1
|
Yang Z, Zhou J, Su N, Zhang Z, Chen J, Liu P, Ling P. Insights into the defensive roles of lncRNAs during Mycoplasma pneumoniae infection. Front Microbiol 2024; 15:1330660. [PMID: 38585701 PMCID: PMC10995346 DOI: 10.3389/fmicb.2024.1330660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/27/2024] [Indexed: 04/09/2024] Open
Abstract
Mycoplasma pneumoniae causes respiratory tract infections, affecting both children and adults, with varying degrees of severity ranging from mild to life-threatening. In recent years, a new class of regulatory RNAs called long non-coding RNAs (lncRNAs) has been discovered to play crucial roles in regulating gene expression in the host. Research on lncRNAs has greatly expanded our understanding of cellular functions involving RNAs, and it has significantly increased the range of functions of lncRNAs. In lung cancer, transcripts associated with lncRNAs have been identified as regulators of airway and lung inflammation in a process involving protein complexes. An excessive immune response and antibacterial immunity are closely linked to the pathogenesis of M. pneumoniae. The relationship between lncRNAs and M. pneumoniae infection largely involves lncRNAs that participate in antibacterial immunity. This comprehensive review aimed to examine the dysregulation of lncRNAs during M. pneumoniae infection, highlighting the latest advancements in our understanding of the biological functions and molecular mechanisms of lncRNAs in the context of M. pneumoniae infection and indicating avenues for investigating lncRNAs-related therapeutic targets.
Collapse
Affiliation(s)
- Zhujun Yang
- Department of Critical Care Medicine, The Central Hospital of Shaoyang City and Affiliated Shaoyang Hospital, Hengyang Medical College, University of South China, Shaoyang, China
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical School, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, China
| | - Junjun Zhou
- Department of Critical Care Medicine, The Central Hospital of Shaoyang City and Affiliated Shaoyang Hospital, Hengyang Medical College, University of South China, Shaoyang, China
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical School, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, China
| | - Nana Su
- Department of Critical Care Medicine, The Central Hospital of Shaoyang City and Affiliated Shaoyang Hospital, Hengyang Medical College, University of South China, Shaoyang, China
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical School, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, China
| | - Zifan Zhang
- Department of Critical Care Medicine, The Central Hospital of Shaoyang City and Affiliated Shaoyang Hospital, Hengyang Medical College, University of South China, Shaoyang, China
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical School, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, China
| | - Jiaxin Chen
- Department of Critical Care Medicine, The Central Hospital of Shaoyang City and Affiliated Shaoyang Hospital, Hengyang Medical College, University of South China, Shaoyang, China
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical School, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, China
| | - Peng Liu
- Department of Critical Care Medicine, The Central Hospital of Shaoyang City and Affiliated Shaoyang Hospital, Hengyang Medical College, University of South China, Shaoyang, China
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical School, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, China
| | - Peng Ling
- Department of Critical Care Medicine, The Central Hospital of Shaoyang City and Affiliated Shaoyang Hospital, Hengyang Medical College, University of South China, Shaoyang, China
| |
Collapse
|
2
|
Mu JY, Tian JX, Chen YJ. lncRNA RBM5-AS1 promotes cell proliferation and invasion by epigenetically silencing miR-132/212 in hepatocellular carcinoma cells. Cell Biol Int 2021; 45:2201-2210. [PMID: 34019714 DOI: 10.1002/cbin.11649] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/20/2021] [Accepted: 05/16/2021] [Indexed: 01/13/2023]
Abstract
Hepatocellular carcinoma (HCC) is regarded as one of the most common malignancies worldwide leading to cancer-related death. Long noncoding RNAs (lncRNAs) are a critical modulator affecting HCC progression. Whereas, the pathogenesis of lncRNA RBM5-AS1 in the development of HCC remains unclear. Quantitative RT-PCR or western blot assays were applied to detect the expression of genes and proteins, respectively. The proliferation and metastasis abilities were assessed using Cell counting kit-8 (CCK-8), EdU and transwell assays. RNA immunoprecipitation (RIP) experiment was employed to validate the molecular interactions. RBM5-AS1 is highly expressed in HCC tissues and cell lines, especially in Hep3B and HepG2 cells. RBM5-AS1 knockdown dramatically restrains cell proliferation, invasion and migration of HCC cells. Importantly, RBM5-AS1 acts as an epigenetic regulator to elevate the H3K27me3 level of miR-132/212 promoter regions via recruiting PRC2 (EZH2, SUZ12, EED), and eventually reducing miR-132/212 expressions. The recovery experiments demonstrated that downregulation of miR-132/212 markedly eliminate the antitumor effects mediated by RBM5-AS1 silencing in HCC cells. The data of this work illustrate that RBM5-AS1 acts as an epigenetic regulator to promote the HCC progression by repressing miR-132/212 expressions, which would provide a new insight for understanding the action mechanism of RBM5-AS1 in HCC development.
