1
|
Wu Z, Pan Z, Wen Y, Xiao H, Shangguan Y, Wang H, Chen L. Egr1/p300/ACE signal mediates postnatal osteopenia in female rat offspring induced by prenatal ethanol exposure. Food Chem Toxicol 2019; 136:111083. [PMID: 31887396 DOI: 10.1016/j.fct.2019.111083] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/22/2019] [Accepted: 12/23/2019] [Indexed: 01/01/2023]
Abstract
Prenatal ethanol exposure induces developmental toxicities of multiple organs in offspring. Here, we investigate the effects of prenatal ethanol exposure on bone mass in postnatal offspring and explore its intrauterine programming mechanism. We found that prenatal ethanol exposure could induce bone dysplasia in fetuses and postnatal osteopenia in female offspring, accompanied by the sustained activation of the local renin-angiotensin systems (RAS) and inhibition of bone formation. Additionally, we also found that histone 3 lysine 9 acetylation (H3K9ac) and H3K27ac levels in the promoter region of angiotensin-converting enzyme (ACE) were increased in female offspring exposed to ethanol during pregnancy. In vitro, ethanol suppressed the formation of mineralized nodules and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs), which was blocked by enalapril. Furthermore, ethanol promoted the expression and nuclear translocation of early growth response factor 1 (Egr1), which participated in the promotion of histone acetylation of ACE and subsequent RAS activation, by recruiting p300 and binding to the ACE promoter region directly. These findings indicate that the sustained activation of the local RAS might participate in bone dysplasia in fetus and postnatal osteopenia in the female offspring, while the Egr1/p300/ACE signal might be a key promoter of the sustained activation of the local RAS of the long bone.
Collapse
Affiliation(s)
- Zhixin Wu
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Zhengqi Pan
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Yinxian Wen
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Hao Xiao
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Yangfan Shangguan
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Hui Wang
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China; Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China.
| | - Liaobin Chen
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| |
Collapse
|
2
|
Garcia V, Shkolnik B, Milhau L, Falck JR, Schwartzman ML. 20-HETE Activates the Transcription of Angiotensin-Converting Enzyme via Nuclear Factor-κB Translocation and Promoter Binding. J Pharmacol Exp Ther 2015; 356:525-33. [PMID: 26699146 DOI: 10.1124/jpet.115.229377] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 12/11/2015] [Indexed: 12/26/2022] Open
Abstract
Increased vascular 20-hydroxyeicosatetraenoic acid (20-HETE), a cytochrome P450 arachidonic acid metabolite, promotes vascular dysfunction, injury, and hypertension that is dependent, in part, on the renin angiotensin system (RAS). We have shown that, in human microvascular endothelial cells, 20-HETE increases angiotensin-converting enzyme (ACE) mRNA, protein, and ACE activity via an epidermal growth factor receptor (EGFR)/tyrosine kinase/mitogen-activated protein kinase (MAPK)/inhibitor of κB kinase (IKK)β-mediated signaling pathway. In this work, we show that, similar to epidermal growth factor (EGF), 20-HETE (10 nM) activates EGFR by stimulating tyrosine phosphorylation; however, unlike 20-HETE, EGF does not induce ACE expression, and pretreatment with a neutralizing antibody against EGF does not prevent the 20-HETE-mediated ACE induction. Inhibition of nuclear factor κB (NF-κB) activation prevented the 4.58-fold (±0.78; P < 0.05) 20-HETE-mediated induction of ACE. The 20-HETE increased NF-κB-binding activity in nuclear extracts and the activity of both the somatic and germinal ACE promoters by 4.37-fold (±0.18; P < 0.05) and 2.53-fold (± 0.24; P < 0.05), respectively. The 20-HETE-stimulated ACE promoter activity was abrogated by the 20-HETE antagonist 20-hydroxy-6,15-eicosadienoic acid and by inhibitors of EGFR, MAPK, IKKβ, and NF-κB activation. Sequence analysis demonstrated the presence of two and one putative NF-κB binding sites on the human somatic and germinal ACE promoters, respectively. Chromatin immunoprecipitation assay indicated that 20-HETE stimulates the translocation and subsequent binding of NF-κB to each of the putative binding sites (S1, 3.43 ± 0.3-fold enrichment versus vehicle; S2, 3.72 ± 0.68-fold enrichment versus vehicle; S3, 3.20 ± 0.18-fold enrichment versus vehicle; P < 0.05). This is the first study to identify NF-κB as a transcriptional factor for ACE and to implicate a distinct EGFR/MAPK/IKK/NF-κB signaling cascade underlying 20-HETE-mediated transcriptional activation of ACE mRNA and stimulation of ACE activity.
