1
|
Singh D, Mosahari PV, Sharma P, Neog K, Bora U. Comparative genomic and phylogenetic analysis of the complete mitochondrial genome of Cricula trifenestrata (Helfer) among lepidopteran insects. Genome 2024; 67:424-439. [PMID: 39047299 DOI: 10.1139/gen-2023-0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Cricula trifenestrata Helfer (commonly known as Amphutukoni muga/Cricula silkworm), a wild sericigenous insect produces golden yellow silk similar to Antheraea assamensis (muga silkworm), with significant potential as a natural fiber and biomaterial. Cricula is considered as a pest as it competes for food with muga, which produces the prized golden silk. This study focuses on decoding the mitochondrial genome of C. trifenestrata using next-generation sequencing technology and includes comparative analysis with Bombycoids and other lepidopteran insects. We found that the Cricula mitogenome spans 15 425 bp and exhibits typical gene content and arrangement consistent with other Saturniids and lepidopterans. All protein-coding genes were found to undergo purifying selection, with the highest and lowest conservation observed in the cox1 and atp8 gene, respectively, indicating their potential role in future evolutionary events. We identified two types of mismatches: 23 "G-U" and 6 "U-U" pairs, similar to those found in Actias selene among the Saturniids. Additionally, our study uncovered the presence of two 33 bp repeat units and a "TTAGA" motif in the control region, in contrast to the typical "ATAGA" motif, suggesting functional similarity with evolving sequences. Furthermore, phylogenetic analysis supports the close relationship of Cricula with other species within the Saturniidae family.
Collapse
Affiliation(s)
- Deepika Singh
- Bioengineering Research Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati 781039, Assam, India
| | - Ponnala Vimal Mosahari
- Centre for the Environment, Indian Institute of Technology, Guwahati 781039, Assam, India
| | - Pragya Sharma
- Department of Bioengineering and Technology, Gauhati University Institute of Science and Technology (GUIST), Gauhati University, Guwahati 781014, Assam, India
| | - Kartik Neog
- Biotechnology Section, Central Muga Eri Research & Training Institute (CMER&TI), Lahdoigarh 785700, Jorhat, Assam, India
| | - Utpal Bora
- Bioengineering Research Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati 781039, Assam, India
- Centre for the Environment, Indian Institute of Technology, Guwahati 781039, Assam, India
| |
Collapse
|
2
|
Yi C, Shu X, Wang L, Yin J, Wang Y, Wang Y, Zhang H, He Q, Zhao M. The first report of complete mitogenomes of two endangered species of genus Propomacrus (Coleoptera: Scarabaeidae: Euchirinae) and phylogenetic implications. PLoS One 2024; 19:e0310559. [PMID: 39292737 PMCID: PMC11410235 DOI: 10.1371/journal.pone.0310559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 09/03/2024] [Indexed: 09/20/2024] Open
Abstract
To understand the mitochondrial genome structure of two endangered and long-armed scarab beetles, Propomacrus davidi and Propomacrus bimucronatus, their complete mitogenomes were sequenced for the first time in this study. The complete mitogenomes of P. davidi and P. bimucronatus were 18, 042 bp and 18, 104 bp in length, respectively. The gene orders of their mitogenomes were highly consistent with other Coleopteran species, and the typical ATN was used as the start codon in most protein coding genes. The incomplete stop codon T was used in cox1, cox2, and nad5, and TAN was used as a complete stop codon in most protein coding genes. All predicted tRNAs could form a typical cloverleaf secondary structure, except that trnS1 lacked the dihydrouridine arm. Based on the maximum likelihood and the Bayesian inference methods, phylogenetic trees of 50 species were reconstructed. The results showed that P. davidi, P. bimucronatus, Cheirotonus jansoni and Cheirotonus gestroi clustered in the same branch, and were the most closely related. The results supported that subfamily Euchirinae is a monophyletic group of Scarabaeidae, which was consistent with the morphological classification. These molecular data enriched the complete mitogenome database of Euchirinae, and improved our understanding of the phylogenetic relationship and evolutionary characteristics of these two endangered species.
Collapse
Affiliation(s)
- Chuanhui Yi
- Yunnan Institute of Biological Diversity, Southwest Forestry University, Kunming, Yunnan Province, P.R. China
| | - Xu Shu
- Department of Forest Conservation, College of Biodiversity Conservation, Southwest Forestry University, Kunming, Yunnan Province, P.R. China
| | - Lingmin Wang
- Department of Forest Conservation, College of Biodiversity Conservation, Southwest Forestry University, Kunming, Yunnan Province, P.R. China
| | - Jing Yin
- Department of Forest Conservation, College of Biodiversity Conservation, Southwest Forestry University, Kunming, Yunnan Province, P.R. China
| | - Youhui Wang
- Department of Forest Conservation, College of Biodiversity Conservation, Southwest Forestry University, Kunming, Yunnan Province, P.R. China
| | - Yuchen Wang
- Department of Forest Conservation, College of Biodiversity Conservation, Southwest Forestry University, Kunming, Yunnan Province, P.R. China
| | - Honghui Zhang
- Department of Forest Conservation, College of Biodiversity Conservation, Southwest Forestry University, Kunming, Yunnan Province, P.R. China
| | - Qiuju He
- Department of Forest Conservation, College of Biodiversity Conservation, Southwest Forestry University, Kunming, Yunnan Province, P.R. China
| | - Min Zhao
- Division of Resource Insects, Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, Yunnan Province, P.R. China
- Key Laboratory of Breeding and Utilization of Resource Insects, National Forestry and Grassland Administration, Kunming, Yunnan Province, P.R. China
| |
Collapse
|
3
|
Meng C, Cao S, Dong W, Gao C. The redescription and complete mitogenomes of two Oxycarenus species (Hemiptera, Oxycarenidae) and phylogenetic implications. Zookeys 2024; 1211:231-250. [PMID: 39279917 PMCID: PMC11393489 DOI: 10.3897/zookeys.1211.126013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/29/2024] [Indexed: 09/18/2024] Open
Abstract
In this study, the two Oxycarenidae species, O.gossypii Horváth, 1926 and Oxycarenusbicolorheraldus Distant, 1904, are redescribed, and their complete mitogenomes are sequenced and analyzed. The phylogeny of Lygaeoidea is examined using 45 complete mitogenomes of lygaeoid species and four outgroup species. The gene orientation and arrangement of the two mitogenomes are found to be consistent with typical Lygaeoidea mitochondrial features, comprising 37 genes, including 13 PCGs, 22 tRNAs, 2 rRNAs, and a control region. Nucleotide composition of the species was biased towards A and T, with the gene order identical to the putative ancestral arrangement of insects. Start codons, stop codons, RNAs, relative synonymous codon usage (RSCU), and nucleotide diversity (Pi) of Oxycarenidae exhibited characteristics similar to other families in Lygaeoidea. Bayesian-inference (BI) and maximum-likelihood (ML) methods were employed to investigate phylogenetic relationships using PCG datasets from selected species. Phylogenetic analyses reveal slightly different topologies between BI and ML methods, with variation primarily concentrated in Colobathristidae and Rhyparochromidae. Our study confirms that the two sequenced Oxycarenidae species formed a single clade, and the position of Oxycarenidae remains stable in both ML and BI phylogenetic trees. These findings expand the mitochondrial genome databases of Lygaeoidea and provide valuable insights into the phylogenetic relationships within Lygaeoidea or Pentatomomorpha.
Collapse
Affiliation(s)
- Changjun Meng
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing, Jiangsu 210037, China Nanjing Forestry University Nanjing China
| | - Suyan Cao
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing, Jiangsu 210037, China Nanjing Forestry University Nanjing China
| | - Wen Dong
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing, Jiangsu 210037, China Nanjing Forestry University Nanjing China
| | - Cuiqing Gao
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing, Jiangsu 210037, China Nanjing Forestry University Nanjing China
| |
Collapse
|
4
|
Qu J, Lu X, Teng X, Xing Z, Wang S, Feng C, Wang X, Wang L. Mitochondrial Genomes of Streptopelia decaocto: Insights into Columbidae Phylogeny. Animals (Basel) 2024; 14:2220. [PMID: 39123752 PMCID: PMC11310995 DOI: 10.3390/ani14152220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/18/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
In this research, the mitochondrial genome of the Streptopelia decaocto was sequenced and examined for the first time to enhance the comprehension of the phylogenetic relationships within the Columbidae. The complete mitochondrial genome of Streptopelia decaocto (17,160 bp) was structurally similar to the recognized members of the Columbidae family, but with minor differences in gene size and arrangement. The structural AT content was 54.12%. Additionally, 150 mitochondrial datasets, representing valid species, were amassed in this investigation. Maximum likelihood (ML) and Bayesian inference (BI) phylogenetic trees and evolutionary time relationships of species were reconstructed based on cytb gene sequences. The findings from the phylogenetic evaluations suggest that the S. decaocto was classified under the Columbinae subfamily, diverging from the Miocene approximately 8.1 million years ago, indicating intricate evolutionary connections with its close relatives, implying a history of species divergence and geographic isolation. The diversification of the Columbidae commenced during the Late Oligocene and extended into the Miocene. This exploration offers crucial molecular data for the S. decaocto, facilitating the systematic taxonomic examination of the Columbidae and Columbiformes, and establishing a scientific foundation for species preservation and genetic resource management.
Collapse
Affiliation(s)
- Jiangyong Qu
- College of Life Science, Yantai University, Yantai 264005, China; (J.Q.); (X.L.); (Z.X.); (S.W.); (C.F.)
| | - Xiaofei Lu
- College of Life Science, Yantai University, Yantai 264005, China; (J.Q.); (X.L.); (Z.X.); (S.W.); (C.F.)
| | - Xindong Teng
- Qingdao International Travel Healthcare Center, Qingdao 266071, China;
| | - Zhikai Xing
- College of Life Science, Yantai University, Yantai 264005, China; (J.Q.); (X.L.); (Z.X.); (S.W.); (C.F.)
| | - Shuang Wang
- College of Life Science, Yantai University, Yantai 264005, China; (J.Q.); (X.L.); (Z.X.); (S.W.); (C.F.)
| | - Chunyu Feng
- College of Life Science, Yantai University, Yantai 264005, China; (J.Q.); (X.L.); (Z.X.); (S.W.); (C.F.)
| | - Xumin Wang
- College of Life Science, Yantai University, Yantai 264005, China; (J.Q.); (X.L.); (Z.X.); (S.W.); (C.F.)
| | - Lijun Wang
- College of Life Science, Yantai University, Yantai 264005, China; (J.Q.); (X.L.); (Z.X.); (S.W.); (C.F.)
| |
Collapse
|
5
|
Zhang CH, Wang HY, Wang Y, Chi ZH, Liu YS, Zu GH. The first two complete mitochondrial genomes for the genus Anagyrus (Hymenoptera, Encyrtidae) and their phylogenetic implications. Zookeys 2024; 1206:81-98. [PMID: 39006402 PMCID: PMC11245640 DOI: 10.3897/zookeys.1206.121923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/12/2024] [Indexed: 07/16/2024] Open
Abstract
Anagyrus, a genus of Encyrtidae (Hymenoptera, Chalcidoidea), represents a successful group of parasitoid insects that attack various mealybug pests of agricultural and forestry plants. Until now, only 20 complete mitochondrial genomes have been sequenced, including those in this study. To enrich the diversity of mitochondrial genomes in Encyrtidae and to gain insights into their phylogenetic relationships, the mitochondrial genomes of two species of Anagyrus were sequenced, and the mitochondrial genomes of these species were compared and analyzed. Encyrtid mitochondrial genomes exhibit similarities in nucleotide composition, gene organization, and control region patterns. Comparative analysis of protein-coding genes revealed varying molecular evolutionary rates among different genes, with six genes (ATP8, ND2, ND4L, ND6, ND4 and ND5) showing higher rates than others. A phylogenetic analysis based on mitochondrial genome sequences supports the monophyly of Encyrtidae; however, the two subfamilies, Encyrtinae and Tetracneminae, are non-monophyletic. This study provides valuable insights into the phylogenetic relationships within the Encyrtidae and underscores the utility of mitochondrial genomes in the systematics of this family.
Collapse
Affiliation(s)
- Cheng-Hui Zhang
- College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin 300392, ChinaTianjin Agricultural UniversityTianjinChina
| | - Hai-Yang Wang
- College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin 300392, ChinaTianjin Agricultural UniversityTianjinChina
| | - Yan Wang
- College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin 300392, ChinaTianjin Agricultural UniversityTianjinChina
| | - Zhi-Hao Chi
- College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin 300392, ChinaTianjin Agricultural UniversityTianjinChina
| | - Yue-Shuo Liu
- College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin 300392, ChinaTianjin Agricultural UniversityTianjinChina
| | - Guo-Hao Zu
- College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin 300392, ChinaTianjin Agricultural UniversityTianjinChina
| |
Collapse
|
6
|
Pang S, Zhang Q, Liang L, Qin Y, Li S, Bian X. Comparative Mitogenomics and Phylogenetic Implications for Nine Species of the Subfamily Meconematinae (Orthoptera: Tettigoniidae). INSECTS 2024; 15:413. [PMID: 38921128 PMCID: PMC11204050 DOI: 10.3390/insects15060413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/27/2024]
Abstract
Currently, the subfamily Meconematinae encompasses 1029 species, but whole-mitochondrial-genome assemblies have only been made available for 13. In this study, the whole mitochondrial genomes (mitogenomes) of nine additional species in the subfamily Meconematinae were sequenced. The size ranged from 15,627 bp to 17,461 bp, indicating double-stranded circular structures. The length of the control region was the main cause of the difference in mitochondrial genome length among the nine species. All the mitogenomes including 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), 2 ribosomal RNA genes (rRNAs) and a control region (CR). The majority strand encoded 23 genes, and the minority strand encoded 14 genes. A phylogenetic analysis reaffirmed the monophyletic status of each subfamily, but the monophysitism of Xizicus, Xiphidiopsis and Phlugiolopsis was not supported.
Collapse
Affiliation(s)
- Siyu Pang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin 541006, China; (S.P.); (Q.Z.); (L.L.); (Y.Q.); (S.L.)
- College of Life Sciences, Guangxi Normal University, Guilin 541006, China
| | - Qianwen Zhang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin 541006, China; (S.P.); (Q.Z.); (L.L.); (Y.Q.); (S.L.)
- College of Life Sciences, Guangxi Normal University, Guilin 541006, China
| | - Lili Liang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin 541006, China; (S.P.); (Q.Z.); (L.L.); (Y.Q.); (S.L.)
