1
|
Design and performance of novel molecularly imprinted biomimetic adsorbent for preconcentration of prostate cancer biomarker coupled to electrochemical determination by using multi-walled carbon nanotubes/Nafion®/Ni(OH)2-modified screen-printed electrode. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114582] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
2
|
Borowa-Mazgaj B, de Conti A, Tryndyak V, Steward CR, Jimenez L, Melnyk S, Seneshaw M, Mirshahi F, Rusyn I, Beland FA, Sanyal AJ, Pogribny IP. Gene Expression and DNA Methylation Alterations in the Glycine N-Methyltransferase Gene in Diet-Induced Nonalcoholic Fatty Liver Disease-Associated Carcinogenesis. Toxicol Sci 2019; 170:273-282. [PMID: 31086990 PMCID: PMC6934890 DOI: 10.1093/toxsci/kfz110] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is becoming a major etiological risk factor for hepatocellular carcinoma (HCC) in the United States and other Western countries. In this study, we investigated the role of gene-specific promoter cytosine DNA methylation and gene expression alterations in the development of NAFLD-associated HCC in mice using (1) a diet-induced animal model of NAFLD, (2) a Stelic Animal Model of nonalcoholic steatohepatitis-derived HCC, and (3) a choline- and folate-deficient (CFD) diet (CFD model). We found that the development of NAFLD and its progression to HCC was characterized by down-regulation of glycine N-methyltransferase (Gnmt) and this was mediated by progressive Gnmt promoter cytosine DNA hypermethylation. Using a panel of genetically diverse inbred mice, we observed that Gnmt down-regulation was an early event in the pathogenesis of NAFLD and correlated with the extent of the NAFLD-like liver injury. Reduced GNMT expression was also found in human HCC tissue and liver cancer cell lines. In in vitro experiments, we demonstrated that one of the consequences of GNMT inhibition was an increase in genome methylation facilitated by an elevated level of S-adenosyl-L-methionine. Overall, our findings suggest that reduced Gnmt expression caused by promoter hypermethylation is one of the key molecular events in the development of NAFLD-derived HCC and that assessing Gnmt methylation level may be useful for disease stratification.
Collapse
Affiliation(s)
- Barbara Borowa-Mazgaj
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas 72079
| | - Aline de Conti
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas 72079
| | - Volodymyr Tryndyak
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas 72079
| | - Colleen R Steward
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas 72079.,State University of New York at Geneseo, Geneseo, New York 14454
| | - Leandro Jimenez
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas 72079
| | - Stepan Melnyk
- Core Metabolomics Laboratory, Arkansas Children's Research Institute, Little Rock, Arkansas 72202
| | - Mulugeta Seneshaw
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Faridodin Mirshahi
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843
| | - Frederick A Beland
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas 72079
| | - Arun J Sanyal
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Igor P Pogribny
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas 72079
| |
Collapse
|
3
|
Kant R, Yen CH, Hung JH, Lu CK, Tung CY, Chang PC, Chen YH, Tyan YC, Chen YMA. Induction of GNMT by 1,2,3,4,6-penta-O-galloyl-beta-D-glucopyranoside through proteasome-independent MYC downregulation in hepatocellular carcinoma. Sci Rep 2019; 9:1968. [PMID: 30760754 PMCID: PMC6374375 DOI: 10.1038/s41598-018-37292-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 10/02/2018] [Indexed: 01/26/2023] Open
Abstract
Glycine-N-methyl transferase (GNMT) a tumor suppressor for hepatocellular carcinoma (HCC) plays a crucial role in liver homeostasis. Its expression is downregulated in almost all the tumor tissues of HCC while the mechanism of this downregulation is not yet fully understood. Recently, we identified 1,2,3,4,6-penta-O-galloyl-beta-D-glucopyranoside (PGG) as a GNMT promoter enhancer compound in HCC. In this study, we aimed to delineate the mechanism by which PGG enhances GNMT expression and to investigate its effect on GNMT suppression in HCC. Microarray and pathway enrichment analysis revealed that MYC was a major target of PGG. PGG suppressed MYC mRNA and protein expression in Huh7 and Hep G2 cells in a dose- and time-dependent fashion. Furthermore, MYC expression was also reduced in xenograft tumors in PGG treated mice. Moreover, shRNA-mediated knocked-down or pharmacological inhibition of MYC resulted in a significant induction of GNMT promoter activity and endogenous GNMT mRNA expression in Huh7 cells. In contrast, overexpression of MYC significantly inhibited GNMT promoter activity and endogenous GNMT protein expression. In addition, antibodies against MYC effectively precipitated the human GNMT promoter in a chromatin immunoprecipitation assay. Lastly, GNMT expression was negatively correlated with MYC expression in human HCC samples. Interestingly, PGG not only inhibited MYC gene expression but also promoted MYC protein degradation through proteasome-independent pathways. This work reveals a novel anticancer mechanism of PGG via downregulation of MYC expression and establishes a therapeutic rationale for treatment of MYC overexpressing cancers using PGG. Our data also provide a novel mechanistic understanding of GNMT regulation through MYC in the pathogenesis of HCC.