Collapse
Affiliation(s)
- Victor Garcia
- Department of Pharmacology, New York Medical College, Valhalla, New York (V.G., B.S., M.L.S.); Faculté Pharmacie Montpellier, Montpellier, France (L.M.); and Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas (J.R.F.)
| | - Brian Shkolnik
- Department of Pharmacology, New York Medical College, Valhalla, New York (V.G., B.S., M.L.S.); Faculté Pharmacie Montpellier, Montpellier, France (L.M.); and Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas (J.R.F.)
| | - Laura Milhau
- Department of Pharmacology, New York Medical College, Valhalla, New York (V.G., B.S., M.L.S.); Faculté Pharmacie Montpellier, Montpellier, France (L.M.); and Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas (J.R.F.)
| | - John R Falck
- Department of Pharmacology, New York Medical College, Valhalla, New York (V.G., B.S., M.L.S.); Faculté Pharmacie Montpellier, Montpellier, France (L.M.); and Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas (J.R.F.)
| | - Michal Laniado Schwartzman
- Department of Pharmacology, New York Medical College, Valhalla, New York (V.G., B.S., M.L.S.); Faculté Pharmacie Montpellier, Montpellier, France (L.M.); and Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas (J.R.F.)
| |
Collapse
|
3
|
Yamashiro Y, Papke CL, Kim J, Ringuette LJ, Zhang QJ, Liu ZP, Mirzaei H, Wagenseil JE, Davis EC, Yanagisawa H. Abnormal mechanosensing and cofilin activation promote the progression of ascending aortic aneurysms in mice. Sci Signal 2015; 8:ra105. [PMID: 26486174 DOI: 10.1126/scisignal.aab3141] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Smooth muscle cells (SMCs) and the extracellular matrix (ECM) are intimately associated in the aortic wall. Fbln4(SMKO) mice with an SMC-specific deletion of the Fbln4 gene, which encodes the vascular ECM component fibulin-4, develop ascending aortic aneurysms that have increased abundance of angiotensin-converting enzyme (ACE); inhibiting angiotensin II signaling within the first month of life prevents aneurysm development. We used comparative proteomics analysis of Fbln4(SMKO) aortas from postnatal day (P) 1 to P30 mice to identify key molecules involved in aneurysm initiation and expansion. At P14, the actin depolymerizing factor cofilin was dephosphorylated and thus activated, and at P7, the abundance of slingshot-1 (SSH1) phosphatase, an activator of cofilin, was increased, leading to actin cytoskeletal remodeling. Also, by P7, biomechanical changes and underdeveloped elastic lamina-SMC connections were evident, and the abundance of early growth response 1 (Egr1), a mechanosensitive transcription factor that stimulates ACE expression, was increased, which was before the increases in ACE abundance and cofilin activation. Postnatal deletion of Fbln4 in SMCs at P7 prevented cofilin activation and aneurysm formation, suggesting that these processes required disruption of elastic lamina-SMC connections. Phosphoinositide 3-kinase (PI3K) is involved in the angiotensin II-mediated activation of SSH1, and administration of PI3K inhibitors from P7 to P30 decreased SSH1 abundance and prevented aneurysms. These results suggest that aneurysm formation arises from abnormal mechanosensing of SMCs resulting from the loss of elastic lamina-SMC connections and from increased SSH1 and cofilin activity, which may be potential therapeutic targets for treating ascending aortic aneurysms.
Collapse
Affiliation(s)
- Yoshito Yamashiro
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Christina L Papke
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jungsil Kim
- Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, MO 63130, USA
| | - Lea-Jeanne Ringuette
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
| | - Qing-Jun Zhang
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zhi-Ping Liu
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hamid Mirzaei
- Department of Biochemistry and Proteomics Core Unit, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jessica E Wagenseil
- Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, MO 63130, USA
| | - Elaine C Davis
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
| | - Hiromi Yanagisawa
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba 305-8577, Japan.
| |
Collapse
|
4
|
Cloning and characterization of rabbit Rgs4 promoter in gut smooth muscle. Gene 2009; 451:45-53. [PMID: 19945517 DOI: 10.1016/j.gene.2009.11.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2009] [Revised: 11/19/2009] [Accepted: 11/19/2009] [Indexed: 11/23/2022]
Abstract
Regulator of G-protein signaling 4 (Rgs4) regulates the strength and duration of G-protein signaling, and plays an important role in cardiac development, smooth muscle contraction and psychiatric disorders. Rgs4 expression is regulated at both mRNA and protein levels. In order to examine the transcriptional mechanism of Rgs4 expression, we have cloned and characterized rabbit Rgs4 promoter. The coding sequence of rabbit Rgs4 was obtained by degenerative RT-PCR and used for Northern blot and 5'-RACE analysis. A single transcript was identified in rabbit colonic smooth muscle cells. The 5'-untranslated region (UTR) extended 120 bp nucleotides upstream of the Rgs4 start codon. A putative promoter sequence (1389 bp) showed a consensus TATA box and cis-acting binding sites for several potential transcriptional factors. Reporter gene assay identified strong promoter activity in various cell types. Further analysis by deletion mutagenesis suggested that the proximal region had a highest core promoter activity while the distal region is suppressive. IL-1beta significantly increased the promoter activity. The in vitro and in vivo binding activities for NF-kappaB transcription factor were validated by electrophoretic mobility shift assay and chromatin immunoprecipitation assay respectively. Mutation of NF-kappaB site reduced the promoter activity. These data suggest that the cloned rabbit Rgs4 promoter is functionally active and NF-kappaB binding site possesses enhancer activity in regulating Rgs4 transcription. Our studies provide an important basis for further understanding of Rgs4 regulation and function in different diseases.
Collapse
|