is critical to induce synthetic lethality in RB1-deficient cancer and suggests that upstream factors regulating microtubule dynamics, such as AURKA, can be potential therapeutic targets in RB1-deficient cancer.
Collapse
Affiliation(s)
- Junfang Lyu
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, SAR, China
| | - Eun Ju Yang
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, SAR, China
| | - Baoyuan Zhang
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, SAR, China
| | - Changjie Wu
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, SAR, China
| | - Lakhansing Pardeshi
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, SAR, China
| | - Changxiang Shi
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, SAR, China
| | - Pui Kei Mou
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, SAR, China
| | - Yifan Liu
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, SAR, China
| | - Kaeling Tan
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, SAR, China
| | - Joong Sup Shim
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, SAR, China.
| |
Collapse
|
3
|
Balta EA, Schäffner I, Wittmann MT, Sock E, von Zweydorf F, von Wittgenstein J, Steib K, Heim B, Kremmer E, Häberle BM, Ueffing M, Lie DC, Gloeckner CJ. Phosphorylation of the neurogenic transcription factor SOX11 on serine 133 modulates neuronal morphogenesis. Sci Rep 2018; 8:16196. [PMID: 30385877 PMCID: PMC6212486 DOI: 10.1038/s41598-018-34480-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/25/2018] [Indexed: 02/07/2023] Open
Abstract
The intellectual disability gene, Sox11, encodes for a critical neurodevelopmental transcription factor with functions in precursor survival, neuronal fate determination, migration and morphogenesis. The mechanisms regulating SOX11’s activity remain largely unknown. Mass spectrometric analysis uncovered that SOX11 can be post-translationally modified by phosphorylation. Here, we report that phosphorylatable serines surrounding the high-mobility group box modulate SOX11’s transcriptional activity. Through Mass Spectrometry (MS), co-immunoprecipitation assays and in vitro phosphorylation assays followed by MS we verified that protein kinase A (PKA) interacts with SOX11 and phosphorylates it on S133. In vivo replacement of SoxC factors in developing adult-generated hippocampal neurons with SOX11 S133 phospho-mutants indicated that phosphorylation on S133 modulates dendrite development of adult-born dentate granule neurons, while reporter assays suggested that S133 phosphorylation fine-tunes the activation of select target genes. These data provide novel insight into the control of the critical neurodevelopmental regulator SOX11 and imply SOX11 as a mediator of PKA-regulated neuronal development.
Collapse
Affiliation(s)
- Elli-Anna Balta
- Institute of Biochemistry, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Iris Schäffner
- Institute of Biochemistry, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Marie-Theres Wittmann
- Institute of Biochemistry, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Elisabeth Sock
- Institute of Biochemistry, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Felix von Zweydorf
- DZNE-German Center for Neurodegenerative Diseases, 72076, Tübingen, Germany
| | - Julia von Wittgenstein
- Institute of Biochemistry, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Kathrin Steib
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Birgit Heim
- University of Tübingen, Institute for Ophthalmic Research, Center for Ophthalmology, 72076, Tübingen, Germany
| | - Elisabeth Kremmer
- Monoclonal Antibody Core Facility, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Benjamin Martin Häberle
- Institute of Biochemistry, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Marius Ueffing
- University of Tübingen, Institute for Ophthalmic Research, Center for Ophthalmology, 72076, Tübingen, Germany
| | - Dieter Chichung Lie
- Institute of Biochemistry, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054, Erlangen, Germany.
| | - Christian Johannes Gloeckner
- DZNE-German Center for Neurodegenerative Diseases, 72076, Tübingen, Germany. .,University of Tübingen, Institute for Ophthalmic Research, Center for Ophthalmology, 72076, Tübingen, Germany.
| |
Collapse
|
4
|
Vastrad C, Vastrad B. Bioinformatics analysis of gene expression profiles to diagnose crucial and novel genes in glioblastoma multiform. Pathol Res Pract 2018; 214:1395-1461. [PMID: 30097214 DOI: 10.1016/j.prp.2018.07.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 06/27/2018] [Accepted: 07/22/2018] [Indexed: 02/07/2023]
Abstract
Therefore, the current study aimed to diagnose the genes associated in the pathogenesis of GBM. The differentially expressed genes (DEGs) were diagnosed using the limma software package. The ToppFun was used to perform pathway and Gene Ontology (GO) enrichment analysis of the DEGs. Protein-protein interaction (PPI) networks, extracted modules, miRNA-target genes regulatory network and miRNA-target genes regulatory network were used to obtain insight into the actions of DEGs. Survival analysis for DEGs carried out. A total of 701 DEGs, including 413 upregulated and 288 downregulated genes, were diagnosed between U1118MG cell line (PK 11195 treated with 1 h exposure) and U1118MG cell line (PK 11195 treated with 24 h exposure). The up-regulated genes were enriched in superpathway of pyrimidine deoxyribonucleotides de novo biosynthesis, cell cycle, cell cycle process and chromosome. The down-regulated genes were enriched in folate transformations I, biosynthesis of amino acids, cellular amino acid metabolic process and vacuolar membrane. The current study screened the genes in PPI network, extracted modules, miRNA-target genes regulatory network and miRNA-target genes regulatory network with higher degrees as hub genes, which included MYC, TERF2IP, CDK1, EEF1G, TXNIP, SLC1A5, RGS4 and IER5L Survival suggested that low expressed NR4A2, SLC7 A5, CYR61 and ID1 in patients with GBM was linked with a positive prognosis for overall survival. In conclusion, the current study could improve our understanding of the molecular mechanisms in the progression of GBM, and these crucial as well as new molecular markers might be used as therapeutic targets for GBM.