Collapse
Affiliation(s)
- Rajni Kant
- Center for Infectious Disease and Cancer Research (CICAR), Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Hung Yen
- Center for Infectious Disease and Cancer Research (CICAR), Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.,Research Center for Natural products and Drug Development (CHY), Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jung-Hsien Hung
- Center for Infectious Disease and Cancer Research (CICAR), Kaohsiung Medical University, Kaohsiung, Taiwan.,Department and Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan
| | - Chung-Kuang Lu
- National Research Institute of Chinese Medicine, Taipei, Taiwan.,Department of Life Sciences and Institute of Genome Sciences, College of Life Science, National Yang-Ming University, Taipei, Taiwan
| | - Chien-Yi Tung
- VYM Genome Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Pei-Ching Chang
- Center for Infectious Disease and Cancer Research (CICAR), Kaohsiung Medical University, Kaohsiung, Taiwan.,Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Yueh-Hao Chen
- Center for Infectious Disease and Cancer Research (CICAR), Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Chang Tyan
- Center for Infectious Disease and Cancer Research (CICAR), Kaohsiung Medical University, Kaohsiung, Taiwan. .,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan. .,Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan. .,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Yi-Ming Arthur Chen
- Center for Infectious Disease and Cancer Research (CICAR), Kaohsiung Medical University, Kaohsiung, Taiwan. .,Master Program in Clinical Pharmacogenomics and Pharmacoproteomics, College of Pharmacy, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
4
|
MicroRNA-224 down-regulates Glycine N-methyltransferase gene expression in Hepatocellular Carcinoma. Sci Rep 2018; 8:12284. [PMID: 30115977 PMCID: PMC6095880 DOI: 10.1038/s41598-018-30682-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 07/06/2018] [Indexed: 12/11/2022] Open
Abstract
Glycine N-methyltransferase (GNMT) is a tumor suppressor for HCC. It is down-regulated in HCC, but the mechanism is not fully understood. MicroRNA-224 (miR-224) acts as an onco-miR in HCC. This study is the first to investigate miR-224 targeting the coding region of GNMT transcript. The GNMT-MT plasmid containing a miR-224 binding site silent mutation of the GNMT coding sequence can escape the suppression of miR-224 in HEK293T cells. Expression of both exogenous and endogenous GNMT was suppressed by miR-224, while miR-224 inhibitor enhanced GNMT expression. miR-224 counteracts the effects of GNMT on the reduction of cell proliferation and tumor growth. The levels of miR-224 and GNMT mRNA showed a significant inverse relationship in tumor specimens from HCC patients. Utilizing CCl4-treated hepatoma cells and mice as a cell damage of inflammatory or liver injury model, we observed that the decreased expression levels of GNMT were accompanied with the elevated expression levels of miR-224 in hepatoma cells and mouse liver. Finally, hepatic AAV-mediated GNMT also reduced CCl4-induced miR-224 expression and liver fibrosis. These results indicated that AAV-mediated GNMT has potential liver protection activity. miR-224 can target the GNMT mRNA coding sequence and plays an important role in GNMT suppression during liver tumorigenesis.