Collapse
Affiliation(s)
- Jin-Yong Mu
- Department of Clinical Laboratory, Shidao People's Hospltal of Rongcheng, Rongcheng, Shandong, China
| | - Jun-Xiu Tian
- Department of Clinical Laboratory, The Fourth People's Hospital of Zibo City, Zibo, Shandong, China
| | - Ying-Jie Chen
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
3
|
Xin W, Gao X, Zhao P, Wang T, Ding X, Wu Q, Hua K. Long non-coding RNA RP11-379k17.4 derived microRNA-200c-3p modulates human endometrial cancer by targeting Noxa. J Cancer 2021; 12:2268-2274. [PMID: 33758604 PMCID: PMC7974877 DOI: 10.7150/jca.51023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 01/30/2021] [Indexed: 12/24/2022] Open
Abstract
Objective: The research paid close attention to the function of lncRNA-related endogenous competitive RNAs (ceRNAs) network in endometrial cancer (EC). Methods: 45 primary endometrial cancer tissues (EC) and 45 normal endometrium (NE) were included in the research. The online software StarbaseV2.0 was made use of forecasting the lncRNA which most likely contained microRNA-200c-3p combining sites and could interact with microRNA-200c-3p. Subsequently, we chose lncRNAs which were consistent with the characteristics of polyadenylation of lncRNAs and lower expression in EC than that of NE. After that, lncRNAs, which were related with the microRNA-200c-3p-noxa network, were identified. Results: Rp11-379k17.4, a new gene related to endometrial cancer, was identified as noncoding RNA. It was a more effective ceRNA associated with the microRNA-200c-3p-noxa network. Conclusion: LncRNAs possess microRNA response elements (MREs) and give scope to significant roles in the post-transcriptional mechanism in EC.
Collapse
Affiliation(s)
- Weijuan Xin
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, 128 Shen-Yang Road, Shanghai 200090, China
| | - Xiaodong Gao
- Department of Obstetrics and Gynecology, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Pudong New Area, Shanghai 200120, China
| | - Peng Zhao
- Department of Internal Medicine, People's Hospital of Dezhou, 1751 Xinhu Street, Dezhou 253001, China
| | - Taiyong Wang
- Department of Oncology, People's Hospital of Dezhou, 1751 Xinhu Street, Dezhou 253001, China
| | - Xue Ding
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, 128 Shen-Yang Road, Shanghai 200090, China
| | - Qianyu Wu
- Department of Obstetrics and Gynecology, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Pudong New Area, Shanghai 200120, China
| | - Keqin Hua
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, 128 Shen-Yang Road, Shanghai 200090, China
| |
Collapse
|
4
|
Zhou YK, Hu J, Shen ZA, Zhang WY, Du PF. LPI-SKF: Predicting lncRNA-Protein Interactions Using Similarity Kernel Fusions. Front Genet 2020; 11:615144. [PMID: 33362868 PMCID: PMC7758075 DOI: 10.3389/fgene.2020.615144] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/16/2020] [Indexed: 01/24/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) play an important role in serval biological activities, including transcription, splicing, translation, and some other cellular regulation processes. lncRNAs perform their biological functions by interacting with various proteins. The studies on lncRNA-protein interactions are of great value to the understanding of lncRNA functional mechanisms. In this paper, we proposed a novel model to predict potential lncRNA-protein interactions using the SKF (similarity kernel fusion) and LapRLS (Laplacian regularized least squares) algorithms. We named this method the LPI-SKF. Various similarities of both lncRNAs and proteins were integrated into the LPI-SKF. LPI-SKF can be applied in predicting potential interactions involving novel proteins or lncRNAs. We obtained an AUROC (area under receiver operating curve) of 0.909 in a 5-fold cross-validation, which outperforms other state-of-the-art methods. A total of 19 out of the top 20 ranked interaction predictions were verified by existing data, which implied that the LPI-SKF had great potential in discovering unknown lncRNA-protein interactions accurately. All data and codes of this work can be downloaded from a GitHub repository (https://github.com/zyk2118216069/LPI-SKF).
