1
|
Dubrovin EV. Atomic force microscopy-based approaches for single-molecule investigation of nucleic acid- protein complexes. Biophys Rev 2023; 15:1015-1033. [PMID: 37974971 PMCID: PMC10643717 DOI: 10.1007/s12551-023-01111-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/07/2023] [Indexed: 11/19/2023] Open
Abstract
The interaction of nucleic acids with proteins plays an important role in many fundamental biological processes in living cells, including replication, transcription, and translation. Therefore, understanding nucleic acid-protein interaction is of high relevance in many areas of biology, medicine and technology. During almost four decades of its existence atomic force microscopy (AFM) accumulated a significant experience in investigation of biological molecules at a single-molecule level. AFM has become a powerful tool of molecular biology and biophysics providing unique information about properties, structure, and functioning of biomolecules. Despite a great variety of nucleic acid-protein systems under AFM investigations, there are a number of typical approaches for such studies. This review is devoted to the analysis of the typical AFM-based approaches of investigation of DNA (RNA)-protein complexes with a major focus on transcription studies. The basic strategies of AFM analysis of nucleic acid-protein complexes including investigation of the products of DNA-protein reactions and real-time dynamics of DNA-protein interaction are categorized and described by the example of the most relevant research studies. The described approaches and protocols have many universal features and, therefore, are applicable for future AFM studies of various nucleic acid-protein systems.
Collapse
Affiliation(s)
- Evgeniy V. Dubrovin
- Lomonosov Moscow State University, Leninskie Gory 1 Bld. 2, 119991 Moscow, Russian Federation
- Moscow Institute of Physics and Technology, Institutskiy Per. 9, Dolgoprudny, 141700 Russian Federation
- Sirius University of Science and Technology, Olimpiyskiy Ave 1, Township Sirius, Krasnodar Region, 354349 Russia
| |
Collapse
|
2
|
Leucine rich amelogenin peptide prevents ovariectomy-induced bone loss in mice. PLoS One 2021; 16:e0259966. [PMID: 34780561 PMCID: PMC8592471 DOI: 10.1371/journal.pone.0259966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 10/31/2021] [Indexed: 11/19/2022] Open
Abstract
Amelogenins, major extra cellular matrix proteins of developing tooth enamel, are predominantly expressed by ameloblasts and play significant roles in the formation of enamel. Recently, amelogenin has been detected in various epithelial and mesenchymal tissues, implicating that it might have distinct functions in various tissues. We have previously reported that leucine rich amelogenin peptide (LRAP), one of the alternate splice forms of amelogenin, regulates receptor activator of NF-kappa B ligand (RANKL) expression in cementoblast/periodontal ligament cells, suggesting that the amelogenins, especially LRAP, might function as a signaling molecule in bone metabolism. The objective of this study was to identify and define LRAP functions in bone turnover. We engineered transgenic (TgLRAP) mice using a murine 2.3kb α1(I)-collagen promoter to drive expression of a transgene consisting of LRAP, an internal ribosome entry site (IRES) and enhanced green fluorescent protein (EGFP) to study functions of LRAP in bone formation and resorption. Calvarial cell cultures from the TgLRAP mice showed increased alkaline phosphatase (ALP) activity and increased formation of mineralized nodules compared to the cells derived from wild-type (WT) mice. The TgLRAP calvarial cells also showed an inhibitory effect on osteoclastogenesis in vitro. Gene expression comparison by quantitative polymerase chain reaction (Q-PCR) in calvarial cells indicated that bone formation makers such as Runx2, Alp, and osteocalcin were increased in TgLRAP compared to the WT cells. Meanwhile, Rankl expression was decreased in the TgLRAP cells in vitro. The ovariectomized (OVX) TgLRAP mice resisted bone loss induced by ovariectomy resulting in higher bone mineral density in comparison to OVX WT mice. The quantitative analysis of calcein intakes indicated that the ovariectomy resulted in increased bone formation in both WT and TgLRAP mice; OVX TgLRAP appeared to show the most remarkably increased bone formation. The parameters for bone resorption in tissue sections showed increased number of osteoclasts in OVX WT, but not in OVX TgLRAP over that of sham operated WT or TgLRAP mice, supporting the observed bone phenotypes in OVX mice. This is the first report identifying that LRAP, one of the amelogenin splice variants, affects bone turnover in vivo.