- College of Life Sciences, Guangxi Normal University, Guilin 541006, China
| | - Yanting Qin
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin 541006, China; (S.P.); (Q.Z.); (L.L.); (Y.Q.); (S.L.)
- College of Life Sciences, Guangxi Normal University, Guilin 541006, China
| | - Shan Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin 541006, China; (S.P.); (Q.Z.); (L.L.); (Y.Q.); (S.L.)
- College of Life Sciences, Guangxi Normal University, Guilin 541006, China
| | - Xun Bian
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin 541006, China; (S.P.); (Q.Z.); (L.L.); (Y.Q.); (S.L.)
- College of Life Sciences, Guangxi Normal University, Guilin 541006, China
| |
Collapse
|
7
|
Shah RA, Riyaz M, Ignacimuthu S, Sivasankaran K. Characterization and Molecular Phylogenetic Analysis of Subfamily Erebinae (Lepidoptera: Noctuoidea: Erebidae) Using Five Complete Mitochondrial Genomes. Biochem Genet 2024; 62:2224-2252. [PMID: 37891448 DOI: 10.1007/s10528-023-10528-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/07/2023] [Indexed: 10/29/2023]
Abstract
In this study, the complete mitogenomes of Sympis rufibasis, Lacera noctilio, Oxyodes scrobiculata, Mocis undata, and Artena dotata were newly sequenced to bring up-to-date the database using the next-generation sequencing methods. The gene order of all sequenced mitogenomes was identical consisting of 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), two ribosomal RNA genes (rRNAs), and a non-coding A+T-rich region, which were common to other Lepidopteran insects. All protein-coding genes (PCGs) initiated with a canonical ATN codon and ended with TAN or an incomplete stop codon, single T. The A+T-rich region of S. rufibasis, L. noctilio, O. scrobiculata, M. undata, and A. dotata are 406 bp, 462 bp, 372 bp, 410 bp, and 406 bp long, respectively, containing number of characteristics that are distinctive to Noctuoidea moths. We analyzed concatenated amino acid sequences of protein-coding genes not including rRNAs, using Maximum Likelihood and Bayesian Inference methods. The phylogenetic analyses indicated that the tribe relationships within Erebinae were reconstructed as (Sypnini+((Erebini 1+Poaphilini 1)+((Euclidiini+Catocalini+(Hypopyrini+Erebini 2))+((Hulodini+(Poaphilini 2+Ophiusini))))). Phylogenetic analyses supported and confirmed the monophyly of the subfamilies' relationships as follows: (Hypeninae+Lymantriinae)+((Scoliopterginae+((Calpinae+Erebinae)+((Herminiinae+Aganainae)+Arctiinae)))) within Erebidae.
Collapse
Affiliation(s)
- Rauf Ahmad Shah
- Division of Taxonomy and Biodiversity, Entomology Research Institute, Loyola Collège, Chennai, Tamil Nadu, 600034, India
| | - Muzafar Riyaz
- Division of Taxonomy and Biodiversity, Entomology Research Institute, Loyola Collège, Chennai, Tamil Nadu, 600034, India
| | - Savarimuthu Ignacimuthu
- Xavier Research Foundation, St. Xavier's College, Palayamkottai, Tamil Nadu, 627002, India
- Creighton University, 2500 California Plaza, Omaha, USA
| | - Kuppusamy Sivasankaran
- Division of Taxonomy and Biodiversity, Entomology Research Institute, Loyola Collège, Chennai, Tamil Nadu, 600034, India.
| |
Collapse
|
8
|
Elameen A, Maduna SN, Mageroy MH, van Eerde A, Knudsen G, Hagen SB, Eiken HG. Novel insight into lepidopteran phylogenetics from the mitochondrial genome of the apple fruit moth of the family Argyresthiidae. BMC Genomics 2024; 25:21. [PMID: 38166583 PMCID: PMC10759517 DOI: 10.1186/s12864-023-09905-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 12/14/2023] [Indexed: 01/04/2024] Open
Abstract
BACKGROUND The order Lepidoptera has an abundance of species, including both agriculturally beneficial and detrimental insects. Molecular data has been used to investigate the phylogenetic relationships of major subdivisions in Lepidoptera, which has enhanced our understanding of the evolutionary relationships at the family and superfamily levels. However, the phylogenetic placement of many superfamilies and/or families in this order is still unknown. In this study, we determine the systematic status of the family Argyresthiidae within Lepidoptera and explore its phylogenetic affinities and implications for the evolution of the order. We describe the first mitochondrial (mt) genome from a member of Argyresthiidae, the apple fruit moth Argyresthia conjugella. The insect is an important pest on apples in Fennoscandia, as it switches hosts when the main host fails to produce crops. RESULTS The mt genome of A. conjugella contains 16,044 bp and encodes all 37 genes commonly found in insect mt genomes, including 13 protein-coding genes (PCGs), two ribosomal RNAs, 22 transfer RNAs, and a large control region (1101 bp). The nucleotide composition was extremely AT-rich (82%). All detected PCGs (13) began with an ATN codon and terminated with a TAA stop codon, except the start codon in cox1 is ATT. All 22 tRNAs had cloverleaf secondary structures, except trnS1, where one of the dihydrouridine (DHU) arms is missing, reflecting potential differences in gene expression. When compared to the mt genomes of 507 other Lepidoptera representing 18 superfamilies and 42 families, phylogenomic analyses found that A. conjugella had the closest relationship with the Plutellidae family (Yponomeutoidea-super family). We also detected a sister relationship between Yponomeutoidea and the superfamily Tineidae. CONCLUSIONS Our results underline the potential importance of mt genomes in comparative genomic analyses of Lepidoptera species and provide valuable evolutionary insight across the tree of Lepidoptera species.
Collapse
Affiliation(s)
- Abdelhameed Elameen
- Division of Biotechnology and Plant Health, NIBIO, Norwegian Institute of Bioeconomy Research, Høghskoleveien 7, N-1431, Aas, Norway.
| | - Simo N Maduna
- Division of Environment and Natural Resources, NIBIO, Norwegian Institute of Bioeconomy Research, Høghskoleveien 7, N-1431, Aas, Norway
| | - Melissa H Mageroy
- Division of Biotechnology and Plant Health, NIBIO, Norwegian Institute of Bioeconomy Research, Høghskoleveien 7, N-1431, Aas, Norway
| | - André van Eerde
- Division of Biotechnology and Plant Health, NIBIO, Norwegian Institute of Bioeconomy Research, Høghskoleveien 7, N-1431, Aas, Norway
| | - Geir Knudsen
- Division of Biotechnology and Plant Health, NIBIO, Norwegian Institute of Bioeconomy Research, Høghskoleveien 7, N-1431, Aas, Norway
| | - Snorre B Hagen
- Division of Environment and Natural Resources, NIBIO, Norwegian Institute of Bioeconomy Research, Høghskoleveien 7, N-1431, Aas, Norway
| | - Hans Geir Eiken
- Division of Environment and Natural Resources, NIBIO, Norwegian Institute of Bioeconomy Research, Høghskoleveien 7, N-1431, Aas, Norway
| |
Collapse
|
9
|
Li YX, Huang XH, Li MR, Li SY, Huang ZJ, Wang DF, Yin GW, Wang L. Characterization and phylogenetic analysis of the complete mitochondrial genome of Rhabdias kafunata (Rhabditida: Rhabdiasidae). Exp Parasitol 2023; 255:108646. [PMID: 39491106 DOI: 10.1016/j.exppara.2023.108646] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 10/15/2023] [Accepted: 10/26/2023] [Indexed: 11/05/2024]
Abstract
Rhabdias kafunata (Rhabditida: Rhabdiasidae) is a parasitic nematode that significantly affects bufonids. To better understand the genome-level characteristics of related species, Illumina sequencing was used to identify mitochondrial genes and analyze their basic characteristics and gene arrangements. The mitogenome of R. kafunata is 14,068 bp in length and contains 36 genes, including 12 protein-coding genes (PCGs), 2 ribosomal RNA (rRNA) genes, 22 transfer RNA (tRNA) genes and one noncoding region (NCR). The nucleotide composition is highly biased toward A + T, accounting for 75.5% of the entire mitochondrial genome. The cox1 sequence is relatively conserved in Ka/Ks analyses and can be used as a gene fragment for species identification. While 8 of the 12 PCGs use the typical ATN initiation codon, nad1-2, nad4, and cox3 utilize a TTG initiation codon. Most stop codons end with the standard TAA or TAG, except for cytb, which ends with an incomplete TA. Additionally, trnM, trnK, and trnI have the typical clover-leaf secondary structure, while the remaining tRNAs lack the DHU arm or TΨC arm. Phylogenetic analysis indicates that R. kafunata belongs to the Rhabditidae family and is closely related to Litoditis marina and Caenorhabditis angaria among sequenced lepidopteran mitochondrial genomes.
Collapse
Affiliation(s)
- Yong-Xia Li
- College of Animal Sciences (College of Bee Science) Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Laboratory of Animal Medical Engineering of Fujian Province, Fuzhou, 350002, China
| | - Xiao-Hang Huang
- College of Animal Sciences (College of Bee Science) Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Laboratory of Animal Medical Engineering of Fujian Province, Fuzhou, 350002, China
| | - Meng-Rui Li
- College of Animal Sciences (College of Bee Science) Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Laboratory of Animal Medical Engineering of Fujian Province, Fuzhou, 350002, China
| | - Shi-Yi Li
- College of Animal Sciences (College of Bee Science) Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Laboratory of Animal Medical Engineering of Fujian Province, Fuzhou, 350002, China
| | - Zhi-Jian Huang
- College of Animal Sciences (College of Bee Science) Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Laboratory of Animal Medical Engineering of Fujian Province, Fuzhou, 350002, China
| | - Deng-Feng Wang
- College of Animal Sciences (College of Bee Science) Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Laboratory of Animal Medical Engineering of Fujian Province, Fuzhou, 350002, China
| | - Guang-Wen Yin
- College of Animal Sciences (College of Bee Science) Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Laboratory of Animal Medical Engineering of Fujian Province, Fuzhou, 350002, China.
| | - Lei Wang
- College of Animal Sciences (College of Bee Science) Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Laboratory of Animal Medical Engineering of Fujian Province, Fuzhou, 350002, China.
| |
Collapse
|
10
|
Liang X, Wang P, Zhang L, Li Z, Xiao Y. Determining the complete mitochondrial genome of Tethea albicostata (Lepidoptera: Drepanidae) and phylogenetic analysis. Mitochondrial DNA B Resour 2023; 8:963-966. [PMID: 37701525 PMCID: PMC10494727 DOI: 10.1080/23802359.2023.2254462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/28/2023] [Indexed: 09/14/2023] Open
Abstract
Tethea albicostata is a widely distributed insect species in northern and central China. To date, few studies have been conducted on this species, with the exception of morphological taxonomy studies. Here, we report the complete mitochondrial genome of T. albicostata collected in China. The circular-mapping mitogenome is 15,308 bp in length, with an overall A + T content of 80.52%, encoding 2 ribosomal RNA genes, 22 transfer RNA genes, and 13 protein-coding genes. The gene arrangement and components of T. albicostata are identical to those of most other Lepidopteran insects. Phylogenetic analysis based on mitogenomes showed that T. albicostata is grouped with Drepana pallida, which belongs to the same family as Drepanidae. The family Drepanidae formed a separate branch from other families in the phylogenetic tree. This study determined the second mitochondrial genome of the Drepanidae species.
Collapse
Affiliation(s)
- Xinyue Liang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Ping Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- School of Life Sciences, Henan University, Kaifeng, China
- Shenzhen Research Institute of Henan University, Shenzhen, China
| | - Lei Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zaiyuan Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yutao Xiao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
11
|
Yang HJ, Yang ZH, Ren TG, Dong WG. The complete mitochondrial genome of Eulaelaps huzhuensis (Mesostigmata: Haemogamasidae). EXPERIMENTAL & APPLIED ACAROLOGY 2023; 90:301-316. [PMID: 37349609 PMCID: PMC10406673 DOI: 10.1007/s10493-023-00802-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/16/2023] [Indexed: 06/24/2023]
Abstract
Some mites of the family Haemogamasidae can transmit a variety of zoonotic diseases and have important public health and safety implications. Currently, however, little attention has been paid to molecular data of Haemogamasidae species, limiting our understanding of their evolutionary and phylogenetic relationships. In this study, the complete mitochondrial genome of Eulaelaps huzhuensis was determined for the first time, and its genomic information was analyzed in detail. The mitochondrial genome of E. huzhuensis is 14,872 bp in length with 37 genes and two control regions. The base composition showed a distinct AT preference. Twelve protein-coding genes have a typical ATN as the start codon, and three protein-coding genes have incomplete stop codons. During the folding of tRNA genes, a total of 30 mismatches occurred, and three tRNA genes had an atypical cloverleaf secondary structure. The order of the E. huzhuensis mitochondrial genome arrangement is a new type of rearrangement in Mesostigmata. The phylogenetic analysis confirmed that the family Haemogamasidae is a monophyletic branch and does not belong to a subfamily of the Laelapidae. Our results lay the foundation for subsequent studies on the phylogeny and evolutionary history of the family Haemogamasidae.
Collapse
Affiliation(s)
- Hui-Juan Yang
- Institute of Pathogens and Vectors, Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Dali University, Dali, 671000, China
| | - Zhi-Hua Yang
- School of Foreign Languages, Dali University, Dali, 671000, China
| | - Tian-Guang Ren
- College of Nursing, Dali University, Dali, 671000, China
| | - Wen-Ge Dong
- Institute of Pathogens and Vectors, Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Dali University, Dali, 671000, China.
| |
Collapse
|
12
|
RIYAZ M, SHAH RA, SAVARIMUTHU I, KUPPUSAMY S. Comparative analysis of the mitochondrial genome of Hypospila bolinoides and Lygephila dorsigera (Lepidoptera: Noctuoidea: Erebidae), with implications for their phylogeny. EUROPEAN JOURNAL OF ENTOMOLOGY 2023; 120:187-198. [DOI: 10.14411/eje.2023.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2023]
|
13
|
Yan ZT, Fan ZH, He SL, Wang XQ, Chen B, Luo ST. Mitogenomes of Eight Nymphalidae Butterfly Species and Reconstructed Phylogeny of Nymphalidae (Nymphalidae: Lepidoptera). Genes (Basel) 2023; 14:genes14051018. [PMID: 37239378 DOI: 10.3390/genes14051018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/22/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
The Nymphalidae family of cosmopolitan butterflies (Lepidoptera) comprises approximately 7200 species found on all continents and in all habitats. However, debate persists regarding the phylogenetic relationships within this family. In this study, we assembled and annotated eight mitogenomes of Nymphalidae, constituting the first report of complete mitogenomes for this family. Comparative analysis of 105 mitochondrial genomes revealed that the gene compositions and orders were identical to the ancestral insect mitogenome, except for Callerebia polyphemus trnV being before trnL and Limenitis homeyeri having two trnL genes. The results regarding length variation, AT bias, and codon usage were consistent with previous reports on butterfly mitogenomes. Our analysis indicated that the subfamilies Limenitinae, Nymphalinae, Apaturinae, Satyrinae, Charaxinae, Heliconiinae, and Danainae are monophyletic, while the subfamily the subfamily Cyrestinae is polyphyletic. Danainae is the base of the phylogenetic tree. At the tribe level, Euthaliini in Limenitinae; Melitaeini and Kallimini in Nymphalinae; Pseudergolini in Cyrestinae; Mycalesini, Coenonymphini, Ypthimini, Satyrini, and Melanitini in Satyrinae; and Charaxini in Charaxinae are regarded as monophyletic groups. However, the tribe Lethini in Satyrinae is paraphyletic, while the tribes Limenitini and Neptini in Limenitinae, Nymphalini and Hypolimni in Nymphalinae, and Danaini and Euploeini in Danainae are polyphyletic. This study is the first to report the gene features and phylogenetic relationships of the Nymphalidae family based on mitogenome analysis, providing a foundation for future studies of population genetics and phylogenetic relationships within this family.