Collapse
Affiliation(s)
- Chanabasayya Vastrad
- Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad, 580001, Karanataka, India.
| | - Basavaraj Vastrad
- Department of Pharmaceutics, SET`S College of Pharmacy, Dharwad, Karnataka, 580002, India
| |
Collapse
|
5
|
Adam MG, Matt S, Christian S, Hess-Stumpp H, Haegebarth A, Hofmann TG, Algire C. SIAH ubiquitin ligases regulate breast cancer cell migration and invasion independent of the oxygen status. Cell Cycle 2016; 14:3734-47. [PMID: 26654769 PMCID: PMC4825722 DOI: 10.1080/15384101.2015.1104441] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Seven-in-absentia homolog (SIAH) proteins are evolutionary conserved RING type E3 ubiquitin ligases responsible for the degradation of key molecules regulating DNA damage response, hypoxic adaptation, apoptosis, angiogenesis, and cell proliferation. Many studies suggest a tumorigenic role for SIAH2. In breast cancer patients SIAH2 expression levels correlate with cancer aggressiveness and overall patient survival. In addition, SIAH inhibition reduced metastasis in melanoma. The role of SIAH1 in breast cancer is still ambiguous; both tumorigenic and tumor suppressive functions have been reported. Other studies categorized SIAH ligases as either pro- or antimigratory, while the significance for metastasis is largely unknown. Here, we re-evaluated the effects of SIAH1 and SIAH2 depletion in breast cancer cell lines, focusing on migration and invasion. We successfully knocked down SIAH1 and SIAH2 in several breast cancer cell lines. In luminal type MCF7 cells, this led to stabilization of the SIAH substrate Prolyl Hydroxylase Domain protein 3 (PHD3) and reduced Hypoxia-Inducible Factor 1α (HIF1α) protein levels. Both the knockdown of SIAH1 or SIAH2 led to increased apoptosis and reduced proliferation, with comparable effects. These results point to a tumor promoting role for SIAH1 in breast cancer similar to SIAH2. In addition, depletion of SIAH1 or SIAH2 also led to decreased cell migration and invasion in breast cancer cells. SIAH knockdown also controlled microtubule dynamics by markedly decreasing the protein levels of stathmin, most likely via p27(Kip1). Collectively, these results suggest that both SIAH ligases promote a migratory cancer cell phenotype and could contribute to metastasis in breast cancer.
Collapse
Affiliation(s)
- M Gordian Adam
- a Cellular Senescence Group ; German Cancer Research Center DKFZ ; Heidelberg , Germany.,b GTRG Oncology II; GDD; Bayer Pharma AG ; Berlin , Germany
| | - Sonja Matt
- a Cellular Senescence Group ; German Cancer Research Center DKFZ ; Heidelberg , Germany
| | - Sven Christian
- b GTRG Oncology II; GDD; Bayer Pharma AG ; Berlin , Germany
| | | | | | - Thomas G Hofmann
- a Cellular Senescence Group ; German Cancer Research Center DKFZ ; Heidelberg , Germany
| | - Carolyn Algire
- b GTRG Oncology II; GDD; Bayer Pharma AG ; Berlin , Germany
| |
Collapse
|
6
|
Alesi GN, Jin L, Li D, Magliocca KR, Kang Y, Chen ZG, Shin DM, Khuri FR, Kang S. RSK2 signals through stathmin to promote microtubule dynamics and tumor metastasis. Oncogene 2016; 35:5412-5421. [PMID: 27041561 DOI: 10.1038/onc.2016.79] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 02/01/2016] [Accepted: 02/13/2016] [Indexed: 12/16/2022]
Abstract
Metastasis is responsible for >90% of cancer-related deaths. Complex signaling in cancer cells orchestrates the progression from a primary to a metastatic cancer. However, the mechanisms of these cellular changes remain elusive. We previously demonstrated that p90 ribosomal S6 kinase 2 (RSK2) promotes tumor metastasis. Here we investigated the role of RSK2 in the regulation of microtubule dynamics and its potential implication in cancer cell invasion and tumor metastasis. Stable knockdown of RSK2 disrupted microtubule stability and decreased phosphorylation of stathmin, a microtubule-destabilizing protein, at serine 16 in metastatic human cancer cells. We found that RSK2 directly binds and phosphorylates stathmin at the leading edge of cancer cells. Phosphorylation of stathmin by RSK2 reduced stathmin-mediated microtubule depolymerization. Moreover, overexpression of phospho-mimetic mutant stathmin S16D significantly rescued the decreased invasive and metastatic potential mediated by RSK2 knockdown in vitro and in vivo. Furthermore, stathmin phosphorylation positively correlated with RSK2 expression and metastatic cancer progression in primary patient tumor samples. Our finding demonstrates that RSK2 directly phosphorylates stathmin and regulates microtubule polymerization to provide a pro-invasive and pro-metastatic advantage to cancer cells. Therefore, the RSK2-stathmin pathway represents a promising therapeutic target and a prognostic marker for metastatic human cancers.