Collapse
|
3
|
Ben Khalaf N, Al-Mashoor W, Saeed A, Al-Mehatab D, Taha S, Bakhiet M, Fathallah MD. The mouse intron-nested gene, Israa, is expressed in the lymphoid organs and involved in T-cell activation and signaling. Mol Immunol 2019; 111:209-219. [PMID: 31096062 DOI: 10.1016/j.molimm.2019.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 03/25/2019] [Accepted: 04/13/2019] [Indexed: 10/26/2022]
Abstract
We have previously reported Israa, immune-system-released activating agent, as a novel gene nested in intron 8 of the mouse Zmiz1 gene. We have also shown that Israa encodes for a novel FYN-binding protein and might be involved in the regulation of T-cell activation. In this report, we demonstrate that Israa gene product regulates the expression of a pool of genes involved in T-cell activation and signaling. Real time PCR and GFP knock-in expression analysis showed that Israa is transcribed and expressed in the spleen mainly by CD3+CD8+ cells as well as in the thymus by CD3+ (DP and DN), CD4+SP and CD8+SP cells at different developmental stages. We also showed that Israa is downregulated in T-cells following activation of T-cell receptor. Using yeast two-hybrid analysis, we identified ELF1, a transcription factor involved in T-cell regulation, as an ISRAA-binding partner. Transcriptomic analysis of an EL4 cell line overexpressing ISRAA revealed differential expression of several genes involved in T-cell signaling, activation and development. Among these genes, Prkcb, Mib2, Fos, Ndfip2, Cxxc5, B2m, Gata3 and Cd247 were upregulated whereas Itk, Socs3, Tigit, Ifng, Il2ra and FoxJ1 were downregulated. Our findings support the existence in mouse of a novel FYN-related T-cell regulation pathway involving the product of an intron-nested gene.
Collapse
Affiliation(s)
- Noureddine Ben Khalaf
- Department of Life Sciences, Health Biotechnology Program, College of Graduates Studies, Arabian Gulf University, Manama, Bahrain
| | - Wedad Al-Mashoor
- Department of Life Sciences, Health Biotechnology Program, College of Graduates Studies, Arabian Gulf University, Manama, Bahrain
| | - Azhar Saeed
- University of Michigan Medical School, MI, USA
| | - Dalal Al-Mehatab
- Department of Life Sciences, Health Biotechnology Program, College of Graduates Studies, Arabian Gulf University, Manama, Bahrain
| | - Safa Taha
- Department of Molecular Medicine, Princess Al-Jawhara Center for Genetics and Inherited Diseases, College of Medicine and Medical Sciences, Arabian Gulf University, Bahrain
| | - Moiz Bakhiet
- Department of Molecular Medicine, Princess Al-Jawhara Center for Genetics and Inherited Diseases, College of Medicine and Medical Sciences, Arabian Gulf University, Bahrain
| | - M Dahmani Fathallah
- Department of Life Sciences, Health Biotechnology Program, College of Graduates Studies, Arabian Gulf University, Manama, Bahrain.