Collapse
Affiliation(s)
- Zhen-Tian Yan
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Zhen-Huai Fan
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Shu-Lin He
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Xue-Qian Wang
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Bin Chen
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Si-Te Luo
- School of Life Sciences, Xiamen University, Xiamen 361102, China
| |
Collapse
|
14
|
Phylogenomics including the newly sequenced mitogenomes of two moths (Noctuoidea, Erebidae) reveals Ischyja manlia (incertae sedis) as a member of subfamily Erebinae. Genetica 2023; 151:105-118. [PMID: 36708484 DOI: 10.1007/s10709-023-00180-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 01/17/2023] [Indexed: 01/29/2023]
Abstract
We sequenced the mitogenomes of two Erebid species, namely Ischyja manlia (Cramer, 1776) and Rusicada privata (Walker, 1865) to analyse the phylogenetic relationship and to establish the taxonomic position of incertae sedis members of the family Erebidae. The two circular genomes of I. manlia and R. privata were 15,879 bp and 15,563 bp long, respectively. The gene order was identical, containing 13 protein-coding genes (PCGs), 22 tRNA genes, two rRNA genes, and an A + T-rich region. The nucleotide compositions of the A + T-rich region of both mitogenomes were similar: 80.65% for R. privata, and 81.09% for I. manlia. The AT skew and GC skew were slightly positive in I. manlia and negative in R. privata. In I. manlia and R. privata, except for cox1 which started with CGA and TTG codons, all the other 12 PCGs started with ATN codon. The A + T-rich regions of I. manlia and R. privata were 433 and 476 bp long, respectively, and contained common characteristics of Noctuoidea moths. At present, Ischyja is treated as Erebinae incertae sedis. However, phylogenetic analysis conducted in the present study reveals that the genus Ischyja is most likely to be a member of the subfamily Erebinae.
Collapse
|
15
|
Ding W, Xu H, Wu Z, Hu L, Huang L, Yang M, Li L. The mitochondrial genomes of the Geometroidea (Lepidoptera) and their phylogenetic implications. Ecol Evol 2023; 13:e9813. [PMID: 36789341 PMCID: PMC9911631 DOI: 10.1002/ece3.9813] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 02/12/2023] Open
Abstract
The Geometroidea is a large superfamily of Lepidoptera in species composition and contains numerous economically important pest species that cause great loss in crop and forest production. However, understanding of mitogenomes remains limited due to relatively fewer mitogenomes previously reported for this megadiverse group. Here, we sequenced and annotated nine mitogenomes for Geometridae and further analyzed the mitogenomic evolution and phylogeny of the whole superfamily. All nine mitogenomes contained 37 mitochondrial genes typical in insects, and gene organization was conserved except for Somatina indicataria. In S. indicataria, the positions of two tRNAs were rearranged. The trnR was located before trnA instead of after trnA typical in Lepidoptera, whereas the trnE was detected rarely on the minority strand (N-strand). This trnR-trnA-trnN-trnS1-trnE-trnF newly recognized in S. indicataria represents the first gene rearrangement reported for Geometroidea and is also unique in Lepidoptera. Besides, nucleotide composition analyses showed little heterogeneity among the four geometrid subfamilies involved herein, and overall, nad6 and atp8 have higher nucleotide diversity and Ka/Ks rate in Geometridae. In addition, the taxonomic assignments of the nine species, historically defined by morphological studies, were confirmed by various phylogenetic analyses based on the hitherto most extensive mitogenomic sampling in Geometroidea.
Collapse
Affiliation(s)
- Weili Ding
- Finance OfficeZhoukou Normal UniversityZhoukouChina
| | - Haizhen Xu
- College of Life Science and AgronomyZhoukou Normal UniversityZhoukouChina
| | - Zhipeng Wu
- College of Life Science and AgronomyZhoukou Normal UniversityZhoukouChina
| | - Lizong Hu
- College of Life Science and AgronomyZhoukou Normal UniversityZhoukouChina
| | - Li Huang
- College of Life Science and AgronomyZhoukou Normal UniversityZhoukouChina
| | - Mingsheng Yang
- College of Life Science and AgronomyZhoukou Normal UniversityZhoukouChina
| | - Lili Li
- College of Life Science and AgronomyZhoukou Normal UniversityZhoukouChina
- Key Laboratory of Plant Genetics and Molecular BreedingZhoukou Normal UniversityZhoukouChina
| |
Collapse
|
16
|
Shi F, Yu T, Xu Y, Zhang S, Niu Y, Ge S, Tao J, Zong S. Comparative mitochondrial genomic analysis provides new insights into the evolution of the subfamily Lamiinae (Coleoptera: Cerambycidae). Int J Biol Macromol 2023; 225:634-647. [PMID: 36403761 DOI: 10.1016/j.ijbiomac.2022.11.125] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/23/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022]
Abstract
The genus Monochamus within the subfamily Lamiinae is the main vector of Bursaphelenchus xylophilus, which causes pine wilt disease and induces substantial economic and ecological losses. Only three complete mitochondrial genomes of the genus Monochamus have been sequenced to date, and no comparative mitochondrial genomic studies of Lamiinae have been conducted. Here, the mitochondrial genomes of two Monochamus species, M. saltuarius and M. urussovi, were newly sequenced and annotated. The composition and order of genes in the mitochondrial genomes of Monochamus species are conserved. All transfer RNAs exhibit the typical clover-leaf secondary structure, with the exception of trnS1. Similar to other longhorn beetles, Lamiinae mitochondrial genomes have an A + T bias. All 13 protein-coding genes have experienced purifying selection, and tandem repeat sequences are abundant in the A + T-rich region. Phylogenetic analyses revealed congruent topologies among trees inferred from the five datasets, with the monophyly of Acanthocinini, Agapanthiini, Batocerini, Dorcaschematini, Pteropliini, and Saperdini receiving high support. The findings of this study enhance our understanding of mitochondrial genome evolution and will provide a basis for future studies of population genetics and phylogenetic investigations in this group.
Collapse
Affiliation(s)
- Fengming Shi
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China.
| | - Tao Yu
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Guiyang University, Guiyang 550005, China.
| | - Yabei Xu
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China.
| | - Sainan Zhang
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China.
| | - Yiming Niu
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China.
| | - Sixun Ge
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China.
| | - Jing Tao
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China.
| | - Shixiang Zong
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
17
|
Li H, Yan Y, Li J. Eighteen mitochondrial genomes of Syrphidae (Insecta: Diptera: Brachycera) with a phylogenetic analysis of Muscomorpha. PLoS One 2023; 18:e0278032. [PMID: 36602958 DOI: 10.1371/journal.pone.0278032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 11/08/2022] [Indexed: 01/06/2023] Open
Abstract
In this study, 18 mitochondrial genomes (mitogenomes) of Syrphidae were sequenced. These mitogenomes ranged from 15,648 to 16,405 bp and contained 37 genes that were similar to those from other Syrphidae species. Most protein-coding genes (PCGs) started with a standard ATN codon and ended with TAA/G. All transfer RNAs (tRNAs) could be folded into the cloverleaf secondary structure except tRNA-Ser (AGN), which lacks a dihydrouridine arm. The secondary structures of ribosomal RNAs (rRNAs) were predicted. Six domains (III is absent in arthropods) and 44 helices were included in the 16S rRNA, and three domains and 24 helices were included in the 12S rRNA. We found three conserved fragments in all syrphid mitogenomes. Phylogenetic analyses were performed based on the nucleotide data of 13 PCGs and two rRNAs from 76 Muscomorpha and three outgroup species. In results the paraphyly of Aschiza and Schizophora were supported, the Acalyptratae was also paraphyletic but the relationships of its superfamilies were difficult to determine, the monophyly of Calyptratea was supported with the relationships of Oestroidea and Muscoidea need to be further reconsidered. Within Syrphidae the monophyly of family level was supported, the Syrphinae were clustered into one branch, while the paraphyly of Eristalinae was still well supported.
Collapse
Affiliation(s)
- Hu Li
- Shaanxi Key Laboratory of Bio-Resources, State Key Laboratory of Biological Resources and Ecological Environment of Qinling-Bashan, School of Biological Science & Engineering, Shaanxi University of Technology, Qinling-Bashan Mountains Bioresources Comprehensive Development C.I.C., Hanzhong, Shaanxi, China
| | - Yan Yan
- Shaanxi Key Laboratory of Bio-Resources, State Key Laboratory of Biological Resources and Ecological Environment of Qinling-Bashan, School of Biological Science & Engineering, Shaanxi University of Technology, Qinling-Bashan Mountains Bioresources Comprehensive Development C.I.C., Hanzhong, Shaanxi, China
| | - Juan Li
- Shaanxi Key Laboratory of Bio-Resources, State Key Laboratory of Biological Resources and Ecological Environment of Qinling-Bashan, School of Biological Science & Engineering, Shaanxi University of Technology, Qinling-Bashan Mountains Bioresources Comprehensive Development C.I.C., Hanzhong, Shaanxi, China
| |
Collapse
|
18
|
Li C, Song Y, Li L, Tessnow AE, Zhu J, Guan X, Guo W, Cui H, Lu Z, Lv S, Yu Y, Men X. Two Microsatellite Types Within NAD6 Gene Help to Distinguish Populations and Infer the Migratory Route of the Invasive Fall Armyworm, Spodoptera frugiperda, (Lepidoptera, Noctuidae) in China. JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:1409-1416. [PMID: 35899806 DOI: 10.1093/jee/toac114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Indexed: 06/15/2023]
Abstract
Spodoptera frugiperda is a major agricultural pest that has invaded China since January 2019. Given that most of the individuals present in China carried the diagnostic rice-strain mtDNA (COI-RS), there was no efficient method to distinguish populations of S. frugiperda. In this study, we identified and characterized two variant microsatellite alleles in the mitochondrial NAD6 gene of S. frugiperda retrieved from the National Center for Biotechnology Center GenBank. We then sequenced partial NAD6 genes containing the microsatellite region and the diagnostic COI barcoding gene (used to distinguish the corn-strain and the rice-strain) of 429 invasive S. frugiperda individuals that were collected from the main infested regions in China during 2019-2020. Our data indicates that two kinds of interrupted repeat sequences, (ATA)4T(ATA)3 and (ATA)5T(ATA)3, exist in the microsatellite region which we defined as the deletion type (NAD6-D), and the insertion type (NAD6-I) based on the repeat units' differentiation, respectively. The presence of these two microsatellite types in the mtDNA genome of S. frugiperda was further confirmed with the sequencing results in 429 samples. Moreover, NAD6-I and NAD6-D types were both present in individuals with COI-RS, while only NAD6-D type was detected in the COI-CS individuals. Interestingly, the two microsatellite types suggested a possible geographic distribution: the western migratory route (Yunan and Chongqing) was comprised exclusively of NAD6-I type, while both NAD6-I and NAD6-D types were identified in the predicted eastern migration trajectories (Hainan, Guangxi, Shandong, etc.). These results suggested that NAD6-D and NAD6-I types may be useful in distinguishing between populations, analyzing the evolutionary mechanism of mtDNA microsatellite polymorphism, inferring the migratory route of S. frugiperda in China, and developing precise and integrated control strategies for S. frugiperda.
Collapse
Affiliation(s)
- Chao Li
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Shandong, Jinan, China
| | - Yingying Song
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Shandong, Jinan, China
| | - Lili Li
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Shandong, Jinan, China
| | - Ashley E Tessnow
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - Junsheng Zhu
- Shandong Plant Protection Station, Shandong, Jinan, China
| | - Xiumin Guan
- Shandong Plant Protection Station, Shandong, Jinan, China
| | - Wenxiu Guo
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Shandong, Jinan, China
| | - Hongying Cui
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Shandong, Jinan, China
| | - Zengbin Lu
- Maize Research Institute, Shandong Academy of Agricultural Science, Shandong, Jinan, China
| | - Suhong Lv
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Shandong, Jinan, China
| | - Yi Yu
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Shandong, Jinan, China
| | - Xingyuan Men
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Shandong, Jinan, China
| |
Collapse
|
19
|
Wang J, Xin T, Li Z, Zhang X, Zou Z, Xia B. Complete mitochondrial genome of Idea leuconoe (Lepidoptera: Danaidae) and related phylogenetic analyses. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 111:e21868. [PMID: 35138680 DOI: 10.1002/arch.21868] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 06/14/2023]
Abstract
In the present study, we first sequenced and determined the complete mitochondrial genome (mitogenome) of the giant Danaidae butterfly, Idea leuconoe (Lepidoptera: Danaidae). The mitogenome was a typical closed, circular, double-stranded DNA molecule of 15,278 bp length (GenBank accession number: KR815449), similar to the metazoan mitogenomes containing 37 genes and one A + T-rich region. All the protein-coding genes (PCGs) were initiated with a typical ATN codon. Seven genes (COII, ATP6, COIII, nad4, nad4L, cytb, and nad1) adopted the standard ATG start codon, but the remaining six genes were initiated with ATA. All the 13 PCGs harbored complete termination codons (TAA). The overlap nucleotides ATGATAA were conserved for the ATP8/ATP6 gene. The largest intergenic spacer was located between trnGln and nad2, a common finding in Lepidoptera butterflies. All the transfer RNA genes in the I. leuconoe mitogenome could be folded into typical clover-leaf secondary structures, except for trnSer (AGN) that lacked a dihydrouridine arm. The control region with 94.8% A + T content was 444 bp in length and located between rrnS and trnMet. Finally, the phylogenetic relationships obtained using the maximum likelihood and Bayesian methods confirmed two well-supported phylogenetic trees of Danaidae, Papilionidae, and Nymphalidae from the order Lepidoptera, which were consistent with the traditional morphological classification. Results provided additional information for butterfly phylogenetic analysis and insights into the evolution of genomes.