Collapse
Affiliation(s)
- G N Alesi
- Winship Cancer Institute, Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - L Jin
- Winship Cancer Institute, Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - D Li
- Winship Cancer Institute, Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - K R Magliocca
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Y Kang
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Z G Chen
- Winship Cancer Institute, Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - D M Shin
- Winship Cancer Institute, Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - F R Khuri
- Winship Cancer Institute, Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - S Kang
- Winship Cancer Institute, Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
7
|
Chen X, Shen J, Li X, Wang X, Long M, Lin F, Wei J, Yang L, Yang C, Dong K, Zhang H. Rlim, an E3 ubiquitin ligase, influences the stability of Stathmin protein in human osteosarcoma cells. Cell Signal 2014; 26:1532-8. [PMID: 24686088 DOI: 10.1016/j.cellsig.2014.03.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 03/14/2014] [Accepted: 03/14/2014] [Indexed: 12/21/2022]
Abstract
Stathmin is an oncoprotein and is expressed at high levels in a wide variety of human malignancies, which plays important roles in maintenance of malignant phenotypes. The regulation of Stathmin gene overexpression has been wildly explored, but the exact mechanism still needs to be elucidated. It is believed that regulation of an oncogene protein abundance through post-translational modifications is essential for maintenance of malignant phenotypes. Here we identified the Rlim, a Ring H2 zinc finger protein with intrinsic ubiquitin ligase activity, as a Stathmin-interacting protein that could increase Stathmin turnover through binding with this targeted protein and then induce its degradation by proteasome in a ubiquitin-dependent manner. Inhibition of endogenous Rlim expression by siRNA could increase the level of Stathmin protein, which further led to cell proliferation and cell cycle changes in human osteosarcoma cell lines. On the other hand, forced overexpression of Rlim could decrease the level of Stathmin protein. These results demonstrate that Rlim is involved in the negative regulation of Stathmin protein level through physical interaction and ubiquitin-mediated proteolysis. Hence, Rlim is a novel regulator of Stathmin protein in a ubiquitin-dependent manner, and represents a new pathway for malignant phenotype turnover by modulating the level of Stathmin protein in human osteosarcomas.
Collapse
Affiliation(s)
- Xi Chen
- Department of Medical Laboratory and Research Center, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Jianjun Shen
- Department of Medical Laboratory and Research Center, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Xingyu Li
- Department of Ophthalmology, Xi'an No. 4 Hospital, Xi'an, China
| | - Xi Wang
- Department of Medical Laboratory and Research Center, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Min Long
- Department of Medical Laboratory and Research Center, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Fang Lin
- Department of Medical Laboratory and Research Center, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Junxia Wei
- Department of Medical Laboratory and Research Center, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Longfei Yang
- Department of Medical Laboratory and Research Center, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Chinglai Yang
- Department of Microbiology & Immunology, Emory University School of Medicine, Atlanta, USA
| | - Ke Dong
- Department of Medical Laboratory and Research Center, Tangdu Hospital, Fourth Military Medical University, Xi'an, China.
| | - Huizhong Zhang
- Department of Medical Laboratory and Research Center, Tangdu Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
8
|
San-Marina S, Han Y, Liu J, Minden MD. Suspected leukemia oncoproteins CREB1 and LYL1 regulate Op18/STMN1 expression. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:1164-72. [PMID: 23000483 DOI: 10.1016/j.bbagrm.2012.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 09/04/2012] [Accepted: 09/07/2012] [Indexed: 12/27/2022]
Abstract
Stathmin (STMN1) is a microtubule destabilizing protein with a key role in cell cycle progression and cell migration that is up-regulated in several cancers and may contribute to the malignant phenotype. However, the factors that regulate its expression are not well understood. Loss as well as gain-of-function p53 mutations up-regulate STMN1 and in acute myelogenous leukemia where p53 is predominantly wild-type, STMN1 is also over-expressed. Here we show regulatory control of STMN1 expression by the leucine zipper transcription factor (TF) CREB1 and the basic helix-loop-helix TF LYL1. By ChIP-chip experiments we demonstrate in vivo the presence of LYL1 and CREB1 in close proximity on the STMN1 promoter and using promoter assays we reveal co-regulation of STMN1 by CREB1 and LYL1. By contrast, TAL1, another suspected oncoprotein in leukemia and close relative of LYL1, exerts no regulatory effect on the STMN1 promoter. NLI, LMO2 and GATA2 are previously described co-activators of Tal1/Lyl1-E47 transcriptional complexes and potentiate Lyl1 activation of the STMN1 promoter while having no effect on TAL1 transactivation. Promoter mutations that abrogate CREB1 proximal binding or mutations of the DNA-binding domain of CREB1 abolish LYL1 transcriptional activation. These results show that CRE and Ebox sites function as coordinated units and support previous evidence of joint CREB1-and LYL1 transcription events activating an aberrant subset of promoters in leukemia. CREB1 or LYL1 shRNA knock-down down-regulate STMN1 expression. Because down-regulation of STMN1 has been shown to have anti-proliferative effects, while CREB1 and LYL1 are suspected oncoproteins, interference with CREB1-LYL1 interactions may complement standard chemotherapy and yield additional beneficial effects.
Collapse
Affiliation(s)
- Serban San-Marina
- University Health Network, Princess Margaret Hospital, Toronto ON, Canada.