| |
Collapse
|
4
|
Koroleva ON, Dubrovin EV, Yaminsky IV, Drutsa VL. Effect of DNA bending on transcriptional interference in the systems of closely spaced convergent promoters. Biochim Biophys Acta Gen Subj 2016; 1860:2086-96. [DOI: 10.1016/j.bbagen.2016.06.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 06/27/2016] [Accepted: 06/29/2016] [Indexed: 01/22/2023]
|
5
|
Sheshukova EV, Shindyapina AV, Komarova TV, Dorokhov YL. “Matreshka” genes with alternative reading frames. RUSS J GENET+ 2016. [DOI: 10.1134/s1022795416020149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Baggio F, Bozzato A, Benna C, Leonardi E, Romoli O, Cognolato M, Tosatto SCE, Costa R, Sandrelli F. 2mit, an intronic gene of Drosophila melanogaster timeless2, is involved in behavioral plasticity. PLoS One 2013; 8:e76351. [PMID: 24098788 PMCID: PMC3786989 DOI: 10.1371/journal.pone.0076351] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 08/27/2013] [Indexed: 12/15/2022] Open
Abstract
Background Intronic genes represent ~6% of the total gene complement in Drosophila melanogaster and ~85% of them encode for proteins. We recently characterized the D. melanogastertimeless2 (tim2) gene, showing its active involvement in chromosomal stability and light synchronization of the adult circadian clock. The protein coding gene named 2mit maps on the 11thtim2 intron in the opposite transcriptional orientation. Methodology/Principal Findings Here we report the molecular and functional characterization of 2mit. The 2mit gene is expressed throughout Drosophila development, localizing mainly in the nervous system during embryogenesis and mostly in the mushroom bodies and ellipsoid body of the central complex in the adult brain. Insilico analyses revealed that 2mit encodes a putative leucine-Rich Repeat transmembrane receptor with intrinsically disordered regions, harboring several fully conserved functional interaction motifs in the cytosolic side. Using insertional mutations, tissue-specific over-expression, and down-regulation approaches, it was found that 2mit is implicated in adult short-term memory, assessed by a courtship conditioning assay. In D. melanogaster, tim2 and 2mit do not seem to be functionally related. Bioinformatic analyses identified 2MIT orthologs in 21 Drosophilidae, 4 Lepidoptera and in Apis mellifera. In addition, the tim2-2mit host-nested gene organization was shown to be present in A. mellifera and maintained among Drosophila species. Within the Drosophilidae 2mit-hosting tim2 intron, insilico approaches detected a neuronal specific transcriptional binding site which might have contributed to preserve the specific host-nested gene association across Drosophila species. Conclusions/Significance Taken together, these results indicate that 2mit, a gene mainly expressed in the nervous system, has a role in the behavioral plasticity of the adult Drosophila. The presence of a putative 2mit regulatory enhancer within the 2mit-hosting tim2 intron could be considered an evolutionary constraint potentially involved in maintaining the tim2-2mit host-nested chromosomal architecture during the evolution of Drosophila species.
Collapse
Affiliation(s)
- Francesca Baggio
- Dipartimento di Biologia, Università degli Studi di Padova Padova, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Chen A, Kelley LD, Janušonis S. Effects of prenatal stress and monoaminergic perturbations on the expression of serotonin 5-HT4 and adrenergic β2 receptors in the embryonic mouse telencephalon. Brain Res 2012; 1459:27-34. [DOI: 10.1016/j.brainres.2012.04.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 03/21/2012] [Accepted: 04/11/2012] [Indexed: 12/13/2022]
|
8
|
Leroy V, Kihara M, Baudino L, Brighouse G, Evans LH, Izui S. Sgp3 and TLR7 stimulation differentially alter the expression profile of modified polytropic retroviruses implicated in murine systemic lupus. J Autoimmun 2012; 38:361-8. [PMID: 22503566 DOI: 10.1016/j.jaut.2012.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 02/27/2012] [Accepted: 03/07/2012] [Indexed: 12/24/2022]
Abstract
The envelope glycoprotein, gp70, of endogenous retroviruses represents one of the major nephritogenic autoantigens implicated in murine systemic lupus erythematosus. Among different endogenous retroviruses (ecotropic, xenotropic and polytropic), lupus-prone mice express remarkably high levels of modified polytropic (mPT) retroviruses, which are controlled by the Sgp3 (serum gp70 production) locus. To define the contribution of the Sgp3 locus derived from lupus-prone mice to the expression of the specific mPT proviruses, the genetic origin of different mPT viruses expressed in livers and thymi of wild-type and Sgp3 congenic C57BL/6 mice was determined through clonal analysis of their transcripts. Among 13 mPT proviruses present in the C57BL/6 genome, only 3 proviruses (Mpmv6, Mpmv10 and Mpmv13) were selectively but differentially expressed in livers and thymi. This was likely a result of co-regulated expression with host genes because of their integration in the same transcriptional direction. In contrast, Sgp3 induced the steady-state expression of an additional select group of mPT proviruses and, after stimulation of TLR7, the highly upregulated expression of a potentially replication-competent mPT virus Mpmv4. These results indicated that the expression of distinct subpopulations of mPT retroviruses was regulated by Sgp3- and TLR7-dependent mechanisms. The induction of potentially replication-competent mPT viruses and the upregulation of one such virus after stimulation with TLR7 in Sgp3 congenic mice further highlight the implication of Sgp3 in autoimmune responses against nephritogenic serum gp70 through the activation of TLR7.
