1
|
Chatterjee S, Kumari S, Rath S, Priyadarshanee M, Das S. Diversity, structure and regulation of microbial metallothionein: metal resistance and possible applications in sequestration of toxic metals. Metallomics 2020; 12:1637-1655. [PMID: 32996528 DOI: 10.1039/d0mt00140f] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Metallothioneins (MTs) are a group of cysteine-rich, universal, low molecular weight proteins distributed widely in almost all major taxonomic groups ranging from tiny microbes to highly organized vertebrates. The primary function of this protein is storage, transportation and binding of metals, which enable microorganisms to detoxify heavy metals. In the microbial world, these peptides were first identified in a cyanobacterium Synechococcus as the SmtA protein which exhibits high affinity towards rising level of zinc and cadmium to preserve metal homeostasis in a cell. In yeast, MTs aid in reserving copper and confer protection against copper toxicity by chelating excess copper ions in a cell. Two MTs, CUP1 and Crs5, originating from Saccharomyces cerevisiae predominantly bind to copper though are capable of binding with zinc and cadmium ions. MT superfamily 7 is found in ciliated protozoa which show high affinity towards copper and cadmium. Several tools and techniques, such as western blot, capillary electrophoresis, inductively coupled plasma, atomic emission spectroscopy and high performance liquid chromatography, have been extensively utilized for the detection and quantification of microbial MTs which are utilized for the efficient remediation and sequestration of heavy metals from a contaminated environment.
Collapse
Affiliation(s)
- Shreosi Chatterjee
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela 769 008, Odisha, India.
| | | | | | | | | |
Collapse
|
2
|
Triplet of cysteines - Coordinational riddle? J Inorg Biochem 2019; 204:110957. [PMID: 31841760 DOI: 10.1016/j.jinorgbio.2019.110957] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/14/2019] [Accepted: 12/02/2019] [Indexed: 11/21/2022]
Abstract
Polythiol binding of metal ions plays crucial role in the proper functioning of cysteine-rich proteins that are responsible for metal homeostasis and defending processes against metal toxicity (including heavy metals detoxification). The coordination properties of cysteine residues involved in specific sequencional patterns in proteins (like those present in e.g. metallothioneins) are interesting not only from a chemical point of view but may also lead to a better understanding of the purpose and allocation of metal ions in various biomolecules. In this study, the interaction of Zn2+, Cd2+ and Ni2+ ions with four peptides containing cysteine triplet motif were studied by potentiometric and spectroscopic methods. The main goal of this research was to answer the question how effectively three thiols, each being next to other, are able to bind single metal ion. Two of peptides contain additional, fourth cysteine residue, separated from triplet by two and three other amino acid residues. As results show, all three cysteine residues in the CCC motif are able to participate in the coordination of the metal ion (Cd2+, Zn2+). Except cysteine thiol groups, amide nitrogen atoms are also involved in the coordination of Ni2+.
Collapse
|
3
|
Expression and molecular characterization of stress-responsive genes (hsp70 and Mn-sod) and evaluation of antioxidant enzymes (CAT and GPx) in heavy metal exposed freshwater ciliate, Tetmemena sp. Mol Biol Rep 2019; 46:4921-4931. [PMID: 31273612 DOI: 10.1007/s11033-019-04942-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/25/2019] [Indexed: 12/31/2022]
Abstract
Response of heavy metals namely cadmium (Cd) and copper (Cu) on the expression of stress responsive genes in the fresh water ciliate, Tetmemena sp. (single cell eukaryote) was studied. Stress responsive genes include heat shock protein genes and genes involved in antioxidant defence system. Quantitative real time PCR (qRT-PCR) was employed to evaluate the effects of Cd and Cu on the expression of cytosolic hsp70 and Mn-sod genes. Increase in the expression of these genes was observed after exposure with the heavy metals. The macronuclear cytosolic hsp70 and Mn-sod (SOD2) genes were also sequenced and characterized using various bioinformatics tools. In antioxidant defence system, the superoxide dismutase (SOD) family is a first line antioxidant enzyme group involved in catalysing reactive oxygen species (ROS) to hydrogen peroxide and molecular oxygen. Influence of Cd and Cu on the activity of SOD has already been reported by our group. Therefore, the enzymatic activities of antioxidant enzymes, catalase (CAT) and glutathione peroxidase (GPx) were studied in the presence of Cd and Cu and there was significant increase in activity of these enzymes in concentration dependent manner. This study suggests that cytosolic hsp70, Mn-sod and the antioxidant enzymes such as CAT and GPx can be used as effective molecular biomarkers for heavy metal toxicity and Tetmemena sp. can be used as potential model for understanding the molecular response to heavy metal contamination in aquatic ecosystems.