Collapse
|
5
|
Pajares MA, Pérez-Sala D. Mammalian Sulfur Amino Acid Metabolism: A Nexus Between Redox Regulation, Nutrition, Epigenetics, and Detoxification. Antioxid Redox Signal 2018; 29:408-452. [PMID: 29186975 DOI: 10.1089/ars.2017.7237] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
SIGNIFICANCE Transsulfuration allows conversion of methionine into cysteine using homocysteine (Hcy) as an intermediate. This pathway produces S-adenosylmethionine (AdoMet), a key metabolite for cell function, and provides 50% of the cysteine needed for hepatic glutathione synthesis. The route requires the intake of essential nutrients (e.g., methionine and vitamins) and is regulated by their availability. Transsulfuration presents multiple interconnections with epigenetics, adenosine triphosphate (ATP), and glutathione synthesis, polyol and pentose phosphate pathways, and detoxification that rely mostly in the exchange of substrates or products. Major hepatic diseases, rare diseases, and sensorineural disorders, among others that concur with oxidative stress, present impaired transsulfuration. Recent Advances: In contrast to the classical view, a nuclear branch of the pathway, potentiated under oxidative stress, is emerging. Several transsulfuration proteins regulate gene expression, suggesting moonlighting activities. In addition, abnormalities in Hcy metabolism link nutrition and hearing loss. CRITICAL ISSUES Knowledge about the crossregulation between pathways is mostly limited to the hepatic availability/removal of substrates and inhibitors. However, advances regarding protein-protein interactions involving oncogenes, identification of several post-translational modifications (PTMs), and putative moonlighting activities expand the potential impact of transsulfuration beyond methylations and Hcy. FUTURE DIRECTIONS Increasing the knowledge on transsulfuration outside the liver, understanding the protein-protein interaction networks involving these enzymes, the functional role of their PTMs, or the mechanisms controlling their nucleocytoplasmic shuttling may provide further insights into the pathophysiological implications of this pathway, allowing design of new therapeutic interventions. Antioxid. Redox Signal. 29, 408-452.
Collapse
Affiliation(s)
- María A Pajares
- 1 Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas (CSIC) , Madrid, Spain .,2 Molecular Hepatology Group, Instituto de Investigación Sanitaria La Paz (IdiPAZ) , Madrid, Spain
| | - Dolores Pérez-Sala
- 1 Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas (CSIC) , Madrid, Spain
| |
Collapse
|
6
|
Kant R, Yen CH, Lu CK, Lin YC, Li JH, Chen YMA. Identification of 1,2,3,4,6-Penta-O-galloyl-β-d-glucopyranoside as a Glycine N-Methyltransferase Enhancer by High-Throughput Screening of Natural Products Inhibits Hepatocellular Carcinoma. Int J Mol Sci 2016; 17:ijms17050669. [PMID: 27153064 PMCID: PMC4881495 DOI: 10.3390/ijms17050669] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 04/25/2016] [Accepted: 04/25/2016] [Indexed: 01/09/2023] Open
Abstract
Glycine N-methyltransferase (GNMT) expression is vastly downregulated in hepatocellular carcinomas (HCC). High rates of GNMT knockout mice developed HCC, while overexpression of GNMT prevented aflatoxin-induced carcinogenicity and inhibited liver cancer cell proliferation. Therefore, in this study, we aimed for the identification of a GNMT inducer for HCC therapy. We established a GNMT promoter-driven luciferase reporter assay as a drug screening platform. Screening of 324 pure compounds and 480 crude extracts from Chinese medicinal herbs resulted in the identification of Paeonia lactiflora Pall (PL) extract and the active component 1,2,3,4,6-penta-O-galloyl-β-d-glucopyranoside (PGG) as a GNMT inducer. Purified PL extract and PGG induced GNMT mRNA and protein expression in Huh7 human hepatoma cells and in xenograft tumors. PGG and PL extract had potent anti-HCC effects both in vitro and in vivo. Furthermore, PGG treatment induced apoptosis in Huh7 cells. Moreover, PGG treatment sensitized Huh7 cells to sorafenib treatment. Therefore, these results indicated that identifying a GNMT enhancer using the GNMT promoter-based assay might be a useful approach to find drugs for HCC. These data also suggested that PGG has therapeutic potential for the treatment of HCC.
Collapse
Affiliation(s)
- Rajni Kant
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei 11221, Taiwan.
- Center for Infectious Disease and Cancer Research (CICAR), Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Chia-Hung Yen
- Center for Infectious Disease and Cancer Research (CICAR), Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- Lipid Science and Aging Research Center (CHY), Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- Research Center for natural products and Drug Development (CHY), Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Chung-Kuang Lu
- National Research Institute of Chinese Medicine, Taipei 11221, Taiwan.
- Department of Life Sciences and Institute of Genome Sciences, College of Life Science, National Yang-Ming University, Taipei 11221, Taiwan.
| | - Ying-Chi Lin
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- Ph.D. Program in Toxicology, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Jih-Heng Li
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- Ph.D. Program in Toxicology, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Yi-Ming Arthur Chen
- Center for Infectious Disease and Cancer Research (CICAR), Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 80708, Taiwan.