Collapse
Affiliation(s)
- Valérie Leroy
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva 4, Switzerland
| | | | | | | | | | | |
Collapse
|
9
|
Billingsley DJ, Bonass WA, Crampton N, Kirkham J, Thomson NH. Single-molecule studies of DNA transcription using atomic force microscopy. Phys Biol 2012; 9:021001. [PMID: 22473059 DOI: 10.1088/1478-3975/9/2/021001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Atomic force microscopy (AFM) can detect single biomacromolecules with a high signal-to-noise ratio on atomically flat biocompatible support surfaces, such as mica. Contrast arises from the innate forces and therefore AFM does not require imaging contrast agents, leading to sample preparation that is relatively straightforward. The ability of AFM to operate in hydrated environments, including humid air and aqueous buffers, allows structure and function of biological and biomolecular systems to be retained. These traits of the AFM are ensuring that it is being increasingly used to study deoxyribonucleic acid (DNA) structure and DNA-protein interactions down to the secondary structure level. This report focuses in particular on reviewing the applications of AFM to the study of DNA transcription in reductionist single-molecule bottom-up approaches. The technique has allowed new insights into the interactions between ribonucleic acid (RNA) polymerase to be gained and enabled quantification of some aspects of the transcription process, such as promoter location, DNA wrapping and elongation. More recently, the trend is towards studying the interactions of more than one enzyme operating on a single DNA template. These methods begin to reveal the mechanics of gene expression at the single-molecule level and will enable us to gain greater understanding of how the genome is transcribed and translated into the proteome.
Collapse
Affiliation(s)
- Daniel J Billingsley
- School of Physics and Astronomy, University of Leeds, Woodhouse Lane, Leeds, West Yorkshire LS2 9JT, UK
| | | | | | | | | |
Collapse
|
10
|
Kaer K, Branovets J, Hallikma A, Nigumann P, Speek M. Intronic L1 retrotransposons and nested genes cause transcriptional interference by inducing intron retention, exonization and cryptic polyadenylation. PLoS One 2011; 6:e26099. [PMID: 22022525 PMCID: PMC3192792 DOI: 10.1371/journal.pone.0026099] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 09/19/2011] [Indexed: 12/30/2022] Open
Abstract
Background Transcriptional interference has been recently recognized as an unexpectedly complex and mostly negative regulation of genes. Despite a relatively few studies that emerged in recent years, it has been demonstrated that a readthrough transcription derived from one gene can influence the transcription of another overlapping or nested gene. However, the molecular effects resulting from this interaction are largely unknown. Methodology/Principal Findings Using in silico chromosome walking, we searched for prematurely terminated transcripts bearing signatures of intron retention or exonization of intronic sequence at their 3′ ends upstream to human L1 retrotransposons, protein-coding and noncoding nested genes. We demonstrate that transcriptional interference induced by intronic L1s (or other repeated DNAs) and nested genes could be characterized by intron retention, forced exonization and cryptic polyadenylation. These molecular effects were revealed from the analysis of endogenous transcripts derived from different cell lines and tissues and confirmed by the expression of three minigenes in cell culture. While intron retention and exonization were comparably observed in introns upstream to L1s, forced exonization was preferentially detected in nested genes. Transcriptional interference induced by L1 or nested genes was dependent on the presence or absence of cryptic splice sites, affected the inclusion or exclusion of the upstream exon and the use of cryptic polyadenylation signals. Conclusions/Significance Our results suggest that transcriptional interference induced by intronic L1s and nested genes could influence the transcription of the large number of genes in normal as well as in tumor tissues. Therefore, this type of interference could have a major impact on the regulation of the host gene expression.