| | | | | | | |
Collapse
|
9
|
Chen YL, Uen YH, Li CF, Horng KC, Chen LR, Wu WR, Tseng HY, Huang HY, Wu LC, Shiue YL. The E2F transcription factor 1 transactives stathmin 1 in hepatocellular carcinoma. Ann Surg Oncol 2012; 20:4041-54. [PMID: 22911364 DOI: 10.1245/s10434-012-2519-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Indexed: 12/31/2022]
Abstract
BACKGROUND Through data mining the Stanford Microarray Database, the stathmin 1 (STMN1) transcript was found to be frequently upregulated in the hepatocellular carcinoma (HCC) with low alpha-fetoprotein level. The molecular mechanism of STMN1 upregulation in HCCs remained unclear. METHODS Quantitative RT-PCR, immunoblotting, immunohistochemistry, and transfection of expression or small hairpin RNA interference plasmids, chromatin immunoprecipitation (ChIP), and quantitative ChIP assays were performed in HCC specimens or 2 distinct HCC-derived cell lines. Dual luciferase assay and site-directed mutagenesis were applied to analyze the activities of STMN1 proximal promoter region. RESULTS STMN1 mRNA and proteins were significantly associated with several clinicopathological features. High STMN1 or E2F1 immunoexpression was predictive of poor overall survival (OS) rate (P < .01). In HCC-derived cell lines, E2F1 was elevated before STMN1 mRNA during the cell cycle. Exogenous expression of E2F1 or both transcription factor DP-1 (TFDP1) and E2F1 genes induced E2F1 and STMN1 mRNA (P < .01). Knockdown of the E2F1 gene suppressed E2F1 and STMN1 mRNA and E2F1 and STMN1 protein levels (P < .05). The promoter activity of STMN1 gene increased with overexpression of both E2F1 and TFDP1 genes (P < .05); however, it decreased when mutations were introduced in the E2F1-binding sites (P < .05). CONCLUSIONS Upregulation of E2F1 and STMN1 proteins associate with worse outcomes in patients with HCC. E2F1 significantly correlates with STMN1 protein level in HCC lesions and in vitro transactivation assays, suggesting that STMN1 gene is transactivated by the E2F1 protein.
Collapse
Affiliation(s)
- Yi-Ling Chen
- Institute of Biomedical Science, National Sun Yat-sen University, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Wang R, Wang Z, Yang J, Liu X, Wang L, Guo X, Zeng F, Wu M, Li G. LRRC4 inhibits the proliferation of human glioma cells by modulating the expression of STMN1 and microtubule polymerization. J Cell Biochem 2012; 112:3621-9. [PMID: 21809374 DOI: 10.1002/jcb.23293] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
LRRC4 is a tumor suppressor of glioma, and it is epigenetically inactivated commonly in glioma. Our previous study has shown that induction of LRRC4 expression inhibits the proliferation of glioma cells. However, little is known about the mechanisms underlying the action of LRRC4 in glioma cells. We employed two-dimensional fluorescence differential gel electrophoresis (2-D DIGE) and MALDI -TOF/TOF-MS/MS to identify 11 differentially expressed proteins, including the significantly down-regulated STMN1 expression in the LRRC4-expressing U251 glioma cells. The levels of STMN1 expression appeared to be positively associated with the pathogenic degrees of human glioma. Furthermore, induction of LRRC4 over-expression inhibited the STMN1 expression and U251 cell proliferation in vitro, and the glioma growth in vivo. In addition, induction of LRRC4 or knockdown of STMN1 expression induced cell cycle arrest in U251 cells, which was associated with modulating the p21, cyclin D1, and cyclin B expression, and the ERK phosphorylation, and inhibiting the CDK5 and cdc2 kinase activities, but increasing the microtubulin polymerization in U251 cells. LRRC4, at least partially by down-regulating the STMN1expression, acts as a major glioma suppressor, induces cell cycle arrest and modulates the dynamic process of microtubulin, leading to the inhibition of glioma cell proliferation and growth. Potentially, modulation of LRRC4 or STMN1 expression may be useful for design of new therapies for the intervention of glioma.
Collapse
Affiliation(s)
- Rong Wang
- Cancer Research Institute, Central South University, Changsha, Hunan, China
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Belletti B, Baldassarre G. Stathmin: a protein with many tasks. New biomarker and potential target in cancer. Expert Opin Ther Targets 2011; 15:1249-66. [PMID: 21978024 DOI: 10.1517/14728222.2011.620951] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Stathmin is a microtubule-destabilizing phosphoprotein, firstly identified as the downstream target of many signal transduction pathways. Several studies then indicated that stathmin is overexpressed in many types of human malignancies, thus deserving the name of Oncoprotein 18 (Op18). At molecular level, stathmin depolymerizes microtubules by either sequestering free tubulin dimers or directly inducing microtubule-catastrophe. A crucial role for stathmin in the control of mitosis has been proposed, since both its overexpression and its downregulation induce failure in the correct completion of cell division. Accordingly, stathmin is an important target of the main regulator of M phase, cyclin-dependent kinase 1. AREAS COVERED Recent evidences support a role for stathmin in the regulation of cell growth and motility, both in vitro and in vivo, and indicate its involvement in advanced, invasive and metastatic cancer more than in primary tumors. EXPERT OPINION Many studies suggest that high stathmin expression levels in cancer negatively influence the response to microtubule-targeting drugs. These notions together with the fact that stathmin is expressed at very low levels in most adult tissues strongly support the use of stathmin as marker of prognosis and as target for novel anti-tumoral and anti-metastatic therapies.