Collapse
Affiliation(s)
- Jing Wang
- College of Life Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Tianrong Xin
- College of Life Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Zhenzhen Li
- College of Life Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Xiaojing Zhang
- College of Life Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Zhiwen Zou
- College of Life Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Bin Xia
- College of Life Sciences, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
20
|
Yang W, Dong R, Song X, Yu H. Complete mitochondrial genome analysis and molecular phylogenetic implications of Kennelia xylinana (Lepidoptera: Tortricidae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 111:e21912. [PMID: 35535464 DOI: 10.1002/arch.21912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
Kennelia is a small genus in Tortricidae that is distributed in the Oriental and Palaearctic regions, and its taxonomic position within the subfamily Olethreutinae is controversial. For a comprehensive understanding of the genus, we sequenced the mitogenome of Kennelia xylinana, the type species of Kennelia, and Ancylis unculana, a species of Enarmoniini; analyzed the mitogenome characteristics of K. xylinana; and explored its phylogenetic position. Similar to other members of Lepidoptera, the mitogenome of K. xylinana is 15,762-bp long and consists of 13 protein-coding genes (PCGs), two ribosomal RNA genes, 22 transfer RNA genes, and a noncoding control region. In particular, we found a structure (TATAATTAATAA)11 in the middle of the AT-rich region. Based on the Bayesian inference and maximum likelihood analyses of the 13 PCGs of 40 tortricid species, representing 8 tribes of 2 subfamilies, K. xylinana was clustered with two members of Enarmoniini, A. unculana and Loboschiza koenigiana, and formed highly supported monophyly. The results indicate that Kennelia should be placed in the tribe Enarmoniini.
Collapse
Affiliation(s)
- Wenxu Yang
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, China
| | - Ruiqin Dong
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, China
| | - Xueling Song
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, China
| | - Haili Yu
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, China
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, China
| |
Collapse
|
21
|
Unfolding the mitochondrial genome structure of green semilooper (Chrysodeixis acuta Walker): An emerging pest of onion (Allium cepa L.). PLoS One 2022; 17:e0273635. [PMID: 36040876 PMCID: PMC9426943 DOI: 10.1371/journal.pone.0273635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/12/2022] [Indexed: 11/19/2022] Open
Abstract
Onion is the most important crop challenged by a diverse group of insect pests in the agricultural ecosystem. The green semilooper (Chrysodeixis acuta Walker), a widespread tomato and soybean pest, has lately been described as an emergent onion crop pest in India. C. acuta whole mitochondrial genome was sequenced in this work. The circular genome of C. acuta measured 15,743 base pairs (bp) in length. Thirteen protein-coding genes (PCGs), 22 tRNA genes, two rRNA genes, and one control region were found in the 37 sequence elements. With an average 395 bp gene length, the maximum and minimum gene length observed was 1749 bp and 63 bp of nad5 and trnR, respectively. Nine of the thirteen PCGs have (ATN) as a stop codon, while the other four have a single (T) as a stop codon. Except for trnS1, all of the tRNAs were capable of producing a conventional clover leaf structure. Conserved ATAGA motif sequences and poly-T stretch were identified at the start of the control region. Six overlapping areas and 18 intergenic spacer regions were found, with sizes ranged from 1 to 20 bp and 1 to 111 bp correspondingly. Phylogenetically, C. acuta belongs to the Plusiinae subfamily of the Noctuidae superfamily, and is closely linked to Trichoplusia ni species from the same subfamily. In the present study, the emerging onion pest C. acuta has its complete mitochondrial genome sequenced for the first time.
Collapse
|
22
|
Wang Y, Cao J, Guo X, Guo C, Li W, Murányi D. Comparative analysis of mitochondrial genomes among the family Peltoperlidae (Plecoptera: Systellognatha) and phylogenetic implications. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.979847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Nowadays, the position of Peltoperlidae in Systellognatha has been resolved based on morphological analyses. However, there are different opinions based on molecular data. To date, only three peltoperlid mitogenomes are available, and more sampling is needed to obtain precise phylogenetic relationships. In this study, we obtained the complete mitogenomes of Cryptoperla kawasawai (15,832 bp) and Peltoperlopsis sagittata (15,756 bp). Our results show that gene content, gene order, DmTTF binding site, nucleotide composition, codon usage, ribonucleic acid (RNA) structure, and structural elements in the control region are highly conserved in peltoperlids. Heatmap analysis of codon usage shows that the AT-rich codons UUA, AUU, UUU, and AUA were commonly used codons in the Peltoperlidae. Evolutionary rate analyses of protein-coding genes reveal that different genes have been subject to different rates of molecular evolution correlated with the GC content. All tRNA genes in peltoperlid mitogenomes have a canonical cloverleaf secondary structure except for trnS1, whose dihydrouridine arm simply forms a loop. The control region of the family has several distinct structural characteristics and has the potential to serve as effective phylogenetic markers. Phylogenetic analyses support the monophyly of Perloidea, but the monophyly of Pteronarcyoidea is still not supported. The Peltoperlidae is placed as the earliest branch within the Systellognatha, and the estimated phylogenetic relationship is: Peltoperlidae + {(Styloperlidae + Pteronarcyidae) + [Perlidae + (Chloroperlidae + Perlodidae)]}. Our results provide new insight into the phylogeny of this group.
Collapse
|
23
|
Milián-García Y, Hempel CA, Janke LAA, Young RG, Furukawa-Stoffer T, Ambagala A, Steinke D, Hanner RH. Mitochondrial genome sequencing, mapping, and assembly benchmarking for Culicoides species (Diptera: Ceratopogonidae). BMC Genomics 2022; 23:584. [PMID: 35962326 PMCID: PMC9375341 DOI: 10.1186/s12864-022-08743-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 07/05/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mitochondrial genomes are the most sequenced genomes after bacterial and fungal genomic DNA. However, little information on mitogenomes is available for multiple metazoan taxa, such as Culicoides, a globally distributed, megadiverse genus containing 1,347 species. AIM Generating novel mitogenomic information from single Culicoides sonorensis and C. biguttatus specimens, comparing available mitogenome mapping and de novo assembly tools, and identifying the best performing strategy and tools for Culicoides species. RESULTS We present two novel and fully annotated mitochondrial haplotypes for two Culicoides species, C. sonorensis and C. biguttatus. We also annotated or re-annotated the only available reference mitogenome for C. sonorensis and C. arakawae. All species present a high similarity in mitogenome organization. The general gene arrangement for all Culicoides species was identical to the ancestral insect mitochondrial genome. Only short spacers were found in C. sonorensis (up to 30 bp), contrary to C. biguttatus (up to 114 bp). The mitochondrial genes ATP8, NAD2, NAD6, and LSU rRNA exhibited the highest nucleotide diversity and pairwise interspecific p genetic distance, suggesting that these genes might be suitable and complementary molecular barcodes for Culicoides identification in addition to the commonly utilized COI gene. We observed performance differences between the compared mitogenome generation strategies. The mapping strategy outperformed the de novo assembly strategy, but mapping results were partially biased in the absence of species-specific reference mitogenome. Among the utilized tools, BWA performed best for C. sonorensis while SPAdes, MEGAHIT, and MitoZ were among the best for C. biguttatus. The best-performing mitogenome annotator was MITOS2. Additionally, we were able to recover exogenous mitochondrial DNA from Bos taurus (biting midges host) from a C. biguttatus blood meal sample. CONCLUSIONS Two novel annotated mitogenome haplotypes for C. sonorensis and C. biguttatus using High-Throughput Sequencing are presented. Current results are useful as the baseline for mitogenome reconstruction of the remaining Culicoides species from single specimens to HTS and genome annotation. Mapping to a species-specific reference mitogenome generated better results for Culicoides mitochondrial genome reconstruction than de novo assembly, while de novo assembly resulted better in the absence of a closely related reference mitogenome. These results have direct implications for molecular-based identification of these vectors of human and zoonotic diseases, setting the basis for using the whole mitochondrial genome as a marker in Culicoides identification.
Collapse
Affiliation(s)
- Yoamel Milián-García
- Department of Integrative Biology, University of Guelph, 50 Stone Rd E, Guelph, ON, N1G 2W1, Canada.
| | - Christopher A Hempel
- Department of Integrative Biology, University of Guelph, 50 Stone Rd E, Guelph, ON, N1G 2W1, Canada
| | - Lauren A A Janke
- Department of Integrative Biology, University of Guelph, 50 Stone Rd E, Guelph, ON, N1G 2W1, Canada.,John H. Daniels Faculty of Architecture, Landscape, and Design, University of Toronto, 33 Willcocks Street, Toronto, ON, M5S 3B3, Canada
| | - Robert G Young
- Department of Integrative Biology, University of Guelph, 50 Stone Rd E, Guelph, ON, N1G 2W1, Canada
| | - Tara Furukawa-Stoffer
- Canadian Food Inspection Agency, National Centre for Animal Disease, 225090 Township Road 9-1, Lethbridge LaboratoryLethbridge, AB, T1J 0P3, Canada
| | - Aruna Ambagala
- National Centre for Foreign Animal Disease, 1015, Arlington Street, Winnipeg, MB, R3E 3M4, Canada
| | - Dirk Steinke
- Department of Integrative Biology, University of Guelph, 50 Stone Rd E, Guelph, ON, N1G 2W1, Canada
| | - Robert H Hanner
- Department of Integrative Biology, University of Guelph, 50 Stone Rd E, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
24
|
Pakrashi A, Kumar V, Stanford-Beale DAC, Cameron SL, Tyagi K. Gene arrangement, phylogeny and divergence time estimation of mitogenomes in Thrips. Mol Biol Rep 2022; 49:6269-6283. [PMID: 35534583 DOI: 10.1007/s11033-022-07434-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/09/2022] [Accepted: 03/28/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND The metazoan mitogenomes usually display conserved gene arrangement while thrips are known for their extensive gene rearrangement, and duplication of the control region. METHODS AND RESULT We sequenced complete mitogenomes of eight species of thrips to determine the gene arrangement, phylogeny and divergence time estimation. All contain 37 genes and one control region, (CR) except four species with two CRs. Duplicated tRNAs were detected in Mycterothrips nilgiriensis and Thrips florum. nad4-nad4L were not found adjacent to each other in Phibalothrips peringueyi and Plicothrips apicalis. Both Bayesian and likelihood phylogenetic analyses of thrips mitogenomes supported the monophyly of two suborders (Terebrantia and Tubulifera) and the two largest families (Phlaeothripidae and Thripidae). Out of seven earlier proposed ancestral gene blocks, six are conserved in Panchaetothripinae, three in Thripinae and two in Phlaeothripidae. Additionally, eight Thrips Gene Blocks were identified, of which, three conserved in Tubulifera, four in Terebrantia, and one only in Aeolothripidae. Forty-two gene boundaries (15 from previous study + 27 new) were identified. The molecular divergence time is estimated for the order Thysanoptera and suggested that these insects may have been diversified from hemipterans in the late Permian period. The most recent ancestors belong to family Thripidae and Phlaeothripidae, which were diversified in upper Cretaceous period and showed higher rates of rearrangement from the ancestral gene order. CONCLUSIONS The current study is the first largest effort to provide the new insights into the mitogenomic features, gene arrangement, phylogeny and divergence time estimation of thrips belonging to the order Thysanoptera.
Collapse
Affiliation(s)
- Avas Pakrashi
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, 700053, Kolkata, India
- Department of Zoology, University of Calcutta, Kolkata, India
| | - Vikas Kumar
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, 700053, Kolkata, India
| | | | - Stephen L Cameron
- Department of Entomology, Purdue University, 47907, West Lafayette, IN, USA
| | - Kaomud Tyagi
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, 700053, Kolkata, India.
| |
Collapse
|
25
|
Fernández CJ, García BA. Variation in the Mitochondrial Genome of the Chagas Disease Vector Triatoma infestans (Hemiptera: Reduviidae). NEOTROPICAL ENTOMOLOGY 2022; 51:483-492. [PMID: 35360894 DOI: 10.1007/s13744-022-00953-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Chagas' disease is transmitted mainly by members of the subfamily Triatominae (Hemiptera: Reduviidae). Among them, Triatoma infestans (Klug) is the main vector of the disease in Southern Cone of Latin America. In order to contribute to knowledge of the genetic variation between triatomine vectors, in the present study, we analyzed the intraspecific and interspecific variations of the seven mitogenomes available from Triatominae. In addition, in order to examine their evolutionary relationships with others species of Reduviidae and to estimate the divergence time of the main lineages, we constructed phylogenetic trees including mitogenome sequences of 30 species from Reduviidae. Comparative analysis between mitochondrial DNA sequences from two specimens of T. infestans revealed a total of 54 variable sites. Triatoma infestans, Triatoma dimidiata (Latreille), Triatoma rubrofasciata (De Geer), Triatoma migrans (Breddin), Rhodnius pictipes (Stål), and Panstrongylus rufotuberculatus (Champion) present similar mitogenome organization and the length differences observed among these species are primarily caused by variations in control region (CR) and intergenic spacers (IGS). The relative synonymous codon usage values (RSCU) were similar in the six species of Triatominae, and in agreement with the observed in other insects, a biased use of A and C nucleotides in the majority strand was detected. The monophyly of five subfamilies was strongly supported (Phymatinae, Peiratinae, Triatominae, Stenopodainae, and Harpactorinae), while the sampled species of Reduviinae were grouped with one specie from the Salyavatinae subfamily. The oldest subfamily is Phymatinae at 100.3 Mya (99.6-102.2 Mya) and the youngest is Triatominae and Stenopodainae at 52.6 Mya (42.5-63.7 Mya). The estimated diversification time for the Triatominae subfamily agrees with the Andean uplift geological event. An analysis with more mitogenomes from more Triatominae species would be necessary to provide sufficient evidence to support this finding.
Collapse
Affiliation(s)
- Cintia Judith Fernández
- Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, Univ. Nacional de Córdoba, Córdoba, Argentina
| | - Beatriz Alicia García
- Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, Univ. Nacional de Córdoba, Córdoba, Argentina.