Collapse
Affiliation(s)
- Kristel Kaer
- Department of Gene Technology, Tallinn University of Technology, Tallinn, Estonia
| | - Jelena Branovets
- Department of Gene Technology, Tallinn University of Technology, Tallinn, Estonia
| | - Anni Hallikma
- Department of Gene Technology, Tallinn University of Technology, Tallinn, Estonia
| | - Pilvi Nigumann
- Department of Gene Technology, Tallinn University of Technology, Tallinn, Estonia
| | - Mart Speek
- Department of Gene Technology, Tallinn University of Technology, Tallinn, Estonia
- * E-mail:
| |
Collapse
|
11
|
|
12
|
Kerr N, Pintzas A, Holmes F, Hobson SA, Pope R, Wallace M, Wasylyk C, Wasylyk B, Wynick D. The expression of ELK transcription factors in adult DRG: Novel isoforms, antisense transcripts and upregulation by nerve damage. Mol Cell Neurosci 2010; 44:165-77. [PMID: 20304071 DOI: 10.1016/j.mcn.2010.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 02/27/2010] [Accepted: 03/10/2010] [Indexed: 01/31/2023] Open
Abstract
ELK transcription factors are known to be expressed in a number of regions in the nervous system. We show by RT-PCR that the previously described Elk1, Elk3/Elk3b/Elk3c and Elk4 mRNAs are expressed in adult dorsal root ganglia (DRG), together with the novel alternatively spliced isoforms Elk1b, Elk3d and Elk4c/Elk4d/Elk4e. These isoforms are also expressed in brain, heart, kidney and testis. In contrast to Elk3 protein, the novel Elk3d isoform is cytoplasmic, fails to bind ETS binding sites and yet can activate transcription by an indirect mechanism. The Elk3 and Elk4 genes are overlapped by co-expressed Pctk2 (Cdk17) and Mfsd4 genes, respectively, with the potential formation of Elk3/Pctaire2 and Elk4/Mfsd4 sense-antisense mRNA heteroduplexes. After peripheral nerve injury the Elk3 mRNA isoforms are each upregulated approximately 2.3-fold in DRG (P<0.005), whereas the natural antisense Pctaire2 isoforms show only a small increase (21%, P<0.01) and Elk1 and Elk4 mRNAs are unchanged.
Collapse
Affiliation(s)
- Niall Kerr
- Department of Physiology and Pharmacology, School of Medical Sciences, University of Bristol, Bristol BS81TD, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
|
14
|
Pedano M, Pietrasanta L, Teijelo M, Rivas G. Characterization of DNA Layers Adsorbed on Glassy Carbon Electrodes. ELECTROANAL 2008. [DOI: 10.1002/elan.200704135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
15
|
Agarwal P, Arora R, Ray S, Singh AK, Singh VP, Takatsuji H, Kapoor S, Tyagi AK. Genome-wide identification of C2H2 zinc-finger gene family in rice and their phylogeny and expression analysis. PLANT MOLECULAR BIOLOGY 2007; 65:467-85. [PMID: 17610133 DOI: 10.1007/s11103-007-9199-y] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Accepted: 05/27/2007] [Indexed: 05/02/2023]
Abstract
Transcription factors regulate gene expression in response to various external and internal cues by activating or suppressing downstream genes in a pathway. In this study, we provide a complete overview of the genes encoding C(2)H(2) zinc-finger transcription factors in rice, describing the gene structure, gene expression, genome localization, and phylogenetic relationship of each member. The genome of Oryza sativa codes for 189 C(2)H(2) zinc-finger transcription factors, which possess two main types of zinc-fingers (named C and Q). The Q-type zinc fingers contain a conserved motif, QALGGH, and are plant specific, whereas C type zinc fingers are found in other organisms as well. A genome-wide microarray based gene expression analysis involving 14 stages of vegetative and reproductive development along with 3 stress conditions has revealed that C(2)H(2) gene family in indica rice could be involved during all the stages of reproductive development from panicle initiation till seed maturation. A total of 39 genes are up-regulated more than 2-fold, in comparison to vegetative stages, during reproductive development of rice, out of which 18 are specific to panicle development and 12 genes are seed-specific. Twenty-six genes have been found to be up-regulated during three abiotic stresses and of these, 14 genes express specifically during the stress conditions analyzed while 12 are also up-regulated during reproductive development, suggesting that some components of the stress response pathways are also involved in reproduction.