Collapse
|
4
|
de Francisco P, Martín-González A, Turkewitz AP, Gutiérrez JC. Extreme metal adapted, knockout and knockdown strains reveal a coordinated gene expression among different Tetrahymena thermophila metallothionein isoforms. PLoS One 2017; 12:e0189076. [PMID: 29206858 PMCID: PMC5716537 DOI: 10.1371/journal.pone.0189076] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/17/2017] [Indexed: 01/01/2023] Open
Abstract
Metallothioneins (MT) constitute a superfamily of small cytosolic proteins that are able to bind metal cations through numerous cysteine (Cys) residues. Like other organisms the ciliate Tetrahymena thermophila presents several MT isoforms, which have been classified into two subfamilies (Cd- and Cu-metallothioneins). The main aim of this study was to examine the specific functions and transcriptional regulation of the five MT isoforms present in T. thermophila, by using several strains of this ciliate. After a laboratory evolution experiment over more than two years, three different T. thermophila strains adapted to extreme metal stress (Cd2+, Cu2+ or Pb2+) were obtained. In addition, three knockout and/or knockdown strains for different metallothionein (MT) genes were generated. These strains were then analyzed for expression of the individual MT isoforms. Our results provide a strong basis for assigning differential roles to the set of MT isoforms. MTT1 appears to have a key role in adaptation to Cd. In contrast, MTT2/4 are crucial for Cu-adaptation and MTT5 appears to be important for Pb-adaptation and might be considered as an “alarm” MT gene for responding to metal stress. Moreover, results indicate that likely a coordinated transcriptional regulation exists between the MT genes, particularly among MTT1, MTT5 and MTT2/4. MTT5 appears to be an essential gene, a first such report in any organism of an essential MT gene.
Collapse
Affiliation(s)
- Patricia de Francisco
- Departamento de Microbiología-III, Facultad de Biología, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Ana Martín-González
- Departamento de Microbiología-III, Facultad de Biología, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Aaron P. Turkewitz
- Department of Molecular Genetics and Cell Biology, Cummings Life Sciences Center, University of Chicago, Chicago, Illinois, United States of America
| | - Juan Carlos Gutiérrez
- Departamento de Microbiología-III, Facultad de Biología, Universidad Complutense de Madrid (UCM), Madrid, Spain
- * E-mail:
| |
Collapse
|
5
|
García-García JD, Sánchez-Thomas R, Moreno-Sánchez R. Bio-recovery of non-essential heavy metals by intra- and extracellular mechanisms in free-living microorganisms. Biotechnol Adv 2016; 34:859-873. [PMID: 27184302 DOI: 10.1016/j.biotechadv.2016.05.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 05/10/2016] [Accepted: 05/12/2016] [Indexed: 01/29/2023]
Abstract
Free-living microorganisms may become suitable models for recovery of non-essential and essential heavy metals from wastewater bodies and soils by using and enhancing their accumulating and/or leaching abilities. This review analyzes the variety of different mechanisms developed mainly in bacteria, protists and microalgae to accumulate heavy metals, being the most relevant those involving phytochelatin and metallothionein biosyntheses; phosphate/polyphosphate metabolism; compartmentalization of heavy metal-complexes into vacuoles, chloroplasts and mitochondria; and secretion of malate and other organic acids. Cyanide biosynthesis for extra-cellular heavy metal bioleaching is also examined. These metabolic/cellular processes are herein analyzed at the transcriptional, kinetic and metabolic levels to provide mechanistic basis for developing genetically engineered microorganisms with greater capacities and efficiencies for heavy metal recovery, recycling of heavy metals, biosensing of metal ions, and engineering of metalloenzymes.