Collapse
Affiliation(s)
- Barbara Belletti
- National Cancer Institute, Centro di Riferimento Oncologico, Division of Experimental Oncology 2, Via Franco Gallini, 2, 33081 Aviano, Italy
| | | |
Collapse
|
12
|
Tanca A, Addis MF, Pagnozzi D, Cossu-Rocca P, Tonelli R, Falchi G, Eccher A, Roggio T, Fanciulli G, Uzzau S. Proteomic analysis of formalin-fixed, paraffin-embedded lung neuroendocrine tumor samples from hospital archives. J Proteomics 2010; 74:359-70. [PMID: 21147281 DOI: 10.1016/j.jprot.2010.12.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2010] [Revised: 12/01/2010] [Accepted: 12/03/2010] [Indexed: 10/18/2022]
Abstract
Hospital tissue repositories host an invaluable supply of diseased samples with matched retrospective clinical information. In this work, a recently optimized method for extracting full-length proteins from formalin-fixed, paraffin-embedded (FFPE) tissues was evaluated on lung neuroendocrine tumor (LNET) samples collected from hospital repositories. LNETs comprise a heterogeneous spectrum of diseases, for which subtype-specific diagnostic markers are lacking. Six archival samples diagnosed as typical carcinoid (TC) or small cell lung carcinoma (SCLC) were subjected to a full-length protein extraction followed by a GeLC-MS/MS analysis, enabling the identification of over 300 distinct proteins per tumor subtype. All identified proteins were categorized through DAVID software, revealing a differential distribution of functional classes, such as those involved in RNA processing, response to oxidative stress and ion homeostasis. Moreover, using spectral counting for protein abundance estimation and beta-binomial test as statistical filter, a list of 28 differentially expressed proteins was generated and submitted to pathway analysis by means of Ingenuity Pathway Analysis software. Differential expression of chromogranin-A (more expressed in TCs) and stathmin (more expressed in SCLCs) was consistently confirmed by immunohistochemistry. Therefore, FFPE hospital archival samples can be successfully subjected to proteomic investigations aimed to biomarker discovery following a GeLC-MS/MS label-free approach.
Collapse
|
13
|
c-Jun N-terminal kinase/c-Jun inhibits fibroblast proliferation by negatively regulating the levels of stathmin/oncoprotein 18. Biochem J 2010; 430:345-54. [DOI: 10.1042/bj20100425] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The JNKs (c-Jun N-terminal kinases) are stress-activated serine/threonine kinases that can regulate both cell death and cell proliferation. We have developed a cell system to control JNK re-expression at physiological levels in JNK1/2-null MEFs (murine embryonic fibroblasts). JNK re-expression restored basal and stress-activated phosphorylation of the c-Jun transcription factor and attenuated cellular proliferation with increased cells in G1/S-phase of the cell cycle. To explore JNK actions to regulate cell proliferation, we evaluated a role for the cytosolic protein, STMN (stathmin)/Op18 (oncoprotein 18). STMN, up-regulated in a range of cancer types, plays a crucial role in the control of cell division through its regulation of microtubule dynamics of the mitotic spindle. In JNK1/2-null or c-Jun-null MEFs or cells treated with c-Jun siRNA (small interfering RNA), STMN levels were significantly increased. Furthermore, a requirement for JNK/cJun signalling was demonstrated by expression of wild-type c-Jun, but not a phosphorylation-defective c-Jun mutant, being sufficient to down-regulate STMN. Critically, shRNA (small hairpin RNA)-directed STMN down-regulation in JNK1/2-null MEFs attenuated proliferation. Thus JNK/c-Jun regulation of STMN levels provides a novel pathway in regulation of cell proliferation with important implications for understanding the actions of JNK as a physiological regulator of the cell cycle and tumour suppressor protein.
Collapse
|
14
|
Calvo A, Perez-Stable C, Segura V, Catena R, Guruceaga E, Nguewa P, Blanco D, Parada L, Reiner T, Green JE. Molecular characterization of the Ggamma-globin-Tag transgenic mouse model of hormone refractory prostate cancer: comparison to human prostate cancer. Prostate 2010; 70:630-45. [PMID: 20058236 PMCID: PMC3457648 DOI: 10.1002/pros.21097] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Prostate cancer (PrCa) has a high incidence in Western countries and at present, there is no cure for hormone refractory prostate cancer. Transgenic mouse models have proven useful for understanding mechanisms of prostate carcinogenesis. The characterization of genetically modified mouse PrCa models using high-throughput genomic analyses provides important information to guide appropriate experiment applications for such model. METHODS We have analyzed the transcriptome of the hormone refractory and highly metastatic Fetal Globin-SV40/T-antigen (Ggamma-globin-Tag) transgenic mouse model for PrCa compared to normal mouse prostate tissue. Gene expression patterns found in Ggamma-globin-Tag mouse prostate tumors were compared with publicly available human localized and metastatic prostate tumors (GEO accession # GSE3325) through hierarchical cluster analysis, Pearson's rank correlation coefficient, and Self Organizing Feature Maps (SOM) analyses. RESULTS Ggamma-globin-Tag tumors clustered closely with human metastatic tumors and gene expression patterns had a significant correlation (P < 0.01), unlike human localized primary tumors (P > 0.6). Bioinformatic analyses identified deregulated genetic pathways and networks in Ggamma-globin-Tag tumors, which displayed similarities to alterations in human PrCa. Changes in the expression of genes involved in DNA replication and repair (Rb1, p53, Myc, PCNA, DNMT3A) and growth factor signaling pathways (TGFbeta2, ERK1/2, NRas, and Notch1) are deregulated in the Ggamma-globin-Tag tumors, suggesting their key role in the oncogenic process. Identification of an enrichment of putative binding sites for transcription factors revealed eight transcription factors that may be important in Ggamma-globin-Tag carcinogenesis, including SP1, NF-Y, CREB, Elk1, and E2F. Novel genes related to microtubule regulation were also identified in Ggamma-globin-Tag tumors as potentially important candidate targets for PrCa. Overexpression of stathmin-1, whose expression was increased in human metastatic prostate tumors, was validated in Ggamma-globin-Tag tumors by immunohistochemistry. This protein belongs to the SV40/T-antigen cancer signature identified in previous studies in prostate, breast, and lung cancer mouse models. CONCLUSIONS Our results show that the Ggamma-globin-Tag model for hormone refractory PrCa shares important features with aggressive, metastatic human PrCa. Given the role of stathmin-1 in the destabilization of microtubles and taxane resistance, the Ggamma-globin-Tag model and other SV40/T-antigen driven transgenic models may be useful for testing potential therapies directed at stathmin-1 in human prostate tumors.