Collapse
Affiliation(s)
| | | | | | | | - Pu-Feng Du
- College of Intelligence and Computing, Tianjin University, Tianjin, China
| |
Collapse
|
5
|
Luo T, Gao Y, Zhangyuan G, Xu X, Xue C, Jin L, Zhang W, Zhu C, Sun B, Qin X. lncRNA PCBP1-AS1 Aggravates the Progression of Hepatocellular Carcinoma via Regulating PCBP1/PRL-3/AKT Pathway. Cancer Manag Res 2020; 12:5395-5408. [PMID: 32753957 PMCID: PMC7352448 DOI: 10.2147/cmar.s249657] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 06/10/2020] [Indexed: 12/30/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is a very belligerent primary liver tumor with high metastatic potential. Aberrant expression of lncRNAs drives tumorous invasion and metastasis. Whether lncRNAs engage mechanisms of liver cancer metastasis remains largely unexplored. Patients and Methods We collected HCC tissues from the tumors and their adjacent normal samples in the Chinese population and analyzed the levels of lncRNAs by microarray analysis. The gain- and loss-of-function analysis demonstrated that PCBP1-AS1 accelerated tumorous growth and metastasis in vivo and in vitro. Moreover, we used RNA-pulldown assay to show that PCBP1-AS1 physically interacted with polyC-RNA-binding protein 1 (PCBP1); meanwhile, PCBP1-AS1 was indeed detected in RIP with the PCBP1 antibody. Mechanistically, we first explored the relationship between PCBP1‐AS1 and PCBP1 in HCC cell lines. Results Here we show that PCBP1-AS1, identified by microarray analysis on pre- and post-operative HCC plasma specimens, was highly expressed in human HCC, clinically verified as a prometastatic factor and markedly associated with poor prognosis in patients with hepatocellular carcinoma. PCBP1‐AS1 was negatively related with PCBP1 at the messenger RNA and protein expression levels. PCBP1-AS1 triggered PRL-3 and AKT in HCC tumor cells. Additionally, the double knockout of PCBP1 and PCBP1-AS1 abolished the PCBP1-AS1-induced PRL-3-AKT signalling pathway activation. Conclusion The upregulation of PCBP1-AS1 enhances proliferation and metastasis in HCC, thus regulating the PCBP1-PRL-3-AKT signalling pathway.