Collapse
Affiliation(s)
- Pinky Agarwal
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Abramovitch DY, Andersson SB, Pao LY, Schitter G. A Tutorial on the Mechanisms, Dynamics, and Control of Atomic Force Microscopes. ACTA ACUST UNITED AC 2007. [DOI: 10.1109/acc.2007.4282300] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
17
|
Crampton N, Bonass WA, Kirkham J, Rivetti C, Thomson NH. Collision events between RNA polymerases in convergent transcription studied by atomic force microscopy. Nucleic Acids Res 2006; 34:5416-25. [PMID: 17012275 PMCID: PMC1636470 DOI: 10.1093/nar/gkl668] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2006] [Revised: 07/14/2006] [Accepted: 08/30/2006] [Indexed: 12/01/2022] Open
Abstract
Atomic force microscopy (AFM) has been used to image, at single molecule resolution, transcription events by Escherichia coli RNA polymerase (RNAP) on a linear DNA template with two convergently aligned lambda(pr) promoters. For the first time experimentally, the outcome of collision events during convergent transcription by two identical RNAP has been studied. Measurement of the positions of the RNAP on the DNA, allows distinction of open promoter complexes (OPCs) and elongating complexes (EC) and collided complexes (CC). This discontinuous time-course enables subsequent analysis of collision events where both RNAP remain bound on the DNA. After collision, the elongating RNAP has caused the other (usually stalled) RNAP to back-track along the template. The final positions of the two RNAP indicate that these are collisions between an EC and a stalled EC (SEC) or OPC (previously referred to as sitting-ducks). Interestingly, the distances between the two RNAP show that they are not always at closest approach after 'collision' has caused their arrest.
Collapse
Affiliation(s)
- Neal Crampton
- Department of Oral Biology, University of LeedsLeeds LS2 9LU, UK
- Institute of Molecular Biophysics, School of Physics and Astronomy, University of LeedsLeeds LS2 9JT, UK
| | | | - Jennifer Kirkham
- Department of Oral Biology, University of LeedsLeeds LS2 9LU, UK
| | - Claudio Rivetti
- Department of Biochemistry and Molecular Biology, University of Parma43100 Parma, Italy
| | - Neil H. Thomson
- Department of Oral Biology, University of LeedsLeeds LS2 9LU, UK
- Institute of Molecular Biophysics, School of Physics and Astronomy, University of LeedsLeeds LS2 9JT, UK
| |
Collapse
|
18
|
Li Y, Yuan ZA, Aragon MA, Kulkarni AB, Gibson CW. Comparison of body weight and gene expression in amelogenin null and wild-type mice. Eur J Oral Sci 2006; 114 Suppl 1:190-3; discussion 201-2, 381. [PMID: 16674684 DOI: 10.1111/j.1600-0722.2006.00286.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Amelogenin (AmelX) null mice develop hypomineralized enamel lacking normal prism structure, but are healthy and fertile. Because these mice are smaller than wild-type mice prior to weaning, we undertook a detailed analysis of the weight of mice and analyzed AmelX expression in non-dental tissues. Wild-type mice had a greater average weight each day within the 3-wk period. Using reverse transcription-polymerase chain reaction (RT-PCR), products of approximately 200 bp in size were generated from wild-type teeth, brain, eye, and calvariae. DNA sequence analysis of RT-PCR products from calvariae indicated that the small amelogenin leucine-rich amelogenin peptide (LRAP), both with and without exon 4, was expressed. No products were obtained from any of the samples from the AmelX null mice. We also isolated mRNAs that included AmelX exons 8 and 9, and identified a duplication within the murine AmelX gene with 91% homology. Our results add additional support to the hypothesis that amelogenins are multifunctional proteins, with potential roles in non-ameloblasts and in non-mineralizing tissues during development. The smaller size of AmelX null mice could potentially be explained by the lack of LRAP expression in some of these tissues, leading to a delay in development.