- Department of Microbiology and Immunology, Institute of Medical Research and Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| |
Collapse
|
7
|
Williams SR, Yang Q, Chen F, Liu X, Keene KL, Jacques P, Chen WM, Weinstein G, Hsu FC, Beiser A, Wang L, Bookman E, Doheny KF, Wolf PA, Zilka M, Selhub J, Nelson S, Gogarten SM, Worrall BB, Seshadri S, Sale MM. Genome-wide meta-analysis of homocysteine and methionine metabolism identifies five one carbon metabolism loci and a novel association of ALDH1L1 with ischemic stroke. PLoS Genet 2014; 10:e1004214. [PMID: 24651765 PMCID: PMC3961178 DOI: 10.1371/journal.pgen.1004214] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 01/14/2014] [Indexed: 12/31/2022] Open
Abstract
Circulating homocysteine levels (tHcy), a product of the folate one carbon metabolism pathway (FOCM) through the demethylation of methionine, are heritable and are associated with an increased risk of common diseases such as stroke, cardiovascular disease (CVD), cancer and dementia. The FOCM is the sole source of de novo methyl group synthesis, impacting many biological and epigenetic pathways. However, the genetic determinants of elevated tHcy (hyperhomocysteinemia), dysregulation of methionine metabolism and the underlying biological processes remain unclear. We conducted independent genome-wide association studies and a meta-analysis of methionine metabolism, characterized by post-methionine load test tHcy, in 2,710 participants from the Framingham Heart Study (FHS) and 2,100 participants from the Vitamin Intervention for Stroke Prevention (VISP) clinical trial, and then examined the association of the identified loci with incident stroke in FHS. Five genes in the FOCM pathway (GNMT [p = 1.60 × 10(-63)], CBS [p = 3.15 × 10(-26)], CPS1 [p = 9.10 × 10(-13)], ALDH1L1 [p = 7.3 × 10(-13)] and PSPH [p = 1.17 × 10(-16)]) were strongly associated with the difference between pre- and post-methionine load test tHcy levels (ΔPOST). Of these, one variant in the ALDH1L1 locus, rs2364368, was associated with incident ischemic stroke. Promoter analyses reveal genetic and epigenetic differences that may explain a direct effect on GNMT transcription and a downstream affect on methionine metabolism. Additionally, a genetic-score consisting of the five significant loci explains 13% of the variance of ΔPOST in FHS and 6% of the variance in VISP. Association between variants in FOCM genes with ΔPOST suggest novel mechanisms that lead to differences in methionine metabolism, and possibly the epigenome, impacting disease risk. These data emphasize the importance of a concerted effort to understand regulators of one carbon metabolism as potential therapeutic targets.
Collapse
Affiliation(s)
- Stephen R. Williams
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, United States of America
- Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, United States of America
| | - Qiong Yang
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, United States of America
- The Framingham Heart Study, Framingham, Massachusetts, United States of America
| | - Fang Chen
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, United States of America
| | - Xuan Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, United States of America
| | - Keith L. Keene
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Biology, East Carolina University, Greenville, North Carolina, United States of America
- Center for Health Disparities Research, East Carolina University, Greenville, North Carolina, United States of America
| | - Paul Jacques
- Jean Mayer USDA Human Nutrition Research Center on Aging and Friedman School of Nutrition Science and Policy, Tufts University, Boston, Massachusetts, United States of America
| | - Wei-Min Chen
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, United States of America
| | - Galit Weinstein
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Fang-Chi Hsu
- Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Alexa Beiser
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, United States of America
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Liewei Wang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Ebony Bookman
- National Human Genome Research Institute, Bethesda, Maryland, United States of America
| | - Kimberly F. Doheny
- Center for Inherited Disease Research, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Philip A. Wolf
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Michelle Zilka
- Center for Inherited Disease Research, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Jacob Selhub
- Jean Mayer USDA Human Nutrition Research Center on Aging and Friedman School of Nutrition Science and Policy, Tufts University, Boston, Massachusetts, United States of America
| | - Sarah Nelson
- Department of Biostatistics, University of Washington, Seattle, Washington, United States of America
| | - Stephanie M. Gogarten
- Department of Biostatistics, University of Washington, Seattle, Washington, United States of America
| | - Bradford B. Worrall
- Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Neurology University of Virginia, Charlottesville, Virginia, United States of America
| | - Sudha Seshadri
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Michèle M. Sale
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail:
| | | | | |
Collapse
|
8
|
Ottaviani S, Brooke GN, O'Hanlon-Brown C, Waxman J, Ali S, Buluwela L. Characterisation of the androgen regulation of glycine N-methyltransferase in prostate cancer cells. J Mol Endocrinol 2013; 51:301-12. [PMID: 23997240 PMCID: PMC3821059 DOI: 10.1530/jme-13-0169] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The development and growth of prostate cancer is dependent on androgens; thus, the identification of androgen-regulated genes in prostate cancer cells is vital for defining the mechanisms of prostate cancer development and progression and developing new markers and targets for prostate cancer treatment. Glycine N-methyltransferase (GNMT) is a S-adenosylmethionine-dependent methyltransferase that has been recently identified as a novel androgen-regulated gene in prostate cancer cells. Although the importance of this protein in prostate cancer progression has been extensively addressed, little is known about the mechanism of its androgen regulation. Here, we show that GNMT expression is stimulated by androgen in androgen receptor (AR) expressing cells and that the stimulation occurs at the mRNA and protein levels. We have identified an androgen response element within the first exon of the GNMT gene and demonstrated that AR binds to this element in vitro and in vivo. Together, these studies identify GNMT as a direct transcriptional target of the AR. As this is an evolutionarily conserved regulatory element, this highlights androgen regulation as an important feature of GNMT regulation.