Collapse
Affiliation(s)
- Jorge D García-García
- Departamento de Bioquímica, Instituto Nacional de Cardiología "Ignacio Chávez", México D.F. 14080, México.
| | - Rosina Sánchez-Thomas
- Departamento de Bioquímica, Instituto Nacional de Cardiología "Ignacio Chávez", México D.F. 14080, México
| | - Rafael Moreno-Sánchez
- Departamento de Bioquímica, Instituto Nacional de Cardiología "Ignacio Chávez", México D.F. 14080, México
| |
Collapse
|
6
|
de Francisco P, Melgar LM, Díaz S, Martín-González A, Gutiérrez JC. The Tetrahymena metallothionein gene family: twenty-one new cDNAs, molecular characterization, phylogenetic study and comparative analysis of the gene expression under different abiotic stressors. BMC Genomics 2016; 17:346. [PMID: 27165301 PMCID: PMC4862169 DOI: 10.1186/s12864-016-2658-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 04/22/2016] [Indexed: 01/22/2023] Open
Abstract
Background Ciliate metallothioneins (MTs) are included in family 7 of the MT superfamily. This family has been divided into two main subfamilies: 7a or CdMTs and 7b or CuMTs. All ciliate MTs reported have been isolated from different Tetrahymena species and present unique features with regard to standard MTs. Likewise, an expression analysis has been carried out on some of MT genes under metal stress, corroborating their classification into two subfamilies. Results We isolated 21 new cDNAs from different Tetrahymena species to obtain a wider view of the biodiversity of these conserved genes. Structural analysis (cysteine patterns) and an updated phylogenetic study both corroborated the previous classification into two subfamilies. A new CuMT from a Tetrahymena-related species Ichthyophthirius multifiliis was also included in this general analysis. We detected a certain tendency towards the presentation of a CdMT tri-modular structure in Borealis group species with respect to Australis group. We report for the first time a semi-complete paralog duplication of a CdMT gene originating a new CdMT gene isoform in T. malaccensis. An asymmetry of the codon usage for glutamine residues was detected between Cd- and CuMTs, and the phylogenetic implications are discussed. A comparative gene expression analysis of several MT genes by qRT-PCR revealed differential behavior among them under different abiotic stressors in the same Tetrahymena species. Conclusions The Tetrahymena metallothionein family represents a quite conserved protein structure group with unique features with respect to standard MTs. Both Cd- and CuMT subfamilies present very defined and differentiated characteristics at several levels: cysteine patterns, modular structure, glutamine codon usage and gene expression under metal stress, among others. Gene duplication through evolution seems to be the major genetic mechanism for creating new MT gene isoforms and increasing their functional diversity. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2658-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Patricia de Francisco
- Departamento Microbiología-III, Facultad de Biología. C/José Antonio Novais, 12, Universidad Complutense de Madrid (UCM), 28040, Madrid, Spain
| | - Laura María Melgar
- Universidad Castilla-La Mancha, Campus Tecnológico de la fábrica de armas, Edificio Sabatini. Av. Carlos III, s/n. 45071, Toledo, Spain
| | - Silvia Díaz
- Departamento Microbiología-III, Facultad de Biología. C/José Antonio Novais, 12, Universidad Complutense de Madrid (UCM), 28040, Madrid, Spain
| | - Ana Martín-González
- Departamento Microbiología-III, Facultad de Biología. C/José Antonio Novais, 12, Universidad Complutense de Madrid (UCM), 28040, Madrid, Spain
| | - Juan Carlos Gutiérrez
- Departamento Microbiología-III, Facultad de Biología. C/José Antonio Novais, 12, Universidad Complutense de Madrid (UCM), 28040, Madrid, Spain.
| |
Collapse
|
7
|
Jin S, Sun D, Wang J, Li Y, Wang X, Liu S. Expression of the rgMT gene, encoding for a rice metallothionein-like protein in Saccharomyces cerevisiae and Arabidopsis thaliana. J Genet 2015; 93:709-18. [PMID: 25572229 DOI: 10.1007/s12041-014-0430-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Metallothioneins (MTs) are cysteine-rich proteins of low molecular weight with many attributed functions, such as providing protection against metal toxicity, being involved in regulation of metal ions uptake that can impact plant physiology and providing protection against oxidative stress. However, the precise function of the metallothionein-like proteins such as the one coded for rgMT gene isolated from rice (Oryza sativa L.) is not completely understood. The whole genome analysis of rice (O. sativa) showed that the rgMT gene is homologue to the Os11g47809 on chromosome 11 of O. sativa sp. japonica genome. This study used the rgMT coding sequence to create transgenic lines to investigate the subcellular localization of the protein, as well as the impact of gene expression in yeast (Saccharomyces cerevisiae) and Arabidopsis thaliana under heavy metal ion, salt and oxidative stresses. The results indicate that the rgMT gene was expressed in the cytoplasm of transgenic cells. Yeast cells transgenic for rgMT showed vigorous growth compared to the nontransgenic controls when exposed to 7 mM CuCl2, 10 mM FeCl2, 1 M NaCl, 24 mM NaHCO3 and 3.2 mM H2O2, but there was no significant difference for other stresses tested. Similarly, Arabidopsis transgenic for rgMT displayed significantly improved seed germination rates over that of the control when the seeds were stressed with 100 μM CuCl2 or 1 mM H2O2. Increased biomass was observed in the presence of 100 μM CuCl2, 220 μM FeCl2, 3 mM Na2CO3, 5 mM NaHCO3 or 1 mM H2O2. These results indicate that the expression of the rice rgMT gene in transgenic yeast and Arabidopsis is implicated in improving their tolerance for certain salt and peroxide stressors.