Collapse
Affiliation(s)
- Alfonso Calvo
- Division of Oncology, Department of Histology and Pathology, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, NIH, Bethesda, Maryland
| | - Carlos Perez-Stable
- Geriatric Research, Education, and Clinical Center and Research Service, Department of Medicine and Sylvester Comprehensive Cancer Center, Veterans Affairs Medical Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Victor Segura
- Unit of Proteomics, Genomics and Bioinformatics, Center for Applied Medical Research (CIMA), Pamplona, Spain
| | - Raúl Catena
- Division of Oncology, Department of Histology and Pathology, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Elizabeth Guruceaga
- Unit of Proteomics, Genomics and Bioinformatics, Center for Applied Medical Research (CIMA), Pamplona, Spain
| | - Paul Nguewa
- Division of Oncology, Department of Histology and Pathology, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - David Blanco
- Division of Oncology, Department of Histology and Pathology, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | | | - Teresita Reiner
- Geriatric Research, Education, and Clinical Center and Research Service, Department of Medicine and Sylvester Comprehensive Cancer Center, Veterans Affairs Medical Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Jeffrey E. Green
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, NIH, Bethesda, Maryland
- Correspondence to: Dr. Jeffrey E. Green, Laboratory of Cancer Biology and Genetics, National Cancer Institute, NIH, Building 37, Room 4054, 37 Convent Drive, Bethesda, MD 20892.
| |
Collapse
|
15
|
Increased stathmin1 expression in the dentate gyrus of mice causes abnormal axonal arborizations. PLoS One 2010; 5:e8596. [PMID: 20062533 PMCID: PMC2797614 DOI: 10.1371/journal.pone.0008596] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Accepted: 12/02/2009] [Indexed: 12/29/2022] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is involved in multiple brain functions. To clarify the cause of abnormal behavior in PACAP deficient-mice, we attempted the identification of genes whose expression was altered in the dentate gyrus of PACAP-deficient mice using the differential display method. Expression of stathmin1 was up-regulated in the dentate gyrus at both the mRNA and protein levels. PACAP stimulation inhibited stathmin1 expression in PC12 cells, while increased stathmin1expression in neurons of the subgranular zone and in primary cultured hippocampal neurons induced abnormal arborization of axons. We also investigated the pathways involved in PACAP deficiency. Ascl1 binds to E10 box of the stathmin1 promoter and increases stathmin1 expression. Inhibitory bHLH proteins (Hes1 and Id3) were rapidly up-regulated by PACAP stimulation, and Hes1 could suppress Ascl1 expression and Id3 could inhibit Ascl1 signaling. We also detected an increase of stathmin1 expression in the brains of schizophrenic patients. These results suggest that up-regulation of stathmin1 in the dentate gyrus, secondary to PACAP deficiency, may create abnormal neuronal circuits that cause abnormal behavior.
Collapse
|
16
|
Fang L, Min L, Lin Y, Ping G, Rui W, Ying Z, Xi W, Ting H, Li L, Ke D, Jihong R, Huizhong Z. Downregulation of stathmin expression is mediated directly by Egr1 and associated with p53 activity in lung cancer cell line A549. Cell Signal 2009; 22:166-73. [PMID: 19786090 DOI: 10.1016/j.cellsig.2009.09.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Accepted: 09/14/2009] [Indexed: 12/01/2022]
Abstract
Stathmin is overexpressed in a variety of assessed human malignancies and is correlated with tumor progression and poor prognosis. Downregulation of its expression will contribute to optimize therapeutic outcomes in the treatment of various malignancies. However, the mechanisms of stathmin gene overexpression are not completely elucidated at present. Early growth response 1 (Egr1) is a transcription factor that triggers transcription of downstream genes mediating cell growth and angiogenesis upon various stimulations. Following the previous computational identification of a site that was thought to be an Egr1 consensus binding sequence at -85 to -94 region in stathmin gene promoter, we analyzed the role of Egr1 in the regulation of stathmin gene expression in lung cancer cell line A549. The results showed that Egr1 transcription factor bound to the sequence 5'-GCGGGGGCG-3' within human stathmin gene promoter; and in reporter gene assays and overexpression experiments, both stathmin gene promoter activity and stathmin gene expression level were downregulated following endogenous or exogenous expression of Egr1. Using wild type Egr1 and knockout Egr1 cell lines, we demonstrated that p53 negatively regulates stathmin expression through Egr1 pathway. In summary, Egr1 is a novel regulator of stathmin expression and p53 mediates the transcriptional repression of stathmin by Egr1 in human lung cancer cells.