Collapse
Affiliation(s)
- Tianping Luo
- Department of Hepatobiliary Surgery, The Affiliated Changzhou NO. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu Province 213164, People's Republic of China
| | - Yuan Gao
- Department of Hepatobiliary Surgery, The Affiliated Changzhou NO. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu Province 213164, People's Republic of China
| | - Guangyan Zhangyuan
- Liver Transplantation Center of the First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province 210029, People's Republic of China
| | - Xiaoliang Xu
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province 210008, People's Republic of China
| | - Cailin Xue
- Department of Hepatobiliary Surgery, The Affiliated Changzhou NO. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu Province 213164, People's Republic of China
| | - Lei Jin
- Department of Hepatobiliary Surgery, The Affiliated Changzhou NO. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu Province 213164, People's Republic of China
| | - Wenjie Zhang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province 210008, People's Republic of China
| | - Chunfu Zhu
- Department of Hepatobiliary Surgery, The Affiliated Changzhou NO. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu Province 213164, People's Republic of China
| | - Beicheng Sun
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province 210008, People's Republic of China
| | - Xihu Qin
- Department of Hepatobiliary Surgery, The Affiliated Changzhou NO. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu Province 213164, People's Republic of China
| |
Collapse
|
6
|
Coltri PP, Dos Santos MGP, da Silva GHG. Splicing and cancer: Challenges and opportunities. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 10:e1527. [PMID: 30773852 DOI: 10.1002/wrna.1527] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/14/2018] [Accepted: 01/17/2019] [Indexed: 12/11/2022]
Abstract
Cancer arises from alterations in several metabolic processes affecting proliferation, growth, replication and death of cells. A fundamental challenge in the study of cancer biology is to uncover molecular mechanisms that lead to malignant cellular transformation. Recent genomic analyses revealed that many molecular alterations observed in cancers come from modifications in the splicing process, including mutations in pre-mRNA regulatory sequences, mutations in spliceosome components, and altered ratio of specific splicing regulators. While alterations in splice site preferences might generate alternative isoforms enabling different biological functions, these might also be responsible for nonfunctional isoforms that can eventually cause dysregulation in cellular processes. Molecular characteristics of regulatory sequences and proteins might also be important prognostic tools revealing a cancer-specific splicing pattern and linking splicing control to cancer development. The connection between cancer biology and splicing regulation is of primary importance to understand the mechanisms leading to disease and also to improve development of therapeutic approaches. Splicing modulation is being explored in new anti-cancer therapies and further investigation of targeted splicing factors is critical for the success of these strategies. This article is categorized under: RNA Processing > Splicing Mechanisms RNA-Based Catalysis > RNA Catalysis in Splicing and Translation RNA Processing > Splicing Regulation/Alternative Splicing RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Patricia P Coltri
- Department of Cell and Developmental Biology, Institute for Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Maria G P Dos Santos
- Department of Cell and Developmental Biology, Institute for Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Guilherme H G da Silva
- Department of Cell and Developmental Biology, Institute for Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Ardah MT, Parween S, Varghese DS, Emerald BS, Ansari SA. Saturated fatty acid alters embryonic cortical neurogenesis through modulation of gene expression in neural stem cells. J Nutr Biochem 2018; 62:230-246. [DOI: 10.1016/j.jnutbio.2018.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 08/30/2018] [Accepted: 09/17/2018] [Indexed: 12/16/2022]
|
8
|
Zhou J, Xiang W, Li S, Hu Q, Peng T, Chen L, Ming Y. Association between long non-coding RNAs expression and pathogenesis and progression of gliomas. Oncol Lett 2018. [PMID: 29541171 PMCID: PMC5835862 DOI: 10.3892/ol.2018.7875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The incidence rate of gliomas is the highest among primary brain tumors. Although the understanding of the molecular pathology of glioma has improved during the previous two decades, effective therapies are not yet available to treat these tumors. Previous studies have indicated that long non-coding RNAs (lncRNAs) have a close association with glioma, suggesting that lncRNAs may be potential targets for the development of novel treatments for glioma. The present review summarized the latest studies on the dysregulation of lncRNAs in glioma, and discussed their potential use in the diagnosis, prognosis and therapies of glioma. The emergence of lncRNAs has revealed an additional facet to glioma oncogenesis. An improved understanding of their functions is important to advance lncRNA-based diagnosis, prognosis and therapeutic interventions of glioma.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Wei Xiang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Shenjie Li