Collapse
Affiliation(s)
- Shumei Jin
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field (SAVER),Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin 150040, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
8
|
Espart A, Marín M, Gil-Moreno S, Palacios Ò, Amaro F, Martín-González A, Gutiérrez JC, Capdevila M, Atrian S. Hints for metal-preference protein sequence determinants: different metal binding features of the five tetrahymena thermophila metallothioneins. Int J Biol Sci 2015; 11:456-71. [PMID: 25798065 PMCID: PMC4366644 DOI: 10.7150/ijbs.11060] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 01/21/2015] [Indexed: 11/12/2022] Open
Abstract
The metal binding preference of metallothioneins (MTs) groups them in two extreme subsets, the Zn/Cd- and the Cu-thioneins. Ciliates harbor the largest MT gene/protein family reported so far, including 5 paralogs that exhibit relatively low sequence similarity, excepting MTT2 and MTT4. In Tetrahymena thermophila, three MTs (MTT1, MTT3 and MTT5) were considered Cd-thioneins and two (MTT2 and MTT4) Cu-thioneins, according to gene expression inducibility and phylogenetic analysis. In this study, the metal-binding abilities of the five MTT proteins were characterized, to obtain information about the folding and stability of their cognate- and non-cognate metal complexes, and to characterize the T. thermophila MT system at protein level. Hence, the five MTTs were recombinantly synthesized as Zn2+-, Cd2+- or Cu+-complexes, which were analyzed by electrospray mass spectrometry (ESI-MS), circular dichroism (CD), and UV-vis spectrophotometry. Among the Cd-thioneins, MTT1 and MTT5 were optimal for Cd2+ coordination, yielding unique Cd17- and Cd8- complexes, respectively. When binding Zn2+, they rendered a mixture of Zn-species. Only MTT5 was capable to coordinate Cu+, although yielding heteronuclear Zn-, Cu-species or highly unstable Cu-homometallic species. MTT3 exhibited poor binding abilities both for Cd2+ and for Cu+, and although not optimally, it yielded the best result when coordinating Zn2+. The two Cu-thioneins, MTT2 and MTT4 isoforms formed homometallic Cu-complexes (major Cu20-MTT) upon synthesis in Cu-supplemented hosts. Contrarily, they were unable to fold into stable Cd-complexes, while Zn-MTT species were only recovered for MTT4 (major Zn10-MTT4). Thus, the metal binding preferences of the five T. thermophila MTs correlate well with their previous classification as Cd- and Cu-thioneins, and globally, they can be classified from Zn/Cd- to Cu-thioneins according to the gradation: MTT1>MTT5>MTT3>MTT4>MTT2. The main mechanisms underlying the evolution and specialization of the MTT metal binding preferences may have been internal tandem duplications, presence of doublet and triplet Cys patterns in Zn/Cd-thioneins, and optimization of site specific amino acid determinants (Lys for Zn/Cd- and Asn for Cu-coordination).