Collapse
Affiliation(s)
- Lin Fang
- Department of Clinical Laboratory and Research Center, Tangdu Hospital, Fourth Military Medical University, Xinsi Road, Xi'an, Shaanxi Province 710038, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Zada AAP, Geletu MH, Pulikkan JA, Müller-Tidow C, Reddy VA, Christopeit M, Hiddemann WD, Behre HM, Tenen DG, Behre G. Proteomic analysis of acute promyelocytic leukemia: PML-RARalpha leads to decreased phosphorylation of OP18 at serine 63. Proteomics 2007; 6:5705-19. [PMID: 17001604 DOI: 10.1002/pmic.200600307] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In the present study, we employed 2-DE to characterize the effect of the acute promyelocytic leukemia (APL)-specific PML-RARalpha fusion protein on the proteome. Differentially expressed proteins, a number of which are related to the cell cycle function, including oncoprotein18 (OP18), heat shock protein70, glucose-regulated protein75, and peptidyl-prolyl isomerase, were identified by MS. Subsequent bioinformatic pathway discovery revealed an integrated network constituting SMARCB1, MYC, and TP53-regulated pathways. The data from the DNA microarray and proteomic experiments demonstrated the correlation between the translocation and higher expression of OP18 at mRNA and protein levels. Transient cotransfection assay revealed that PML-RARalpha is a potent activator of OP18 promoter and this transcriptional activation is retinoic acid sensitive. PML-RARalpha induction also leads to decreased phosphorylation on Ser63 residue of OP18, which is okadaic acid sensitive suggesting the involvement of a phosphatase pathway. Overexpression of a constitutively phosphorylated Ser63 mutant of OP18 in PML-RARalpha expressing APL patient, PR9, and NB4 cells led to a G2/M-phase arrest in contrast to a phosphorylation-deficient Ser63 mutant and untransfected control. Taken together, our results demonstrate the significance of decreased Ser63 phosphorylation of OP18 in PML-RARalpha-mediated effects on cell cycle.
Collapse
MESH Headings
- Cell Line
- Clone Cells
- Computational Biology/methods
- Electrophoresis, Gel, Two-Dimensional
- Gene Expression Profiling
- Genes, Reporter
- Humans
- Leukemia, Promyelocytic, Acute/metabolism
- Leukemia, Promyelocytic, Acute/pathology
- Luciferases/metabolism
- Mass Spectrometry
- Mutation
- Oncogene Proteins, Fusion/analysis
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Peptide Mapping
- Phosphorylation
- Protein Isoforms/chemistry
- Protein Isoforms/genetics
- Protein Structure, Secondary
- Proteome/analysis
- Proteomics/methods
- RNA, Messenger/metabolism
- Recombinant Fusion Proteins/metabolism
- Serine/metabolism
- Stathmin/chemistry
- Stathmin/genetics
- Stathmin/metabolism
- Transfection
- U937 Cells
- Zinc Sulfate
Collapse
|
18
|
Li Z, Jiao X, Wang C, Ju X, Lu Y, Yuan L, Lisanti MP, Katiyar S, Pestell RG. Cyclin D1 induction of cellular migration requires p27(KIP1). Cancer Res 2006; 66:9986-94. [PMID: 17047061 DOI: 10.1158/0008-5472.can-06-1596] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The cyclin D1 gene is amplified and overexpressed in human breast cancer, functioning as a collaborative oncogene. As the regulatory subunit of a holoenzyme phosphorylating Rb, cyclin D1 promotes cell cycle progression and a noncatalytic function has been described to sequester the cyclin-dependent kinase inhibitor protein p27. Cyclin D1 overexpression correlates with tumor metastasis and cyclin D1-deficient fibroblasts are defective in migration. The genetic mechanism by which cyclin D1 promotes migration and movement is poorly understood. Herein, cyclin D1 promoted cellular migration and cytokinesis of mammary epithelial cells. Cyclin D1 enhanced cellular migratory velocity. The induction of migration by cyclin D1 was abolished by mutation of K112 or deletion of NH(2)-terminal residues 46 to 90. These mutations of cyclin D1 abrogated physical interaction with p27(KIP1). Cyclin D1(-/-) cells were p27(KIP1) deficient and the defect in migration was rescued by p27(KIP1) reintroduction. Conversely, the cyclin D1 rescue of cyclin D1(-/-) cellular migration was reversed by p27(KIP1) small interfering RNA. Cyclin D1 regulated p27(KIP1) abundance at the posttranslational level, inhibiting the Skp2 promoter, Skp2 abundance, and induced p27(KIP1) phosphorylation at Ser(10). Together, these studies show cyclin D1 promotes mammary epithelial cell migration. p27(KIP1) is required for cyclin D1-mediated cellular migration.
Collapse
Affiliation(s)
- Zhiping Li
- Kimmel Cancer Center, Departments of Cancer Biology and Medical Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Iovino F, Lentini L, Amato A, Di Leonardo A. RB acute loss induces centrosome amplification and aneuploidy in murine primary fibroblasts. Mol Cancer 2006; 5:38. [PMID: 16987420 PMCID: PMC1613254 DOI: 10.1186/1476-4598-5-38] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2006] [Accepted: 09/20/2006] [Indexed: 01/28/2023] Open
Abstract
Background Incorrect segregation of whole chromosomes or parts of chromosome leads to aneuploidy commonly observed in cancer. The correct centrosome duplication, assuring assembly of a bipolar mitotic spindle, is essential for chromosome segregation fidelity and preventing aneuploidy. Alteration of p53 and pRb functions by expression of HPV16-E6 and E7 oncoproteins has been associated with centrosome amplification. However, these last findings could be the result of targeting cellular proteins in addition to pRb by HPV16-E7 oncoprotein. To get a more detailed picture on the role of pRb in chromosomal instability and centrosome amplification, we analyzed the effects of the acute loss of retinoblastoma gene function in primary conditional Rb deficient mouse embryonic fibroblasts (MEFs). Moreover, since pRb is a transcriptional repressor, microarray analysis was done on pRb-competent and pRb-deficient MEFs to evaluate changes in expression of genes for centrosome homeostasis and for correct mitosis. Results Acute loss of pRb induces centrosome amplification and aneuploidy in the vast majority of cells analyzed. A time course analysis shows a decrease of cells with amplified centrosomes after 40 days from the adenoviral infection. At this time only 12% of cells still show amplified centrosomes. Interestingly, cells with pRb constitutive loss show a similar percentage of cells with amplified centrosomes. DNA-Chip analyses in MEFs wt (mock infected) and pRb depleted (Ad-Cre infected) cells reveal differential expression of genes controlling both centrosome duplication and mitotic progression. Conclusion Our findings suggest a direct link between pRb status, centrosome amplification and chromosomal instability, and define specific mitotic genes as targets whose gene expression has to be altered to achieve or maintain aneuploidy.