Collapse
Affiliation(s)
| | - Greg N Brooke
- School of Biological SciencesUniversity of EssexColchesterUK
| | | | | | - Simak Ali
- Correspondence should be addressed to L Buluwela or S Ali, or
| | - Laki Buluwela
- Correspondence should be addressed to L Buluwela or S Ali, or
| |
Collapse
|
9
|
Androgen response element of the glycine N-methyltransferase gene is located in the coding region of its first exon. Biosci Rep 2013; 33:BSR20130030. [PMID: 23883094 PMCID: PMC3775523 DOI: 10.1042/bsr20130030] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Androgen plays an important role in the pathogenesis of PCa (prostate cancer). Previously, we identified GNMT (glycine N-methyltransferase) as a tumour susceptibility gene and characterized its promoter region. Besides, its enzymatic product-sarcosine has been recognized as a marker for prognosis of PCa. The goals of this study were to determine whether GNMT is regulated by androgen and to map its AREs (androgen response elements). Real-time PCR analyses showed that R1881, a synthetic AR (androgen receptor) agonist induced GNMT expression in AR-positive LNCaP cells, but not in AR-negative DU145 cells. In silico prediction showed that there are four putative AREs in GNMT-ARE1, ARE2 and ARE3 are located in the intron 1 and ARE4 is in the intron 2. Consensus ARE motif deduced from published AREs was used to identify the fifth ARE-ARE5 in the coding region of exon 1. Luciferase reporter assay found that only ARE5 mediated the transcriptional activation of R1881. ARE3 overlaps with a YY1 [Yin and Yang 1 (motif (CaCCATGTT, +1118/+1126)] that was further confirmed by antibody supershift and ChIP (chromatin immunoprecipitation) assays. EMSA (electrophoretic mobility shift assay) and ChIP assay confirmed that AR interacts with ARE5 in vitro and in vivo. In summary, GNMT is an AR-targeted gene with its functional ARE located at +19/+33 of the first exon. These results are valuable for the study of the influence of androgen on the gene expression of GNMT especially in the pathogenesis of cancer.
Collapse
|
10
|
Sarcosine as a potential prostate cancer biomarker--a review. Int J Mol Sci 2013; 14:13893-908. [PMID: 23880848 PMCID: PMC3742224 DOI: 10.3390/ijms140713893] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 06/20/2013] [Accepted: 06/22/2013] [Indexed: 11/17/2022] Open
Abstract
Prostate cancer (CaP) is the most common type of tumour disease in men. Early diagnosis of cancer of the prostate is very important, because the sooner the cancer is detected, the better it is treated. According to that fact, there is great interest in the finding of new markers including amino acids, proteins or nucleic acids. Prostate specific antigen (PSA) is commonly used and is the most important biomarker of CaP. This marker can only be detected in blood and its sensitivity is approximately 80%. Moreover, early stages cannot be diagnosed using this protein. Currently, there does not exist a test for diagnosis of early stages of prostate cancer. This fact motivates us to find markers sensitive to the early stages of CaP, which are easily detected in body fluids including urine. A potential is therefore attributed to the non-protein amino acid sarcosine, which is generated by glycine-N-methyltransferase in its biochemical cycle. In this review, we summarize analytical methods for quantification of sarcosine as a CaP marker. Moreover, pathways of the connection of synthesis of sarcosine and CaP development are discussed.