Collapse
Affiliation(s)
- Anna Espart
- 1. Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, 08028-Barcelona, Spain
| | - Maribel Marín
- 2. Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193-Cerdanyola del Vallès (Barcelona), Spain
| | - Selene Gil-Moreno
- 2. Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193-Cerdanyola del Vallès (Barcelona), Spain
| | - Òscar Palacios
- 2. Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193-Cerdanyola del Vallès (Barcelona), Spain
| | - Francisco Amaro
- 3. Departamento de Microbiología-III, Facultad de Biología, Universidad Complutense, 28040-Madrid, Spain
| | - Ana Martín-González
- 3. Departamento de Microbiología-III, Facultad de Biología, Universidad Complutense, 28040-Madrid, Spain
| | - Juan C Gutiérrez
- 3. Departamento de Microbiología-III, Facultad de Biología, Universidad Complutense, 28040-Madrid, Spain
| | - Mercè Capdevila
- 2. Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193-Cerdanyola del Vallès (Barcelona), Spain
| | - Sílvia Atrian
- 1. Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, 08028-Barcelona, Spain
| |
Collapse
|
9
|
Kim SH, Kim SJ, Lee JS, Lee YM. Acute effects of heavy metals on the expression of glutathione-related antioxidant genes in the marine ciliate Euplotes crassus. MARINE POLLUTION BULLETIN 2014; 85:455-462. [PMID: 24882442 DOI: 10.1016/j.marpolbul.2014.05.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 04/29/2014] [Accepted: 05/10/2014] [Indexed: 06/03/2023]
Abstract
Euplotes crassus, a single-celled eukaryote, is directly affected by environmental contaminants. Here, exponentially cultured E. crassus were exposed to cadmium, copper, lead, and zinc and then the reactive oxygen species (ROS) and total glutathione (GSH) levels were measured. Subsequently, the transcriptional modulation of glutathione peroxidase (GPx) and glutathione reductase (GR) were estimated by quantitative RT-PCR. After an 8-h exposure, significantly higher increases in the relative ROS and total GSH levels were observed in exposed group, compared to the controls. Real-time PCR data revealed that the expression levels of GPx and GR mRNA were sensitively modulated within 8h of exposure to all heavy metals. These findings suggest that these genes may be involved in cellular defense mechanisms by modulating their gene expression against heavy metal-induced oxidative stress. Thus, they may be useful as potential molecular biomarkers to assess sediment environments for contaminants.
Collapse
Affiliation(s)
- Se-Hun Kim
- Department of Life Science, College of Natural Science, Sangmyung University, Seoul 110-743, South Korea
| | - Se-Joo Kim
- Deep-sea and Seabed Resources Research Division, Korea Institute of Ocean Science and Technology (KIOST), Ansan 426-744, South Korea
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 440-746, South Korea
| | - Young-Mi Lee
- Department of Life Science, College of Natural Science, Sangmyung University, Seoul 110-743, South Korea.
| |
Collapse
|
10
|
Chang Y, Liu G, Guo L, Liu H, Yuan D, Xiong J, Ning Y, Fu C, Miao W. Cd-metallothioneins in three additional tetrahymena species: intragenic repeat patterns and induction by metal ions. J Eukaryot Microbiol 2014; 61:333-42. [PMID: 24628663 DOI: 10.1111/jeu.12112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 01/12/2014] [Accepted: 01/26/2014] [Indexed: 01/07/2023]
Abstract
Ciliate metallothioneins (MTs) possess many unique features compared to the "classic" MTs in other organisms, but they have only been studied in a small number of species. In this study, we investigated cDNAs encoding subfamily 7a metallothioneins (CdMTs) in three Tetrahymena species (T. hegewischi, T. malaccensis, and T. mobilis). Four CdMT genes (ThegMT1, ThegMT2, TmalMT1, and TmobMT1) were cloned and characterized. They share high sequence similarity to previously identified subfamily 7a MT members. Tetrahymena CdMTs exhibit a remarkably regular intragenic repeat homology. The CdMT sequences were divided into two main types of modules, which had been previously described, and which we name "A" and "B". ThegMT2 was identified as the first MT isoform solely composed of module "B". A phylogenetic analysis of individual modules of every characterized Tetrahymena CdMT rigorously documents the conclusion that modules are important units of CdMT evolution, which have undergone frequent and rapid gain/loss and shuffling. The transcriptional activity of the four newly identified genes was measured under different heavy metal exposure (Cd, Cu, Zn, Pb) using real-time quantitative PCR. The results showed that these genes were differentially induced after short (1 h) or long (24 h) metal exposure. The evolutionary diversity of Tetrahymena CdMTs is further discussed with regard to their induction by metal ions.