- Instituto de Investigaciones en Ciencias de la Salud (INICSA), Consejo Nacional de Investigaciones Científicas y Técnicas, Univ. Nacional de Córdoba (CONICET-UNC), Córdoba, Argentina.
| |
Collapse
|
26
|
Mitogenome-wise codon usage pattern from comparative analysis of the first mitogenome of Blepharipa sp. (Muga uzifly) with other Oestroid flies. Sci Rep 2022; 12:7028. [PMID: 35487927 PMCID: PMC9054809 DOI: 10.1038/s41598-022-10547-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/21/2022] [Indexed: 11/08/2022] Open
Abstract
Uziflies (Family: Tachinidae) are dipteran endoparasites of sericigenous insects which cause major economic loss in the silk industry globally. Here, we are presenting the first full mitogenome of Blepharipa sp. (Acc: KY644698, 15,080 bp, A + T = 78.41%), a dipteran parasitoid of Muga silkworm (Antheraea assamensis) found in the Indian states of Assam and Meghalaya. This study has confirmed that Blepharipa sp. mitogenome gene content and arrangement is similar to other Tachinidae and Sarcophagidae flies of Oestroidea superfamily, typical of ancestral Diptera. Although, Calliphoridae and Oestridae flies have undergone tRNA translocation and insertion, forming unique intergenic spacers (IGS) and overlapping regions (OL) and a few of them (IGS, OL) have been conserved across Oestroidea flies. The Tachinidae mitogenomes exhibit more AT content and AT biased codons in their protein-coding genes (PCGs) than the Oestroidea counterpart. About 92.07% of all (3722) codons in PCGs of this new species have A/T in their 3rd codon position. The high proportion of AT and repeats in the control region (CR) affects sequence coverage, resulting in a short CR (Blepharipa sp.: 168 bp) and a smaller tachinid mitogenome. Our research unveils those genes with a high AT content had a reduced effective number of codons, leading to high codon usage bias. The neutrality test shows that natural selection has a stronger influence on codon usage bias than directed mutational pressure. This study also reveals that longer PCGs (e.g., nad5, cox1) have a higher codon usage bias than shorter PCGs (e.g., atp8, nad4l). The divergence rates increase nonlinearly as AT content at the 3rd codon position increases and higher rate of synonymous divergence than nonsynonymous divergence causes strong purifying selection. The phylogenetic analysis explains that Blepharipa sp. is well suited in the family of insectivorous tachinid maggots. It's possible that biased codon usage in the Tachinidae family reduces the effective number of codons, and purifying selection retains the core functions in their mitogenome, which could help with efficient metabolism in their endo-parasitic life style and survival strategy.
Collapse
|
27
|
Universal Mitochondrial Multi-Locus Sequence Analysis (mtMLSA) to Characterise Populations of Unanticipated Plant Pest Biosecurity Detections. BIOLOGY 2022; 11:biology11050654. [PMID: 35625382 PMCID: PMC9138331 DOI: 10.3390/biology11050654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/11/2022] [Accepted: 04/21/2022] [Indexed: 12/02/2022]
Abstract
Simple Summary Agricultural and environmental sustainability requires effective biosecurity responses that prevent the establishment or spread of exotic insect pests. Understanding where new detections may have come from or if recurrent detections are connected contributes to this. Suitable population genetic markers use relatively rapidly evolving gene regions which render the PCR method species-specific at best. Because resource limitations mean these are pre-emptively developed for the highest risk species, populations of other exotic pests are unable to be characterised at the time. Here we have developed a generic method that is useful across species within the same taxonomic Order, including where there is little or no prior knowledge of their gene sequences. Markers are formed by concomitant sequencing of four gene regions. Sequence concatenation was shown to retrieve higher resolution signatures than standard DNA barcoding. The method is encouragingly universal, as illustrated across species in ten fly and 11 moth superfamilies. Although as-yet untested in a biosecurity situation, this relatively low-tech, off-the-shelf method makes a proactive contribution to the toolbox of quarantine agencies at the time of detection without the need for impromptu species-specific research and development. Abstract Biosecurity responses to post-border exotic pest detections are more effective with knowledge of where the species may have originated from or if recurrent detections are connected. Population genetic markers for this are typically species-specific and not available in advance for any but the highest risk species, leaving other less anticipated species difficult to assess at the time. Here, new degenerate PCR primer sets are designed for within the Lepidoptera and Diptera for the 3′ COI, ND3, ND6, and 3′ plus 5′ 16S gene regions. These are shown to be universal at the ordinal level amongst species of 14 and 15 families across 10 and 11 dipteran and lepidopteran superfamilies, respectively. Sequencing the ND3 amplicons as an example of all the loci confirmed detection of population-level variation. This supported finding multiple population haplotypes from the publicly available sequences. Concatenation of the sequences also confirmed that higher population resolution is achieved than for the individual genes. Although as-yet untested in a biosecurity situation, this method is a relatively simple, off-the-shelf means to characterise populations. This makes a proactive contribution to the toolbox of quarantine agencies at the time of detection without the need for unprepared species-specific research and development.
Collapse
|
28
|
Chen DB, Zhang RS, Jin XD, Yang J, Li P, Liu YQ. First complete mitochondrial genome of Rhodinia species (Lepidoptera: Saturniidae): genome description and phylogenetic implication. BULLETIN OF ENTOMOLOGICAL RESEARCH 2022; 112:243-252. [PMID: 34474693 DOI: 10.1017/s0007485321000808] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
To explore the characteristics of the mitochondrial genome (mitogenome) of the squeaking silkmoths Rhodinia, a genus of wild silkmoths in the family Saturniidae of Lepidoptera, and reveal phylogenetic relationships, the mitogenome of Rhodinia fugax Butler was determined. This wild silkmoth spins a green cocoon that has potential significance in sericulture, and exhibits a unique feature that its larvae can squeak loudly when touched. The mitogenome of R. fugax is a circular molecule of 15,334 bp long and comprises 13 protein-coding genes, two ribosomal RNA genes, 22 transfer RNA genes, and an A + T-rich region, consistent with previous observations of Saturniidae species. The 370-bp A + T-rich region of R. fugax contains no tandem repeat elements and harbors several features common to the Bombycidea insects, but microsatellite AT repeat sequence preceded by the ATTTA motif is not present. Mitogenome-based phylogenetic analysis shows that R. fugax belongs to Attacini, instead of Saturniini. This study presents the first mitogenome for Rhodinia genus.
Collapse
Affiliation(s)
- Dong-Bin Chen
- Department of Sericulture, College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang110866, China
| | - Ru-Song Zhang
- Department of Sericulture, College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang110866, China
| | - Xiang-Dong Jin
- Oak Silkmoth Group, Sericultural Institute of Jilin Province, 399 South Songjiang Road, Jilin132200, China
| | - Jian Yang
- Department of Sericulture, College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang110866, China
| | - Peng Li
- Department of Sericulture, College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang110866, China
| | - Yan-Qun Liu
- Department of Sericulture, College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang110866, China
| |
Collapse
|
29
|
Li H, Li J. Comparative analysis of four complete mitogenomes from hoverfly genus Eristalinus with phylogenetic implications. Sci Rep 2022; 12:4164. [PMID: 35264733 PMCID: PMC8907203 DOI: 10.1038/s41598-022-08172-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 03/03/2022] [Indexed: 11/27/2022] Open
Abstract
The genus Eristalinus is widely distributed globally. Four complete mitochondrial genomes (i.e., mitogenomes) of Eristalinus were sequenced and analyzed in this study: Eristalinus viridis (Coquillett, 1898), E. quinquestriatus (Fabricius, 1781), E. tarsalis (Macquart, 1855), and E. sp. Within these four sequenced mitogenomes, most protein-coding genes (ND2, CO1, COX2, COX3, ND3, ND5, ND4, ND4L, ND6, and Cytb) began with a typical ATN (T/C/G/A) start codon and ended with a stop codon TAA or incomplete T, whereas ND1 began with the start codon TTG. ND3 ended with TAG. The secondary tRNA structure was that of a typical cloverleaf, and only the tRNA-Ser1 lacked a DHU arm. Three and five domains appeared in the 12S and 16S rRNA secondary structures, respectively. The phylogenetic relationships among the four Eristalinus species combined with the published mitogenomes of Syrphidae were reconstructed using the maximum likelihood and Bayesian inference methods, which support the monophyly of the subfamily Syrphinae but do not support that of the subfamily Eristalinae. Of note, Eristalini and Syrphini are monophyletic groups. The mitogenomes of E. viridis, E. quinquestriatus, E. sp., and E. tarsalis are useful for determining the phylogenetic relationships and evolution of Syrphidae.
Collapse
Affiliation(s)
- Hu Li
- Shaanxi Key Laboratory of Bio-Resources, School of Biological Science & Engineering, Shaanxi University of Technology, Hanzhong, 723000, Shaanxi, China.
| | - Juan Li
- Shaanxi Key Laboratory of Bio-Resources, School of Biological Science & Engineering, Shaanxi University of Technology, Hanzhong, 723000, Shaanxi, China
| |
Collapse
|
30
|
Xiao J, Liu J, Ma L, Hao X, Yu R, Yuan X. Mitogenomes of Nine Asian Skipper Genera and Their Phylogenetic Position (Lepidoptera: Hesperiidae: Pyrginae). INSECTS 2022; 13:68. [PMID: 35055910 PMCID: PMC8779469 DOI: 10.3390/insects13010068] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/30/2021] [Accepted: 01/04/2022] [Indexed: 11/16/2022]
Abstract
In this study, complete mitochondrial genomes of nine species representing three tribes in the subfamily Pyrginae sensu lato were newly sequenced. The mitogenomes are closed double-stranded circular molecules, with the length ranging from 15,232 bp to 15,559 bp, which all encode 13 protein-coding genes (PCGs), two ribosomal RNA (rRNA) genes, 22 transfer RNA (tRNA) genes, and a control region. The orientation and gene order of these nine mitogenomes are identical to the inferred ancestral arrangement of insects. All PCGs exhibit the typical start codon ATN except for cox1 (using CGA) and cox2 (using TTG) in Mooreana trichoneura. Most of the PCGs terminate with a TAA stop codon, while cox1, cox2, nad4, and nad5 end with the incomplete codon single T. For the different datasets, we found that the one comprising all 37 genes of the mitogenome produced the highest nodal support, indicating that the inclusion of RNAs improves the phylogenetic signal. This study re-confirmed the status of Capila, Pseudocoladenia, and Sarangesa; namely, Capila belongs to the tribe Tagiadini, and Pseudocoladenia and Sarangesa to the tribe Celaenorrhini. Diagnostic characters distinguishing the two tribes, the length of the forewing cell and labial palpi, are no longer significant. Two populations of Pseudocoladenia dan fabia from China and Myanmar and P. dan dhyana from Thailand are confirmed as conspecific.
Collapse
Affiliation(s)
- Jintian Xiao
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, China; (J.X.); (J.L.); (L.M.); (R.Y.)
| | - Jiaqi Liu
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, China; (J.X.); (J.L.); (L.M.); (R.Y.)
| | - Luyao Ma
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, China; (J.X.); (J.L.); (L.M.); (R.Y.)
| | - Xiangyu Hao
- College of Life Sciences, Northwest A&F University, Yangling, Xianyang 712100, China;
| | - Ruitao Yu
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, China; (J.X.); (J.L.); (L.M.); (R.Y.)
| | - Xiangqun Yuan
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, China; (J.X.); (J.L.); (L.M.); (R.Y.)
| |
Collapse
|
31
|
Liu N, Fang L, Zhang Y. The Complete Mitochondrial Genomes of Four Species in the Subfamily Limenitidinae (Lepidoptera, Nymphalidae) and a Phylogenetic Analysis. INSECTS 2021; 13:insects13010016. [PMID: 35055858 PMCID: PMC8781921 DOI: 10.3390/insects13010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/19/2021] [Accepted: 12/19/2021] [Indexed: 11/29/2022]
Abstract
Simple Summary As it is currently delineated, the subfamily Limenitidinae (Lepidoptera: Nymphalidae) is comprised of 50 genera with approximately 1100 species. The classification of this subfamily has always been unstable. There are tribes and genera whose status is doubtful. Their phylogenetic relationships are far from being clarified and the monophyly of some of them is under question. To provide further insight into the relationships among included tribes, four newly-completed mitochondrial genomes of Limenitidinae (Neptis thisbe, Athyma zeroca, and Aldania raddei) have been sequenced and analyzed. Results indicate that the gene orientation and arrangement are similar to typical mitogenomes in Lepidoptera. The inferred phylogenetic analysis shows that tribe levels are well-supported monophyletic groups. Taken together, this work will provide a well-resolved framework for future study of this subfamily. Abstract The complete mitogenomes of four species, Neptis thisbe, Neptis obscurior, Athyma zeroca, and Aldania raddei, were sequenced with sizes ranging from 15,172 bp (N. obscurior) to 16,348 bp (Al. raddei). All four mitogenomes display similar nucleotide content and codon usage of protein-coding genes (PCGs). Typical cloverleaf secondary structures are identified in 21 tRNA genes, while trnS1 (AGN) lacks the dihydrouridine (DHC) arm. The gene orientation and arrangement of the four mitogenomes are similar to that of other typical mitogenomes of Lepidoptera. The Ka/Ks ratio of 13 PCGs among 58 Limenitidinae species reveals that cox1 had the slowest evolutionary rate, while atp8 and nad6 exhibited a higher evolutionary rate. The phylogenetic analysis reveals that tribe-levels are well-supported monophyletic groups. Additionally, Maximum Likelihood analysis recovered the relationship (Parthenini + ((Chalingini + (Cymothoini + Neptini)) + (Adoliadini + Limenitidini))). However, a Bayesian analysis based on the same dataset recovered the relationship (Parthenini + (Adoliadini + ((Cymothoini + Neptini) + (Chalingini + Limenitidini)))). These results will offer valuable data for the future study of the phylogenetic relationships for Limenitidinae.