Collapse
Affiliation(s)
- Yong Li
- Department of Anatomy and Cell Biology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
19
|
Crampton N, Thomson NH, Kirkham J, Gibson CW, Bonass WA. Imaging RNA polymerase-amelogenin gene complexes with single molecule resolution using atomic force microscopy. Eur J Oral Sci 2006; 114 Suppl 1:133-8; discussion 164-5, 380-1. [PMID: 16674675 DOI: 10.1111/j.1600-0722.2006.00274.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The AMELX gene encoding the enamel matrix protein, amelogenin, is located within (and in the opposite orientation to) the first intron of the ARHGAP6 gene, which encodes a GTPase-activating protein. The orientation of these two genes with respect to each other raises the possibility that they may undergo simultaneous convergent transcription during amelogenesis. The aim of this study was to use atomic force microscopy (AFM) to study a transcriptionally active amelogenin DNA template and to investigate the binding of RNA polymerase to convergently aligned promoters. Images of RNA polymerases stalled on DNA templates were obtained following incubation of the template with RNA polymerases and ribonucleotide triphosphates. A linear DNA template incorporating an intact rat amelogenin cDNA flanked by convergently aligned coliphage T7 and T3 promoters was constructed and shown to be transcriptionally active in vitro. Atomic force microscopy images of transcription complexes revealed globular structures, corresponding to single RNA polymerase molecules bound at specific locations on the DNA templates. These results indicate that AFM allows the visualization of individual RNA polymerases on DNA templates, offering a realistic approach to investigating the concept of convergent transcription of nested genes, which may lead to an understanding of whether the simultaneous expression of AMELX and ARHGAP6 is possible during the formation of tooth enamel.
Collapse
Affiliation(s)
- Neal Crampton
- School of Physics and Astronomy, University of Leeds, and Department of Oral Biology, Leeds Dental Institute, UK
| | | | | | | | | |
Collapse
|
20
|
Gibson CW, Kulkarni AB, Wright JT. The use of animal models to explore amelogenin variants in amelogenesis imperfecta. Cells Tissues Organs 2006; 181:196-201. [PMID: 16612085 DOI: 10.1159/000091381] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Amelogenin proteins are secreted by ameloblast cells during tooth development. Because of extensive alternative splicing of the amelogenin primary RNA transcript, and because systematic proteolysis results in many additional peptides during enamel maturation, it has been difficult to assign function to individual amelogenins. Targeted deletions and transgenic mice have been generated in order to better understand amelogenin protein function in vivo. From these murine models, we have determined that amelogenins are responsible for normal enamel thickness and structure, but not for initiation of enamel mineral formation at the dentin-enamel junction. Although it is now clear that the amelogenin (AmelX) gene exists in a nested orientation and that AmelX is expressed at a low level in various developing tissues, the significance of these findings is incompletely understood. Future studies are expected to answer remaining questions concerning structure/function relationships among these 'enamel proteins'.
Collapse
Affiliation(s)
- Carolyn W Gibson
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | |
Collapse
|
21
|
Yu P, Ma D, Xu M. Nested genes in the human genome. Genomics 2006; 86:414-22. [PMID: 16084061 DOI: 10.1016/j.ygeno.2005.06.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2005] [Revised: 06/05/2005] [Accepted: 06/15/2005] [Indexed: 12/01/2022]
Abstract
Here we studied one special type of gene, i.e., the nested gene, in the human genome. We collected 373 reliably annotated nested genes. Two-thirds of them were on the strand opposite that of their host gene. About 58% coding nested gene pairs were conserved in mouse and some were even maintained in chicken and fish, while nested pseudogenes were poorly conserved. Ka/Ks analysis revealed that nested genes were under strong selection, although they did not demonstrate greater conservation than other genes. With microarray data we observed that two partners of one nested pair seemed to be expressed reciprocally. A significant proportion of nested genes were tissue-specifically expressed. Gene ontology analysis demonstrated that quite a number of nested genes participated in cellular signal transduction. Based on these observations, we think that nested genes are a group of genes with important physiological functions.