Collapse
Affiliation(s)
- Yue Chang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; Graduate School of Chinese Academy of Sciences, Beijing, 100049, China
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Nezhad RM, Shahpiri A, Mirlohi A. Discrimination between two rice metallothionein isoforms belonging to type 1 and type 4 in metal-binding ability. Biotechnol Appl Biochem 2014; 60:275-82. [PMID: 23782215 DOI: 10.1002/bab.1078] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Accepted: 12/12/2012] [Indexed: 10/26/2022]
Abstract
Metallothioneins (MTs) are a superfamily of low-molecular-weight, cysteine (Cys)-rich proteins that are believed to play important roles in protection against metal toxicity and oxidative stress. Plants have several MT isoforms, which are classified into four types based on the arrangement of Cys residues. In this study, two rice (Oryza sativa) MT isoforms, OsMTI-1b and OsMTII-1a from type 1 and type 4, respectively, were heterologously expressed in Escherichia coli as carboxy-terminal extensions of glutathione-S-transferase (GST). Transformed cells expressing GST-OsMTI-1b showed increased tolerance to Ni(2+) , Cd(2+) , and Zn(2+) and accumulated more metal ions compared with cells expressing GST alone. However, heterologous expression of GST-OsMTII-1a had no significant effects on metal tolerance or ion accumulation. The UV absorption spectra and competitive reactions of in vitro Cd-incubated proteins with 5-5'-dithiobis(2-nitrobenzoic) acid revealed that GST-OsMTI-1b, but not GST-OsMTII-1a, is able to form Cd-thiolate clusters. Furthermore, heterologous expression of both GST-OsMTI-1b and GST-OsMTII-1a conferred H2 O2 tolerance to E. coli cells. Taken together, the results presented here show that two different rice MT isoforms belonging to type 1 and type 4 differ in Ni(2+) , Cd(2+) , and Zn(2+) binding abilities, but they may have overlapping function in protection of cells against oxidative stress.
Collapse
Affiliation(s)
- Rezvan Mohammadi Nezhad
- Department of Agricultural Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | | | | |
Collapse
|
12
|
David E, Tanguy A, Moraga D. Characterisation and genetic polymorphism of metallothionein gene CgMT4 in experimental families of Pacific oyster Crassostrea gigas displaying summer mortality. Biomarkers 2011; 17:85-95. [PMID: 22149898 DOI: 10.3109/1354750x.2011.639464] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Summer mortality events have been observed in Pacific oyster Crassostrea gigas for several decades. This paper examines the selective pressure exerted by summer mortality on the polymorphism of a newly identified oyster metallothionein gene. CgMT4 cDNA and genomic sequences were obtained. CgMT4 was studied in two generations of oysters reared in three sites on the French Atlantic coast, using single strand conformation polymorphism analysis. Four alleles were detected. Individuals carrying genotype MT4-CD seem to have higher susceptibility to summer risk conditions. The MT4 gene could be a potential new genetic marker for susceptibility; further validation studies are recommended.
Collapse
Affiliation(s)
- Elise David
- Laboratoire Ecologie Ecotoxicologie, UPRES-EA Unité de Recherche Vigne et Vins de Champagne: Stress et Environnement, Université de Reims, France.
| | | | | |
Collapse
|
13
|
Ciliate metallothioneins: unique microbial eukaryotic heavy-metal-binder molecules. J Biol Inorg Chem 2011; 16:1025-34. [DOI: 10.1007/s00775-011-0820-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 07/11/2011] [Indexed: 11/27/2022]
|
14
|
Shariati F, Shariati S. Review on methods for determination of metallothioneins in aquatic organisms. Biol Trace Elem Res 2011; 141:340-66. [PMID: 20607442 DOI: 10.1007/s12011-010-8740-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Accepted: 05/21/2010] [Indexed: 12/01/2022]
Abstract
One aspect of environmental degradation in coastal areas is pollution from toxic metals, which are persistent and are bioaccumulated by marine organisms, with serious public health implications. A conventional monitoring system of environmental metal pollution includes measuring the level of selected metals in the whole organism or in respective organs. However, measuring only the metal content in particular organs does not give information about its effect at the subcellular level. Therefore, the evaluation of biochemical biomarker metallothionein may be useful in assessing metal exposure and the prediction of potential detrimental effects induced by metal contamination. There are some methods for the determination of metallothioneins including spectrophotometric method, electrochemical methods, chromatography, saturation-based methods, immunological methods, electrophoresis, and RT-PCR. In this paper, different methods are discussed briefly and the comparison between them will be presented.