Collapse
Affiliation(s)
- Ning Liu
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Xianyang 712100, China;
| | - Lijun Fang
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi’an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi’an 710061, China;
| | - Yalin Zhang
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Xianyang 712100, China;
- Correspondence: ; Tel.: +86-029-87092190
| |
Collapse
|
32
|
Li X, Song N, Zhang H. Comparative and phylogenomic analyses of mitochondrial genomes in Coccinellidae (Coleoptera: Coccinelloidea). PeerJ 2021; 9:e12169. [PMID: 34966567 PMCID: PMC8667754 DOI: 10.7717/peerj.12169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 08/26/2021] [Indexed: 11/26/2022] Open
Abstract
The Coccinellidae are one of the most familiar beetle families, the ladybirds. Despite the great ecological and economic significance, the phylogenetic relationships of Coccinellidae remain poorly understood. One of the reasons is that the sequenced mitogenomes available for this family are very limited. We sequenced complete or nearly complete mitogenomes from seven species of the tribe Coccinellini with next-generation sequencing. All species have the same gene content and gene order as the putatively ancestral insect mitogenome. A large intergenic spacer region (> 890 bp) was found located between trnI and trnQ. The potential for using secondary structures of the large and small ribosomal subunits for phylogenetic reconstruction was predicted. The phylogenetic relationships were explored through comparative analyses across more than 30 coccinellid species. We performed phylogenetic analyses with both concatenation methods (Maximum Likelihood and Bayesian Inference) and multispecies coalescent method (ASTRAL). Phylogenetic results strongly supported the monophyly of Coccinellidae. Within Coccinellidae, the Epilachnini and the Coccinellini including Halyziini were monophyletic, while the Scymnini and Coccidulini were non-monophyletic.
Collapse
Affiliation(s)
- Xinghao Li
- College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan, China
| | - Nan Song
- College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan, China
| | - Heng Zhang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan, China
| |
Collapse
|
33
|
Wu H, Cao L, He M, Han R, De Clercq P. Interspecific Hybridization and Complete Mitochondrial Genome Analysis of Two Ghost Moth Species. INSECTS 2021; 12:insects12111046. [PMID: 34821846 PMCID: PMC8625261 DOI: 10.3390/insects12111046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/03/2021] [Accepted: 11/16/2021] [Indexed: 12/01/2022]
Abstract
Simple Summary The Chinese cordyceps is a valuable parasitic Ophiocordyceps sinensis fungus–Thitarodes/Hepialus larva complex. In view of culturing this complex, a method for the artificial rearing of the Thitarodes/Hepialus ghost moth hosts was established. Deterioration of the host insect population and low mummification rates in infected larvae constrain effective cultivation. Hybridization of Thitarodes/Hepialus populations may overcome this problem. Thitarodes shambalaensis and Thitarodes sp. were inbred or hybridized, and the biological parameters, larval sensitivity to the fungal infection and mitochondrial genomes of the resulting populations were investigated. Hybridization of T. shambalaensis and Thitarodes sp. allowed producing a new generation. One hybrid population (T. shambalaensis females mated with Thitarodes sp. males) showed increased population growth as compared with the parental Thitarodes sp. population. The sensitivity of the inbred larval populations to four fungal isolates of O. sinensis differed. The complete mitochondrial genomes of T. shambalaensis, Thitarodes sp. and the hybrid population were 15,612 bp, 15,389 bp and 15,496 bp in length, respectively. A + T-rich regions were variable in sizes and repetitive sequences. The hybrid population was located in the same clade with T. shambalaensis, implying the maternal inheritance of mitochondrial DNA. Abstract The Chinese cordyceps, a parasitic Ophiocordyceps sinensis fungus–Thitarodes/Hepialus larva complex, is a valuable biological resource endemic to the Tibetan Plateau. Protection of the Plateau environment and huge market demand make it necessary to culture this complex in an artificial system. A method for the large-scale artificial rearing of the Thitarodes/Hepialus insect host has been established. However, the deterioration of the insect rearing population and low mummification of the infected larvae by the fungus constrain effective commercial cultivation. Hybridization of Thitarodes/Hepialus populations may be needed to overcome this problem. The species T. shambalaensis (GG♂ × GG♀) and an undescribed Thitarodes species (SD♂ × SD♀) were inbred or hybridized to evaluate the biological parameters, larval sensitivity to the fungal infection and mitochondrial genomes of the resulting populations. The two parental Thitarodes species exhibited significant differences in adult fresh weights and body lengths but not in pupal emergence rates. Hybridization of T. shambalaensis and Thitarodes sp. allowed producing a new generation. The SD♂ × GG♀ population showed a higher population trend index than the SD♂ × SD♀ population, implying increased population growth compared with the male parent. The sensitivity of the inbred larval populations to four fungal isolates of O. sinensis also differed. This provides possibilities to create Thitarodes/Hepialus populations with increased growth potential for the improved artificial production of the insect hosts. The mitochondrial genomes of GG♂ × GG♀, SD♂ × SD♀ and SD♂ × GG♀ were 15,612 bp, 15,389 bp and 15,496 bp in length, with an A + T content of 80.92%, 82.35% and 80.87%, respectively. The A + T-rich region contains 787 bp with two 114 bp repetitive sequences, 554 bp without repetitive sequences and 673 bp without repetitive sequences in GG♂ × GG♀, SD♂ × SD♀ and SD♂ × GG♀, respectively. The hybrid population (SD♂ × GG♀) was located in the same clade with GG♂ × GG♀, based on the phylogenetic tree constructed by 13 PCGs, implying the maternal inheritance of mitochondrial DNA.
Collapse
Affiliation(s)
- Hua Wu
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium;
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Science, Guangzhou 510260, China; (L.C.); (M.H.)
| | - Li Cao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Science, Guangzhou 510260, China; (L.C.); (M.H.)
| | - Meiyu He
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Science, Guangzhou 510260, China; (L.C.); (M.H.)
| | - Richou Han
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Science, Guangzhou 510260, China; (L.C.); (M.H.)
- Correspondence: (R.H.); (P.D.C.)
| | - Patrick De Clercq
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium;
- Correspondence: (R.H.); (P.D.C.)
| |
Collapse
|
34
|
Liu X, Qi M, Xu H, Wu Z, Hu L, Yang M, Li H. Nine Mitochondrial Genomes of the Pyraloidea and Their Phylogenetic Implications (Lepidoptera). INSECTS 2021; 12:insects12111039. [PMID: 34821839 PMCID: PMC8623390 DOI: 10.3390/insects12111039] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 12/03/2022]
Abstract
Simple Summary The Pyraloidea is a large superfamily of Lepidoptera in species composition. To date, the higher-level phylogenetic relationships in this group remain unresolved, and many taxa, with taxonomic positions historically established by morphological characters, need to be confirmed through sequencing of DNA, including mitochondrial genome sequences (mitogenomes). Here, we newly generated nine complete mitogenomes for Pyraloidea that shared identical gene content, and arrangements that are typical of Lepidoptera. The current phylogenetic results confirmed previous multilocus studies, indicating the effectiveness of mitogenomes for inference of Pyraloidea higher-level relationships. Unexpectedly, Orybina Snellen was robustly placed as basal to the remaining Pyralidae taxa, rather than nested in the Pyralinae of Pyralidae as morphologically defined and placed. Our results bring a greater understanding to Pyraloidea phylogeny, and highlight the necessity of sequencing more pyraloid taxa to reevaluate their phylogenetic positions. Abstract The Pyraloidea is one of the species-rich superfamilies of Lepidoptera and contains numerous economically important pest species that cause great loss in crop production. Here, we sequenced and annotated nine complete mitogenomes for Pyraloidea, and further performed various phylogenetic analyses, to improve our understanding of mitogenomic evolution and phylogeny of this superfamily. The nine mitogenomes were circular, double-stranded molecules, with the lengths ranging from 15,214 bp to 15,422 bp, which are comparable to other reported pyraloid mitogenomes in size. Gene content and arrangement were highly conserved and are typical of Lepidoptera. Based on the hitherto most extensive mitogenomic sampling, our various resulting trees showed generally congruent topologies among pyraloid subfamilies, which are almost in accordance with previous multilocus studies, indicating the suitability of mitogenomes in inferring high-level relationships of Pyraloidea. However, nodes linking subfamilies in the “non-PS clade” were not completely resolved in terms of unstable topologies or low supports, and future investigations are needed with increased taxon sampling and molecular data. Unexpectedly, Orybina Snellen, represented in a molecular phylogenetic investigation for the first time, was robustly placed as basal to the remaining Pyralidae taxa across our analyses, rather than nested in Pyralinae of Pyralidae as morphologically defined. This novel finding highlights the need to reevaluate Orybina monophyly and its phylogenetic position by incorporating additional molecular and morphological evidence.
Collapse
Affiliation(s)
- Xiaomeng Liu
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, China; (X.L.); (H.X.); (Z.W.); (L.H.)
| | - Mujie Qi
- College of Life Sciences, Nankai University, Tianjin 300071, China;
| | - Haizhen Xu
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, China; (X.L.); (H.X.); (Z.W.); (L.H.)
| | - Zhipeng Wu
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, China; (X.L.); (H.X.); (Z.W.); (L.H.)
| | - Lizong Hu
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, China; (X.L.); (H.X.); (Z.W.); (L.H.)
| | - Mingsheng Yang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, China; (X.L.); (H.X.); (Z.W.); (L.H.)
- Correspondence: (M.Y.); (H.L.)
| | - Houhun Li
- College of Life Sciences, Nankai University, Tianjin 300071, China;
- Correspondence: (M.Y.); (H.L.)
| |
Collapse
|
35
|
Ayivi SPG, Tong Y, Storey KB, Yu DN, Zhang JY. The Mitochondrial Genomes of 18 New Pleurosticti (Coleoptera: Scarabaeidae) Exhibit a Novel trnQ-NCR-trnI-trnM Gene Rearrangement and Clarify Phylogenetic Relationships of Subfamilies within Scarabaeidae. INSECTS 2021; 12:1025. [PMID: 34821825 PMCID: PMC8622766 DOI: 10.3390/insects12111025] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/07/2021] [Accepted: 11/09/2021] [Indexed: 12/24/2022]
Abstract
The availability of next-generation sequencing (NGS) in recent years has facilitated a revolution in the availability of mitochondrial (mt) genome sequences. The mt genome is a powerful tool for comparative studies and resolving the phylogenetic relationships among insect lineages. The mt genomes of phytophagous scarabs of the subfamilies Cetoniinae and Dynastinae were under-represented in GenBank. Previous research found that the subfamily Rutelinae was recovered as a paraphyletic group because the few representatives of the subfamily Dynastinae clustered into Rutelinae, but the subfamily position of Dynastinae was still unclear. In the present study, we sequenced 18 mt genomes from Dynastinae and Cetoniinae using next-generation sequencing (NGS) to re-assess the phylogenetic relationships within Scarabaeidae. All sequenced mt genomes contained 37 sets of genes (13 protein-coding genes, 22 tRNAs, and two ribosomal RNAs), with one long control region, but the gene order was not the same between Cetoniinae and Dynastinae species. All mt genomes of Dynastinae species showed the same gene rearrangement of trnQ-NCR-trnI-trnM, whereas all mt genomes of Cetoniinae species showed the ancestral insect gene order of trnI-trnQ-trnM. Phylogenetic analyses (IQ-tree and MrBayes) were conducted using 13 protein-coding genes based on nucleotide and amino acid datasets. In the ML and BI trees, we recovered the monophyly of Rutelinae, Cetoniinae, Dynastinae, and Sericinae, and the non-monophyly of Melolonthinae. Cetoniinae was shown to be a sister clade to (Dynastinae + Rutelinae).
Collapse
Affiliation(s)
- Sam Pedro Galilee Ayivi
- Department of Biology, College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China; (S.P.G.A.); (Y.T.)
| | - Yao Tong
- Department of Biology, College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China; (S.P.G.A.); (Y.T.)
| | - Kenneth B. Storey
- Department of Biology, Carleton University, Ottawa, ON K1S5B6, Canada;
| | - Dan-Na Yu
- Department of Biology, College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China; (S.P.G.A.); (Y.T.)
- Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China
| | - Jia-Yong Zhang
- Department of Biology, College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China; (S.P.G.A.); (Y.T.)
- Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
36
|
The Primary Complete Mitochondrial Genome of the Lappet Moth Brahmophthalma hearseyi (Lepidoptera: Brahmaeidae) and Related Phylogenetic Analysis. INSECTS 2021; 12:insects12110973. [PMID: 34821774 PMCID: PMC8620751 DOI: 10.3390/insects12110973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 12/04/2022]
Abstract
Simple Summary In this paper, the complete mitochondrial genome (mitogenome) of B. hearseyi was sequenced using long-PCR and primer-walking methods. The results indicated that the mitogenome is a typical circular molecule that is composed of 15,442 bp. Phylogenetic analysis showed that B. hearseyi is clustered into Brahmaeidae, and the phylogenetic relationships are (Brahmaeidae + Lasiocampidae) + (Bombycidae + (Sphingidae + Saturniidae)). This study provides the first mitogenomic resources for the Brahmaeidae. Abstract Background: Brahmophthalma hearseyi (Lepidoptera: Brahmaeidae) is widely distributed across China. Its larvae damage the leaves of many plants such as those belonging to the Oleaceae family, causing significant economic losses and seriously affecting the survival and reproduction of Cervus nippon; however, genetic data for this species are scarce. Methods: The complete mitochondrial genome (mitogenome) of B. hearseyi was sequenced using long-PCR and primer-walking methods. Phylogenetic analysis that was based on 13 PCGs and two rRNAs was carried out using the neighbor-joining and Bayesian interference methods. Results: The mitogenome is a typical circular molecule that is made up of 15,442 bp, which includes 13 protein-coding genes (PCGs), 2 ribosomal RNA (rRNA) genes, 22 transfer RNA (tRNA) genes, and an A + T-rich region (456 bp). All of the PCGs, except for COX1 and COX2, start with ATN codons. COX2 and ND5 use the incomplete termination codon T, and 11 other PCGs use the typical stop codon TAA. All tRNA genes, except for trnS1 and trnS2, display a typical cloverleaf structure; trnS1 lacks the “DHU” arm, whereas trnS2 exhibits two mismatched base pairs in the anticodon stem. Phylogenetic analysis showed that B. hearseyi is clustered into Brahmaeidae, and the phylogenetic relationships are (Brahmaeidae + Lasiocampidae) + (Bombycidae + (Sphingidae + Saturniidae)). Conclusions: This study provides the first mitogenomic resources for the Brahmaeidae.