Collapse
|
11
|
The multi-functional roles of GNMT in toxicology and cancer. Toxicol Appl Pharmacol 2012; 266:67-75. [PMID: 23147572 DOI: 10.1016/j.taap.2012.11.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Revised: 11/02/2012] [Accepted: 11/03/2012] [Indexed: 11/23/2022]
Abstract
Although glycine N-methyltransferase (GNMT) has been discovered for five decades, its function was not elucidated until recently. In this review, we discuss the multiple roles of GNMT in toxicology and cancer. Besides catalyzing the production of methylglycine (sarcosine) in one carbon metabolism pathway, GNMT was found to be able to bind a number of polycyclic aromatic hydrocarbons and inhibit DNA adducts formation. Moreover, GNMT exerts protective effects against the cytotoxicity and carcinogenicity of benzo(a)pyrene and aflatoxin B(1) in vitro and in vivo. Occupational study showed that workers who had genotypes with higher GNMT promoter activity may have lower content of oxidative damaged DNA products in their urine. In terms of cancer, recent studies using GNMT knockout mouse models demonstrated that GNMT deficiency has high penetrance in inducing the development of steatohepatitis and hepatocellular carcinoma. In terms of the mechanism, besides dysregulation of epigenetic modification, insights have been provided by recent identification of two novel proteins interacting with GNMT-DEPTOR and NPC2. These studies suggest that GNMT not only is involved in mTOR signaling pathway, but also plays an important role in the intracellular trafficking of cholesterol. The implication of these findings to the preventive medicine and translational research will be discussed.
Collapse
|
12
|
Fang X, Dong W, Thornton C, Willett KL. Benzo[a]pyrene effects on glycine N-methyltransferase mRNA expression and enzyme activity in Fundulus heteroclitus embryos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2010; 98:130-138. [PMID: 20185185 PMCID: PMC2873104 DOI: 10.1016/j.aquatox.2010.02.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 01/28/2010] [Accepted: 02/01/2010] [Indexed: 05/28/2023]
Abstract
Benzo[a]pyrene (BaP) is a ubiquitous environmental polycyclic aromatic hydrocarbon (PAH) contaminant that is both a carcinogen and a developmental toxicant. We hypothesize that some of BaP's developmental toxicity may be mediated by effects on glycine N-methyltransferase (GNMT). GNMT is a mediator in the methionine and folate cycles, and the homotetrameric form enzymatically transfers a methyl group from S-adenosylmethionine (SAM) to glycine forming S-adenosylhomocysteine (SAH) and sarcosine. SAM homeostasis, as regulated by GNMT, is critically involved in regulation of DNA methylation, and altered GNMT expression is associated with liver pathologies. The homodimeric form of GNMT has been suggested as the 4S PAH-binding protein. To further study BaP-GNMT interactions, Fundulus heteroclitus embryos were exposed to waterborne BaP at 10 and 100mug/L and both GNMT mRNA expression and enzyme activity were determined. Whole mount in situ hybridization showed GNMT mRNA expression was increased by BaP in the liver region of 7, 10 and 14dpf F. heteroclitus embryos. In contrast to mRNA induction, in vivo BaP exposure decreased GNMT enzyme activity in 4, 10 and 14dpf embryos. However, in vitro incubations of adult F. heteroclitus liver cytosol with BaP did not cause decreased enzyme activity. In conclusion, BaP exposure altered GNMT expression, which may represent a new target pathway for BaP-mediated embryonic toxicities and DNA methylation changes.
Collapse
Affiliation(s)
- Xiefan Fang
- Department of Pharmacology and Environmental Toxicology Research Program, School of Pharmacy, University of Mississippi, University, Mississippi, USA, 38677
| | - Wu Dong
- Department of Pharmacology and Environmental Toxicology Research Program, School of Pharmacy, University of Mississippi, University, Mississippi, USA, 38677
| | - Cammi Thornton
- Department of Pharmacology and Environmental Toxicology Research Program, School of Pharmacy, University of Mississippi, University, Mississippi, USA, 38677
| | - Kristine L. Willett
- Department of Pharmacology and Environmental Toxicology Research Program, School of Pharmacy, University of Mississippi, University, Mississippi, USA, 38677
| |
Collapse
|