Collapse
Affiliation(s)
- Flora Iovino
- Department of Cellular and Developmental Biology "A. Monroy", University of Palermo, Italy
| | - Laura Lentini
- Department of Cellular and Developmental Biology "A. Monroy", University of Palermo, Italy
| | - Angela Amato
- Department of Cellular and Developmental Biology "A. Monroy", University of Palermo, Italy
| | - Aldo Di Leonardo
- Department of Cellular and Developmental Biology "A. Monroy", University of Palermo, Italy
| |
Collapse
|
20
|
Benlhabib H, Herrera JE. Expression of the Op18 gene is maintained by the CCAAT-binding transcription factor NF-Y. Gene 2006; 377:177-85. [PMID: 16757134 DOI: 10.1016/j.gene.2006.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2006] [Revised: 04/05/2006] [Accepted: 04/06/2006] [Indexed: 11/21/2022]
Abstract
Op18 (Oncoprotein 18, Stathmin) is a mitotic regulator that is highly expressed in many cancers. We have characterized four functional CCAAT boxes in the Op18 gene located at positions: -980, -745, -599 and -65, relative to the transcriptional start site. NF-Y is a ubiquitously expressed CCAAT-binding transcription factor that regulates a number of cell cycle controlled genes. We have used promoter-reporter assays and mobility shift assays to functionally examine these CCAAT boxes. All sites contribute to the basal expression of Op18, with the sites at -980 and -599 being repressive and the sites at -745 and -65 being stimulatory. Mobility shift assays indicate that all CCAAT box sites bind factors in nuclear extracts from Hek293. However, only the repressive site at -599 and the stimulatory site at -65 are competent to bind NF-Y, suggesting that NF-Y may play a role in promoting both activation and repression of Op18 expression. The NF-Y site at -65 accounts for greater than 60% of the Op18 gene expression. EMSA competition studies indicate that NF-Y binds with a much higher affinity to the -65 site than to the -599 site, suggesting that in asynchronously growing cells NF-Y functions only to stimulate expression through the -65 binding site. These data suggest that NF-Y is a major transcription factor promoting expression of Op18.
Collapse
Affiliation(s)
- Houda Benlhabib
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, 55455, USA
| | | |
Collapse
|
21
|
Iancu-Rubin C, Atweh GF. p27(Kip1) and stathmin share the stage for the first time. Trends Cell Biol 2005; 15:346-8. [PMID: 15951178 DOI: 10.1016/j.tcb.2005.05.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2005] [Revised: 05/15/2005] [Accepted: 05/20/2005] [Indexed: 12/01/2022]
Abstract
Cell migration is essential for development, morphogenesis, tissue repair and tumor metastasis. p27(Kip1) and stathmin are two cell-cycle-regulatory proteins that were recently shown to play important roles in the regulation of cell migration. In this article, we discuss a new study that places p27(Kip1) and stathmin in the same pathway by showing that stathmin, a microtubule-regulatory protein, mediates the effects of p27(Kip1) on cell motility. These findings provide new insights into migration and metastasis of tumor cells and the relationship of these processes to cell proliferation.
Collapse
Affiliation(s)
- Camelia Iancu-Rubin
- Division of Hematology/Oncology, Mount Sinai School of Medicine, One Gustave Levy Place, New York, NY 10029, USA
| | | |
Collapse
|
22
|
Nandi AK, Rapoport AP. Expression of PDZ-binding kinase (PBK) is regulated by cell cycle-specific transcription factors E2F and CREB/ATF. Leuk Res 2005; 30:437-47. [PMID: 16171862 DOI: 10.1016/j.leukres.2005.08.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Revised: 08/09/2005] [Accepted: 08/11/2005] [Indexed: 02/03/2023]
Abstract
Earlier we reported that a novel mitotic protein kinase, PDZ-binding kinase (PBK), is expressed in primary hematopoietic neoplasms. Recent reports have suggested a role for PBK in mitotic progression. In the present study, we demonstrate that PBK is down regulated during doxorubicin induced growth arrest of HL60 promyelocytic leukemia cells at least partly due to cell cycle-specific transcriptional regulation. Furthermore, we show that transcriptional control is mostly due to binding of transcription factors E2F and CREB/ATF to two distinct binding sites within the PBK promoter. This was demonstrated by: (i) electrophoretic mobility shift assays showing transcription factor binding within the PBK promoter at the putative E2F (-146bp) and CREB/ATF (-312bp) binding sites; (ii) Western immunoblot analysis of knockdown extracts from siRNA inhibition of transcription factor expression showing that PBK protein expression is dependent upon the presence of these transcription factors; (iii) codistribution of CREB factor and PBK in cell lines of disparate tissue origin; and (iv) luciferase reporter assays showing that PBK promoter activity is dependent on factor binding at intact E2F and CREB/ATF sites. These findings may provide insight into the mechanisms that upregulate PBK expression in proliferative hematologic malignancies and down regulate its expression following growth arrest of leukemic cells.
Collapse
Affiliation(s)
- Asit K Nandi
- University of Maryland School of Medicine, Greenebaum Cancer Center, 655 W Baltimore Street, Baltimore, MD 21201, USA.
| | | |
Collapse
|