Collapse
|
37
|
Yang M, Li J, Su S, Zhang H, Wang Z, Ding W, Li L. The mitochondrial genomes of Tortricidae: nucleotide composition, gene variation and phylogenetic performance. BMC Genomics 2021; 22:755. [PMID: 34674653 PMCID: PMC8532297 DOI: 10.1186/s12864-021-08041-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 09/27/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Mitochondrial genomes (mitogenomes) have greatly improved our understanding of the backbone phylogeny of Lepidoptera, but few studies on comparative mitogenomics below the family level have been conducted. Here, we generated 13 mitogenomes of eight tortricid species, reannotated 27 previously reported mitogenomes, and systematically performed a comparative analysis of nucleotide composition, gene variation and phylogenetic performance. RESULTS The lengths of completely sequenced mitogenomes ranged from 15,440 bp to 15,778 bp, and the gene content and organization were conserved in Tortricidae and typical for Lepidoptera. Analyses of AT-skew and GC-skew, the effective number of codons and the codon bias index all show a base bias in Tortricidae, with little heterogeneity among the major tortricid groups. Variations in the divergence rates among 13 protein-coding genes of the same tortricid subgroup and of the same PCG among tortricid subgroups were detected. The secondary structures of 22 transfer RNA genes and two ribosomal RNA genes were predicted and comparatively illustrated, showing evolutionary heterogeneity among different RNAs or different regions of the same RNA. The phylogenetic uncertainty of Enarmoniini in Tortricidae was confirmed. The synonymy of Bactrini and Olethreutini was confirmed for the first time, with the representative Bactrini consistently nesting in the Olethreutini clade. Nad6 exhibits the highest phylogenetic informativeness from the root to the tip of the resulting tree, and the combination of the third coding positions of 13 protein-coding genes shows extremely high phylogenetic informativeness. CONCLUSIONS This study presents 13 mitogenomes of eight tortricid species and represents the first detailed comparative mitogenomics study of Tortricidae. The results further our understanding of the evolutionary architectures of tortricid mitogenomes and provide a basis for future studies of population genetics and phylogenetic investigations in this group.
Collapse
Affiliation(s)
- Mingsheng Yang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, 466001 Henan China
| | - Junhao Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, 466001 Henan China
| | - Silin Su
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, 466001 Henan China
| | - Hongfei Zhang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, 466001 Henan China
| | - Zhengbing Wang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, 466001 Henan China
| | - Weili Ding
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, 466001 Henan China
- Finance Office, Zhoukou Normal University, Zhoukou, 466001 Henan China
| | - Lili Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, 466001 Henan China
| |
Collapse
|
38
|
Complete Mitochondrial Genomes of Metcalfa pruinosa and Salurnis marginella (Hemiptera: Flatidae): Genomic Comparison and Phylogenetic Inference in Fulgoroidea. Curr Issues Mol Biol 2021; 43:1391-1418. [PMID: 34698117 PMCID: PMC8929015 DOI: 10.3390/cimb43030099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 12/30/2022] Open
Abstract
The complete mitochondrial genomes (mitogenomes) of two DNA barcode-defined haplotypes of Metcalfa pruinosa and one of Salurnis marginella (Hemiptera: Flatidae) were sequenced and compared to those of other Fulgoroidea species. Furthermore, the mitogenome sequences were used to reconstruct phylogenetic relationships among fulgoroid families. The three mitogenomes, including that of the available species of Flatidae, commonly possessed distinctive structures in the 1702-1836 bp A+T-rich region, such as two repeat regions at each end and a large centered nonrepeat region. All members of the superfamily Fulgoroidea, including the Flatidae, consistently possessed a motiflike sequence (TAGTA) at the ND1 and trnS2 junction. The phylogenetic analyses consistently recovered the familial relationships of (((((Ricaniidae + Issidae) + Flatidae) + Fulgoridae) + Achilidae) + Derbidae) in the amino acid-based analysis, with the placement of Cixiidae and Delphacidae as the earliest-derived lineages of fulgoroid families, whereas the monophyly of Delphacidae was not congruent between tree-constructing algorithms.
Collapse
|
39
|
Characterization and Phylogenetic Analysis of the Complete Mitochondrial Genome of Saturnia japonica. Biochem Genet 2021; 60:914-936. [PMID: 34553327 DOI: 10.1007/s10528-021-10129-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 08/21/2021] [Indexed: 10/20/2022]
Abstract
The complete mitochondrial genome (mitogenome) of Saturnia japonica (Lepidoptera: Saturniidae) was sequenced and annotated. It is a circular molecule of 15, 376 bp, composed of 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), two ribosomal RNA genes (rRNA), and an adenine (A) + thymine (T)-rich region. All protein-coding genes (PCGs) are initiated by the ATN codon except for cytochrome c oxidase subunit 1 (cox1) gene that is seemingly initiated by the CGA codon. Except for cox2 and nad4, which were terminated by incomplete stop codon T or TA, the rest were terminated by canonical stop codon TAA. The A + T-rich region is high conservative, including 'ATAGA' motif followed by a 19 bp poly-T stretch, a microsatellite-like element (AT)9 and also a poly-A element, with a total length of 332 bp. The Asn codon was the most frequently used codon, followed by Ile, Leu2, Lys, Met, Phe, and Tyr, while Cys was the least frequently used codon. Phylogenetic relationships analysis based on the 13 PCGs by using maximum likelihood (ML) and neighbor Joining (NJ) revealed that S. japonica belongs to the Saturniidae family. In this study, the annotation and characteristics of the mitogenome of S. japonica were resolved for the first time, which laid a foundation for species classification and the molecular evolution of Lepidoptera: Saturniidae.
Collapse
|
40
|
Lin S, Huang M, Zhang Y. Structural Features and Phylogenetic Implications of 11 New Mitogenomes of Typhlocybinae (Hemiptera: Cicadellidae). INSECTS 2021; 12:678. [PMID: 34442244 PMCID: PMC8396557 DOI: 10.3390/insects12080678] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/18/2021] [Accepted: 07/26/2021] [Indexed: 02/07/2023]
Abstract
To explore the characteristics of mitogenomes and discuss the phylogenetic relationships and molecular evolution of the six tribes within Typhlocybinae, 11 complete mitogenomes are newly sequenced and comparatively analyzed. In all of these complete mitogenomes, the number and order of the genes are highly conserved in overall organization. The PCGs initiate with ATN/TTG/GTG and terminate with TAA/TAG/T. Almost all tRNAs are folded into the typical clover-leaf secondary structure. The control region is always variable in length and in numbers of multiple tandem repeat units. The atp8 and nad2 exhibits the highest evolution rate among all the PCGs. Phylogenetic analyses based on whole mitogenome sequences, with three different datasets, using both maximum likelihood and Bayesian methods, indicate the monophyly of Typhlocybinae and its inner tribes, respectively, except for Typhlocybini and Zyginellini that are paraphyletic. Finally, we confirm that Erythroneurini is a subtribe of Dikraneurini.
Collapse
Affiliation(s)
| | | | - Yalin Zhang
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (S.L.); (M.H.)
| |
Collapse
|
41
|
Xu XD, Guan JY, Zhang ZY, Cao YR, Cai YY, Storey KB, Yu DN, Zhang JY. Insight into the Phylogenetic Relationships among Three Subfamilies within Heptageniidae (Insecta: Ephemeroptera) along with Low-Temperature Selection Pressure Analyses Using Mitogenomes. INSECTS 2021; 12:656. [PMID: 34357316 PMCID: PMC8307263 DOI: 10.3390/insects12070656] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/12/2022]
Abstract
We determined 15 complete and two nearly complete mitogenomes of Heptageniidae belonging to three subfamilies (Heptageniinae, Rhithrogeninae, and Ecdyonurinae) and six genera (Afronurus, Epeorus, Leucrocuta, Maccaffertium, Stenacron, and Stenonema). Species of Rhithrogeninae and Ecdyonurinae had the same gene rearrangement of CR-I-M-Q-M-ND2, whereas a novel gene rearrangement of CR-I-M-Q-NCR-ND2 was found in Heptageniinae. Non-coding regions (NCRs) of 25-47 bp located between trnA and trnR were observed in all mayflies of Heptageniidae, which may be a synapomorphy for Heptageniidae. Both the BI and ML phylogenetic analyses supported the monophyly of Heptageniidae and its subfamilies (Heptageniinae, Rhithrogeninae, and Ecdyonurinae). The phylogenetic results combined with gene rearrangements and NCR locations confirmed the relationship of the subfamilies as (Heptageniinae + (Rhithrogeninae + Ecdyonurinae)). To assess the effects of low-temperature stress on Heptageniidae species from Ottawa, Canada, we found 27 positive selection sites in eight protein-coding genes (PCGs) using the branch-site model. The selection pressure analyses suggested that mitochondrial PCGs underwent positive selection to meet the energy requirements under low-temperature stress.
Collapse
Affiliation(s)
- Xiao-Dong Xu
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China; (X.-D.X.); (J.-Y.G.); (Z.-Y.Z.); (Y.-R.C.); (Y.-Y.C.)
| | - Jia-Yin Guan
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China; (X.-D.X.); (J.-Y.G.); (Z.-Y.Z.); (Y.-R.C.); (Y.-Y.C.)
| | - Zi-Yi Zhang
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China; (X.-D.X.); (J.-Y.G.); (Z.-Y.Z.); (Y.-R.C.); (Y.-Y.C.)
| | - Yu-Rou Cao
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China; (X.-D.X.); (J.-Y.G.); (Z.-Y.Z.); (Y.-R.C.); (Y.-Y.C.)
| | - Yin-Yin Cai
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China; (X.-D.X.); (J.-Y.G.); (Z.-Y.Z.); (Y.-R.C.); (Y.-Y.C.)
| | - Kenneth B. Storey
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada;
| | - Dan-Na Yu
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China; (X.-D.X.); (J.-Y.G.); (Z.-Y.Z.); (Y.-R.C.); (Y.-Y.C.)
- Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China
| | - Jia-Yong Zhang
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China; (X.-D.X.); (J.-Y.G.); (Z.-Y.Z.); (Y.-R.C.); (Y.-Y.C.)
- Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
42
|
Lu Q, Yao H, Zhang J, Xu H, Jiang C. The complete mitogenome sequence of the hawk moth, Theretra latreillii subsp. lucasii (Lepidoptera: Sphingidae) from Zhejiang Province, China. Mitochondrial DNA B Resour 2021; 6:1880-1882. [PMID: 34151008 PMCID: PMC8189079 DOI: 10.1080/23802359.2021.1934152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The sphingid, Theretra latreillii subsp. lucasii is a common hawk moth distributed in southeast Asia and Australian regions. Although barcode analyses have been published, its complete mitogenome sequence has not been deciphered. In this study, the complete mitogenome of T. latreillii lucasii (GeneBank accession no. MW539688) was sequenced using Illumina HiSeq X Ten system for mitogenome-based phylogenetic analysis. The mitogenome was 15,354 bp in length and comprises 13 protein-coding genes (PCGs), two ribosomal RNA (rRNA) genes, and 22 transfer RNAs (tRNAs) with the typical gene order and orientation of Sphingidae mitogenomes. The nucleotide composition of majority strand is 41.2% for A, 7.4% for G, 12.0% for C, and 39.4% for T, with an A + T content of 80.6%. Phylogenetic analysis using the 13 PCGs fully resolved T. latreillii lucasii in a clade with T. japonica, Macroglossum stellatarum, and Ampelophaga rubiginosa, with high nodal support both by Bayesian inference and maximum-likelihood methods, forming the Macroglossini monophyletic group.
Collapse
Affiliation(s)
- Qiaoying Lu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Hongwei Yao
- Zhejiang Provincial Key Lab of Biology of Crop Pathogens and Insects, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jinming Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Hongxing Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Caiying Jiang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| |
Collapse
|
43
|
Li R, Li M, Yan J, Bai M, Zhang H. Five Mitochondrial Genomes of the Genus Eysarcoris Hahn, 1834 with Phylogenetic Implications for the Pentatominae (Hemiptera: Pentatomidae). INSECTS 2021; 12:insects12070597. [PMID: 34209052 PMCID: PMC8306050 DOI: 10.3390/insects12070597] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 11/30/2022]
Abstract
Simple Summary Pentatominae is the largest subfamily in the Pentatomidae, and most of its species are considered important agricultural pests. The phylogenetic relationships of tribes within Pentatominae remain controversial despite the fact that many studies have been performed using various molecular markers. In this study, five mitogenomes of the genus Eysarcoris were sequenced and analyzed, and the phylogenetic relationships of tribes within Pentatominae were reconstructed. The gene arrangement of the five mitochondrial genomes were found to be conserved and identical to other heteropteran mitogenomes. Differences in start codon usage and tandem repeats within control regions were found between E. gibbosus and the other four Eysarcoris species. In addition, the phylogenetic analyses showed that E. gibbosus is the first diverging clade within Eysarcorini. The results support the proposal to transfer E. gibbosus to the Stagonomus, another genus of Eysarcorini. Our results clarified the phylogenetic relationships among tribes of Pentatominae and laid a foundation for the further studies of Pentatominae. Abstract Four complete mitogenomes of Eysarcoris rosaceus, E. montivagus, E. gibbosus, E. annamita and one near-complete mitochondrial genome of E. ventralis were sequenced and used to explore the phylogenetic relationships of tribes within the subfamily Pentatominae. The mitogenomes range from 15,422 to 16,043 base pairs (bp) in length and encode 37 genes, including 13 protein-coding genes (PCGs), two rRNA genes, 22 tRNA genes (21 in E. ventralis), and a control region. Similar to other heteropteran species, the AT contents of the sequenced species were higher than their GC contents. The most frequently used start/stop codon was ATN/TAA. GTG was only found in atp6 and atp8 of E. gibbosus. All transfer RNA genes (tRNAs) exhibit the typical cloverleaf secondary structure, except for the trnS1 and trnV, which lacks the stem of the DHU arm. The length and copy number of repeat units were conserved within Eysarcoris, with the exception of E. gibbosus. Phylogenetic analyses based on mitogenomes using both maximum likelihood (ML) and Bayesian inference (BI) methods strongly supported the relationship among tribes within Pentatominae and confirmed that Graphosoma should be an intermediate lineage of Pentatominae. The relationship between Eysarcoris and Carbula was strongly supported and combined with our previous geometric morphometrics and chromosomal studies, suggest the Eysarcoris should belong to the tribe Eyasrcorini. This work will help to enhance our understanding of mitochondrial genomic evolution and phylogenetic relationships in Pentatominae.