Collapse
Affiliation(s)
- Peng Yu
- Laboratory of Medical Immunology, School of Basic Medical Sciences, Peking University, Beijing 100083, People's Republic of China.
| | | | | |
Collapse
|
22
|
Hao J, He G, Narayanan K, Zou B, Lin L, Muni T, Ramachandran A, George A. Identification of differentially expressed cDNA transcripts from a rat odontoblast cell line. Bone 2005; 37:578-88. [PMID: 16054450 DOI: 10.1016/j.bone.2005.05.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2004] [Revised: 04/08/2005] [Accepted: 05/13/2005] [Indexed: 10/25/2022]
Abstract
Odontoblasts and osteoblasts are two among the myriads of cell types present in the craniofacial complex. Both have a common ectomesenchymal origin and secrete macromolecules that are necessary for the formation of dentin and alveolar bone via matrix-mediated mechanisms. The mineralized matrices of bone and dentin differ in morphology and function but several mineral associated proteins, formerly thought to be tissue specific, have been found to be common in both tissues. To decipher the complex molecular mechanisms involved in mineralized dentin formation, the suppressive subtraction hybridization (SSH) approach has been used to identify the genes expressed by polarized odontoblasts. Employing SSH, 187 cDNA clones were identified from the subtracted cDNA library. Many of these genes have not been previously reported to be expressed by terminally differentiated odontoblasts. Genes were classified into seven groups based on the predicted function of the encoded proteins: extracellular matrix; cytoskeletal components, molecules involved in adhesion and cell-cell interaction; metabolic enzymes, transporters, ion channels; protein processing, protein transport and protein folding molecules; nuclear proteins (transcription factors, DNA processing enzymes); signaling molecules and genes of yet unknown function. Northern blot and in situ hybridization analysis performed for five putative novel genes and one new isoform of amelogenin revealed differential expression levels in the osteoblasts, ameloblasts and the odontoblasts of the developing rat molars. Some of the known genes isolated from this enriched pool were the cleavage products of dentin sialophosphoprotein (DSPP) namely, phosphophoryn (PP) and dentin sialoprotein (DSP). Interestingly amelogenin, ameloblastin and enamelin were also expressed in the odontoblasts during dentin formation.
Collapse
Affiliation(s)
- Jianjun Hao
- Department of Oral Biology (M/C 690), University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Prakash SK, Gibson CW, Wright JT, Boyd C, Cormier T, Sierra R, Li Y, Abrams WR, Aragon MA, Yuan ZA, van den Veyver IB. Tooth enamel defects in mice with a deletion at the Arhgap 6/Amel X locus. Calcif Tissue Int 2005; 77:23-9. [PMID: 16007484 DOI: 10.1007/s00223-004-1213-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2004] [Accepted: 02/01/2005] [Indexed: 11/27/2022]
Abstract
The amelogenin proteins regulate enamel mineral formation in the developing tooth. The human AMELX gene, which encodes the amelogenin proteins, is located within an intron of the Arhgap 6 gene. ARHGAP 6 encodes a Rho GAP, which regulates activity of Rho A, a small G protein involved in intracellular signal transduction. Mice were generated in which the entire ARHGAP 6 gene was deleted by Cre-mediated recombination, which also removed the nested Amel X gene. Enamel from these mice appeared chalky white, and the molars showed excessive wear. The enamel layer was hypoplastic and non-prismatic, whereas other dental tissues had normal morphology. This phenotype is similar to that reported for Amel X null mice, which have a short deletion that removed the region surrounding the translation initiation site, and resembles some forms of X-linked amelogenesis imperfecta in humans. Analysis of the enamel from the Arhgap 6/Amel X-deleted mice verifies that the Amel X gene is nested within the murine Arhgap 6 gene and shows that removal of the entire Amel X gene leads to a phenotype similar to the earlier Amel X null mouse results, in which no amelogenin protein was detected. However, an unusual layer of aprismatic enamel covers the enamel surface, which may be related to the 1.1-Mb deletion, which included Arhgap 6 in these mice.
Collapse
Affiliation(s)
- S K Prakash
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|