Collapse
Affiliation(s)
- Fatemeh Shariati
- Department of Environment, Faculty of Natural Resources, Islamic Azad University (Lahijan Branch), Lahijan, Iran.
| | | |
Collapse
|
15
|
Amaro F, Turkewitz AP, Martín-González A, Gutiérrez JC. Whole-cell biosensors for detection of heavy metal ions in environmental samples based on metallothionein promoters from Tetrahymena thermophila. Microb Biotechnol 2011; 4:513-22. [PMID: 21366892 PMCID: PMC3815263 DOI: 10.1111/j.1751-7915.2011.00252.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Heavy metals are among the most serious pollutants, and thus there is a need to develop sensitive and rapid biomonitoring methods for heavy metals in the environment. Critical parameters such as bioavailability, toxicity and genotoxicity cannot be tested using chemical analysis, but only can be assayed using living cells. A whole‐cell biosensor uses the whole cell as a single reporter incorporating both bioreceptor and transducer elements. In the present paper, we report results with two gene constructs using the Tetrahymena thermophila MTT1 and MTT5 metallothionein promoters linked with the eukaryotic luciferase gene as a reporter. This is the first report of a ciliated protozoan used as a heavy metal whole‐cell biosensor. T. thermophila transformed strains were created as heavy metal whole‐cell biosensors, and turn on bioassays were designed to detect, in about 2 h, the bioavailable heavy metals in polluted soil or aquatic samples. Validation of these whole‐cell biosensors was carried out using both artificial and natural samples, including methods for detecting false positives and negatives. Comparison with other published cell biosensors indicates that the Tetrahymena metallothionein promoter‐based biosensors appear to be the most sensitive eukaryotic metal biosensors and compare favourably with some prokaryotic biosensors as well.
Collapse
Affiliation(s)
- Francisco Amaro
- Departamento de Microbiología-III, Facultad de Biología, C/. José Antonio Novais 2, Universidad Complutense, Madrid, Spain
| | | | | | | |
Collapse
|
16
|
Chaudhry R, Shakoori AR. Isolation and characterization of a novel copper-inducible metallothionein gene of a ciliate, Tetrahymena tropicalis lahorensis. J Cell Biochem 2010; 110:630-44. [PMID: 20512924 DOI: 10.1002/jcb.22573] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The two isoforms of copper metallothionein (CuMT) gene of a copper resistant ciliate, Tetrahymena tropicalis lahorensis (Ttl), have been isolated and characterized. The molecular cloning and nucleotide sequencing of cDNAs coding for the two CuMT isoforms revealed that TtlCuMT1 gene has 300, while TtlCuMT2 has 327 nucleotides, both with ATG as the initiation codon and TGA as the translational termination codon. TAG codes for glutamine in TtlCuMT2 gene which is peculiar to Tetrahymena. The deduced or translated TtlCuMT1 and TtlCuMT2 peptide sequences contain 100 and 108 amino acid residues including 28 and 32 cysteine residues, respectively. The amino acid sequences of TtlCuMT1 and TtlCuMT2 have special features of two and three CXCXXCXCXXCXC intragenic tandem repeats with a conserved structural pattern of cysteine, respectively. The predicted tertiary structures of these two isoforms indicate two domains. Domain I and the initial part of domain II showed >98% homology with other Tetrahymena CuMT. On the basis of the differences in the domain II, the metallothionein subfamily 7b can be divided into two groups, one (TtlCuMT1) comprising >100 amino acids and the other (TtlCuMT2) comprising <100 amino acids. This is a novel finding of the present study as no such report on this type of classification exists at the moment. TtlCuMT1 has 95%, while TtlCuMT2 has 97% resemblance with the previously reported CuMT genes of Tetrahymena spp. SDS-PAGE analysis using fluorescent probe as well as coomassie brilliant blue staining also confirmed the presence of metallothionein.
Collapse
Affiliation(s)
- Raheela Chaudhry
- School of Biological Sciences, University of the Punjab, Quaid-i-Azam Campus, Lahore 54590, Pakistan
| | | |
Collapse
|
17
|
Gutiérrez JC, Amaro F, Martín-González A. From heavy metal-binders to biosensors: Ciliate metallothioneins discussed. Bioessays 2009; 31:805-16. [DOI: 10.1002/bies.200900011] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|