Collapse
Affiliation(s)
- Rongrong Li
- Laboratory of Insect Evolution, Taiyuan Normal University, Jinzhong 030619, China
| | - Min Li
- Laboratory of Insect Evolution, Taiyuan Normal University, Jinzhong 030619, China
| | - Jiang Yan
- Laboratory of Insect Evolution, Taiyuan Normal University, Jinzhong 030619, China
| | - Ming Bai
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hufang Zhang
- Xinzhou Teachers University, Xinzhou 034000, China
| |
Collapse
|
44
|
Yu DN, Yu PP, Zhang LP, Storey KB, Gao XY, Zhang JY. Increasing 28 mitogenomes of Ephemeroptera, Odonata and Plecoptera support the Chiastomyaria hypothesis with three different outgroup combinations. PeerJ 2021; 9:e11402. [PMID: 34221707 PMCID: PMC8231340 DOI: 10.7717/peerj.11402] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 04/13/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND The phylogenetic relationships of Odonata (dragonflies and damselflies) and Ephemeroptera (mayflies) remain unresolved. Different researchers have supported one of three hypotheses (Palaeoptera, Chiastomyaria or Metapterygota) based on data from different morphological characters and molecular markers, sometimes even re-assessing the same transcriptomes or mitochondrial genomes. The appropriate choice of outgroups and more taxon sampling is thought to eliminate artificial phylogenetic relationships and obtain an accurate phylogeny. Hence, in the current study, we sequenced 28 mt genomes from Ephemeroptera, Odonata and Plecoptera to further investigate phylogenetic relationships, the probability of each of the three hypotheses, and to examine mt gene arrangements in these species. We selected three different combinations of outgroups to analyze how outgroup choice affected the phylogenetic relationships of Odonata and Ephemeroptera. METHODS Mitochondrial genomes from 28 species of mayflies, dragonflies, damselflies and stoneflies were sequenced. We used Bayesian inference (BI) and Maximum likelihood (ML) analyses for each dataset to reconstruct an accurate phylogeny of these winged insect orders. The effect of outgroup choice was assessed by separate analyses using three outgroups combinations: (a) four bristletails and three silverfish as outgroups, (b) five bristletails and three silverfish as outgroups, or (c) five diplurans as outgroups. RESULTS Among these sequenced mitogenomes we found the gene arrangement IMQM in Heptageniidae (Ephemeroptera), and an inverted and translocated tRNA-Ile between the 12S RNA gene and the control region in Ephemerellidae (Ephemeroptera). The IMQM gene arrangement in Heptageniidae (Ephemeroptera) can be explained via the tandem-duplication and random loss model, and the transposition and inversion of tRNA-Ile genes in Ephemerellidae can be explained through the recombination and tandem duplication-random loss (TDRL) model. Our phylogenetic analysis strongly supported the Chiastomyaria hypothesis in three different outgroup combinations in BI analyses. The results also show that suitable outgroups are very important to determining phylogenetic relationships in the rapid evolution of insects especially among Ephemeroptera and Odonata. The mt genome is a suitable marker to investigate the phylogeny of inter-order and inter-family relationships of insects but outgroup choice is very important for deriving these relationships among winged insects. Hence, we must carefully choose the correct outgroup in order to discuss the relationships of Ephemeroptera and Odonata.
Collapse
Affiliation(s)
- Dan-Na Yu
- Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Pan-Pan Yu
- The Department of Biology, College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Le-Ping Zhang
- The Department of Biology, College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, Zhejiang, China
| | | | - Xin-Yan Gao
- The Department of Biology, College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Jia-Yong Zhang
- Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua, Zhejiang, China
- The Department of Biology, College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, Zhejiang, China
| |
Collapse
|
45
|
Riyaz M, Shah RA, Savarimuthu I, Kuppusamy S. Comparative mitochondrial genome analysis of Eudocima salaminia (Cramer, 1777) (Lepidoptera: Noctuoidea), novel gene rearrangement and phylogenetic relationship within the superfamily Noctuoidea. Mol Biol Rep 2021; 48:4449-4463. [PMID: 34109499 DOI: 10.1007/s11033-021-06465-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 06/01/2021] [Indexed: 10/21/2022]
Abstract
The species Eudocima salaminia (Cramer, 1777) commonly known as the fruit-piercing moth belongs to family Erebidae. Its distribution varies from India and across South-east Asia, pacific islands and parts of Australia. The insect is a devastating pest of citrus, longans and lychees. In the present study, complete mitochondrial genome of Eudocima salaminia was sequenced and analyzed using Illumina sequencer. The phylogenetic tree was reconstructed based on nucleotide sequences of 13 PCGs using Maximum likelihood method-General Reversible mitochondrial (mtREV) model. The mitogenome has 15,597 base pairs (bp) in length, comprising of 13 protein-coding genes (PCGs), 22 transfer RNA (tRNA) genes, two ribosomal RNA (rRNA) genes and A + T-rich region. All protein-coding genes (PCGs) initiate with canonical start codon ATN. The gene order (trnQ-trnI-trnM) of tRNA shows a different rearrangement compared to ancestral insect gene order (trnI-trnQ-trnM). Almost all tRNAs have a typical cloverleaf secondary structure except for trnS1 (AGN) which lacks the dihydrouridine arm. At the beginning of the control region, we observed a conserved polyT", motif "ATTTA" and microsatellite (TA)n element. There are 21 intergenic regions and five overlapping regions ranging from 1 to 73 bp and 1 to 8 bp, respectively. The phylogenetic relationships based on nucleotide sequences of 13 PCGs using Maximum likelihood method showed the family level relationships as (Notodontidae + (Euteliidae + Noctuidae + (Erebidae + Nolidae))). The present study represents the similarity to phylogenetic analysis of Noctuoidea mitogenome. Moreover, the family Erebidae is the sister to the families of (Euteliidae + Noctuidae + Nolidae).
Collapse
Affiliation(s)
- Muzafar Riyaz
- Division of Taxonomy and Biodiversity, Entomology Research Institute, Loyola College, Chennai, Tamil Nadu, 600034, India
| | - Rauf Ahmad Shah
- Division of Taxonomy and Biodiversity, Entomology Research Institute, Loyola College, Chennai, Tamil Nadu, 600034, India
| | | | - Sivasankaran Kuppusamy
- Division of Taxonomy and Biodiversity, Entomology Research Institute, Loyola College, Chennai, Tamil Nadu, 600034, India.
| |
Collapse
|
46
|
Zhao L, Wei* J, Zhao W, Chen C, Gao X, Zhao Q. The complete mitochondrial genome of Pentatoma rufipes (Hemiptera, Pentatomidae) and its phylogenetic implications. Zookeys 2021; 1042:51-72. [PMID: 34163290 PMCID: PMC8206063 DOI: 10.3897/zookeys.1042.62302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/24/2021] [Indexed: 11/15/2022] Open
Abstract
Pentatoma rufipes (Linnaeus, 1758) is an important agroforestry pest widely distributed in the Palaearctic region. In this study, we sequence and annotate the complete mitochondrial genome of P. rufipes and reconstruct the phylogenetic trees for Pentatomoidea using existing data for eight families published in the National Center for Biotechnology Information database. The mitogenome of P. rufipes is 15,887-bp-long, comprising 13 protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes, and a control region, with an A+T content of 77.7%. The genome structure, gene order, nucleotide composition, and codon usage of the mitogenome of P. rufipes were consistent with those of typical Hemiptera insects. Among the protein-coding genes of Pentatomoidea, the evolutionary rate of ATP8 was the fastest, and COX1 was found to be the most conservative gene in the superfamily. Substitution saturation assessment indicated that neither transition nor transversion substitutions were saturated in the analyzed datasets. Phylogenetic analysis using the Bayesian inference method showed that P. rufipes belonged to Pentatomidae. The node support values based on the dataset concatenated from protein-coding and RNA genes were the highest. Our results enrich the mitochondrial genome database of Pentatomoidea and provide a reference for further studies of phylogenetic systematics.
Collapse
Affiliation(s)
- Ling Zhao
- College of Plant Protection, Shanxi Agricultural University, Taigu 030801, Shanxi, ChinaShanxi Agricultural UniversityTaiguChina
| | - Jiufeng Wei*
- College of Plant Protection, Shanxi Agricultural University, Taigu 030801, Shanxi, ChinaShanxi Agricultural UniversityTaiguChina
| | - Wanqing Zhao
- Department of Biology, Xinzhou Teachers University, Xinzhou 034000, Shanxi, ChinaXinzhou Teachers UniversityXinzhouChina
| | - Chao Chen
- College of Plant Protection, Shanxi Agricultural University, Taigu 030801, Shanxi, ChinaShanxi Agricultural UniversityTaiguChina
| | - Xiaoyun Gao
- College of Plant Protection, Shanxi Agricultural University, Taigu 030801, Shanxi, ChinaShanxi Agricultural UniversityTaiguChina
| | - Qing Zhao
- College of Plant Protection, Shanxi Agricultural University, Taigu 030801, Shanxi, ChinaShanxi Agricultural UniversityTaiguChina
| |
Collapse
|
47
|
The queen conch mitogenome: intra- and interspecific mitogenomic variability in Strombidae and phylogenetic considerations within the Hypsogastropoda. Sci Rep 2021; 11:11972. [PMID: 34099752 PMCID: PMC8184947 DOI: 10.1038/s41598-021-91224-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/24/2021] [Indexed: 02/05/2023] Open
Abstract
Aliger gigas is an economically important and vulnerable marine species. We present a new mitogenome of A. gigas from the Mexican Caribbean and use the eight publicly available Strombidae mitogenomes to analyze intra- and interspecific variation. We present the most complete phylogenomic understanding of Hypsogastropoda to date (17 superfamilies, 39 families, 85 genera, 109 species) to revisit the phylogenetic position of the Stromboidea and evaluate divergence times throughout the phylogeny. The A. gigas mitogenome comprises 15,460 bp including 13 PCGs, 22 tRNAs, and two rRNAs. Nucleotide diversity suggested divergence between the Mexican and Colombian lineages of A. gigas. Interspecific divergence showed high differentiation among Strombidae species and demonstrated a close relationship between A. gigas and Strombus pugilis, between Lambis lambis and Harpago chiragra, and among Tridentarius dentatus/Laevistrombus canarium/Ministrombus variabilis. At the intraspecific level, the gene showing the highest differentiation is ATP8 and the lowest is NAD4L, whereas at the interspecific level the NAD genes show the highest variation and the COX genes the lowest. Phylogenomic analyses confirm that Stromboidea belongs in the non-Latrogastropoda clade and includes Xenophoridea. The phylogenomic position of other superfamilies, including those of previously uncertain affiliation, is also discussed. Finally, our data indicated that Stromboidea diverged into two principal clades in the early Cretaceous while Strombidae diversified in the Paleocene, and lineage diversification within A. gigas took place in the Pleistocene.
Collapse
|
48
|
Liu J, Xiao J, Hao X, Yuan X. Unique Duplication of trnN in Odontoptilum angulatum (Lepidoptera: Pyrginae) and Phylogeny within Hesperiidae. INSECTS 2021; 12:insects12040348. [PMID: 33919713 PMCID: PMC8070526 DOI: 10.3390/insects12040348] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/08/2021] [Accepted: 04/12/2021] [Indexed: 12/11/2022]
Abstract
To explore the variation and relationship between gene rearrangement and phylogenetic effectiveness of mitogenomes among lineages of the diversification of the tribe Tagiadini in the subfamily Pyrginae, we sequenced the complete mitogenome of Odontoptilum angulatum. The genome is 15,361 bp with the typical 37 genes, a large AT-rich region and an additional trnN (trnN2), which is completely identical to trnN (sequence similarity: 100%). The gene order differs from the typical Lepidoptera-specific arrangement and is unique to Hesperiidae. The presence of a "pseudo-trnS1" in the non-coding region between trnN1 and trnN2 supports the hypothesis that the presence of an extra trnN can be explained by the tandem duplication-random loss (TDRL) model. Regarding the phylogenetic analyses, we found that the dataset comprising all 37 genes produced the highest node support, as well as a monophyly of Pyrginae, indicating that the inclusion of RNAs improves the phylogenetic signal. Relationships among the subfamilies in Hesperiidae were also in general agreement with the results of previous studies. The monophyly of Tagiadini is strongly supported. Our study provides a new orientation for application of compositional and mutational biases of mitogenomes in phylogenetic analysis of Tagiadini and even all Hesperiidae based on larger taxon sampling in the future.
Collapse
Affiliation(s)
- Jiaqi Liu
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (J.L.); (J.X.)
| | - Jintian Xiao
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (J.L.); (J.X.)
| | - Xiangyu Hao
- College of Life Sciences, Northwest A&F University, Yangling 712100, China;
| | - Xiangqun Yuan
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (J.L.); (J.X.)
- Correspondence: ; Tel.: +86-1375-998-5152
| |
Collapse
|
49
|
Li Z, Wang W, Zhang L. Complete mitochondrial genome of Spodoptera littoralis (Lepidoptera: Noctuidae) from Egypt. MITOCHONDRIAL DNA PART B-RESOURCES 2021; 6:432-434. [PMID: 33659701 PMCID: PMC7872533 DOI: 10.1080/23802359.2020.1870894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The polyphagous cotton leafworm (Spodoptera littoralis) is one of the most destructive herbivorous insects worldwide. The present study reports the complete mitochondrial genome of S. littoralis collected from Egypt. The circular-mapping mitogenome was 15,408 bp in length with an overall A + T content of 81.1%, encoding a common set of 37 genes, including 13 protein-coding genes (PCGs), 22 tRNA genes, and two rRNA genes. Most PCGs were found to use conventional ATN as the start codon and TAN as the stop codon. The phylogenetic tree based on the nucleic acid sequences of 13 shared PCGs of 29 Noctuidae species revealed that S. littoralis and Spodoptera litura are sister species. The data in this study will be helpful to understand geographical genetic variations, phylogenetic relationships, and species identification of S. littoralis.
Collapse
Affiliation(s)
- Zaiyuan Li
- Forewarning and Management of Agricultural and Forestry Pests, Hubei Engineering Technology Center, Institute of Entomological Science, College of Agriculture, Yangtze University, Jingzhou, China.,Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Wenkai Wang
- Forewarning and Management of Agricultural and Forestry Pests, Hubei Engineering Technology Center, Institute of Entomological Science, College of Agriculture, Yangtze University, Jingzhou, China
| | - Lei Zhang
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
50
|
Organization and phylogenetic relationships of the mitochondrial genomes of Speiredonia retorta and other lepidopteran insects. Sci Rep 2021; 11:2957. [PMID: 33536496 PMCID: PMC7859238 DOI: 10.1038/s41598-021-82561-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/21/2021] [Indexed: 11/08/2022] Open
Abstract
In this study, we analyzed the complete mitochondrial genome (mitogenome) of Speiredonia retorta, which is a pest and a member of the Lepidoptera order. In total, the S. retorta mitogenome was found to contain 15,652 base pairs encoding 13 protein-coding genes (PCGs), 22 tRNAs, 2 rRNAs, as well as an adenine (A) + thymine (T)-rich region. These findings were consistent with the mitogenome composition of other lepidopterans, as we identified all 13 PCGs beginning at ATN codons. We also found that 11 PCGs terminated with canonical stop codons, whereas cox2 and nad4 exhibited incomplete termination codons. By analyzing the mitogenome of S. retorta using Bayesian inference (BI) and maximum likelihood (ML) models, we were able to further confirm that this species is a member of the Erebidae family.
Collapse
|