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Qi Hu
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Tao Peng
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Ligang Chen
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Yang Ming
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
9
|
Loiselle JJ, Sutherland LC. RBM10: Harmful or helpful-many factors to consider. J Cell Biochem 2018; 119:3809-3818. [PMID: 29274279 PMCID: PMC5901003 DOI: 10.1002/jcb.26644] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 12/20/2017] [Indexed: 11/25/2022]
Abstract
RBM10 is an RNA binding motif (RBM) protein expressed in most, if not all, human and animal cells. Interest in RBM10 is rapidly increasing and its clinical importance is highlighted by its identification as the causative agent of TARP syndrome, a developmental condition that significantly impacts affected children. RBM10's cellular functions are beginning to be explored, with initial studies demonstrating a tumor suppressor role. Very recently, however, contradictory results have emerged, suggesting a tumor promoter role for RBM10. In this review, we describe the current state of knowledge on RBM10, and address this dichotomy in RBM10 function. Furthermore, we discuss what may be regulating RBM10 function, particularly the importance of RBM10 alternative splicing, and the relationship between RBM10 and its paralogue, RBM5. As RBM10‐related work is gaining momentum, it is critical that the various aspects of RBM10 molecular biology revealed by recent studies be considered moving forward. It is only if these recent advances in RBM10 structure and function are considered that a clearer insight into RBM10 function, and the disease states with which RBM10 mutation is associated, will be gained.
Collapse
Affiliation(s)
- Julie J Loiselle
- Health Sciences North Research Institute (HSNRI), Sudbury, Ontario, Canada
| | | |
Collapse
|
10
|
Jackson TC, Kotermanski SE, Kochanek PM. Whole-transcriptome microarray analysis reveals regulation of Rab4 by RBM5 in neurons. Neuroscience 2017; 361:93-107. [PMID: 28818525 PMCID: PMC5605467 DOI: 10.1016/j.neuroscience.2017.08.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 08/04/2017] [Accepted: 08/06/2017] [Indexed: 12/27/2022]
Abstract
RNA binding motif 5 (RBM5) is a nuclear protein that modulates gene transcription and mRNA splicing in cancer cells. The brain is among the highest RBM5-expressing organ in the body but its mRNA target(s) or functions in the CNS have not been elucidated. Here we knocked down (KO) RBM5 in primary rat cortical neurons and analyzed total RNA extracts by gene microarray vs. neurons transduced with lentivirus to deliver control (non-targeting) shRNA. The mRNA levels of Sec23A (involved in ER-Golgi transport) and the small GTPase Rab4a (involved in endocytosis/protein trafficking) were increased in RBM5 KO neurons relative to controls. At the protein level, only Rab4a was significantly increased in RBM5 KO extracts. Also, elevated Rab4a levels in KO neurons were associated with decreased membrane levels of oligomeric serotonin transporters (SERT). Finally, RBM5 KO was associated with increased uptake of membrane-derived monomeric SERT. SIGNIFICANCE Rab4a is involved in the regulation of endocytosis and protein trafficking in cells. In the CNS it regulates diverse neurobiological functions including (but not limited to) trafficking of transmembrane proteins involved in neurotransmission (e.g. SERT), maintaining dendritic spine size, promoting axonal growth, and modulating cognition. Our findings suggest that RBM5 regulates Rab4a in rat neurons.
Collapse
Affiliation(s)
- Travis C Jackson
- University of Pittsburgh School of Medicine, Safar Center for Resuscitation Research, Children's Hospital of Pittsburgh of UPMC, John G. Rangos Research Center - 6th Floor, 4401 Penn Avenue, Pittsburgh, PA 15224, United States; University of Pittsburgh School of Medicine, Department of Critical Care Medicine, Scaife Hall, 3550 Terrace Street, United States.
| | - Shawn E Kotermanski
- University of Pittsburgh School of Medicine, Department of Pharmacology and Chemical Biology, Bridgeside Point Building 1, 100 Technology Drive, United States
| | - Patrick M Kochanek
- University of Pittsburgh School of Medicine, Safar Center for Resuscitation Research, Children's Hospital of Pittsburgh of UPMC, John G. Rangos Research Center - 6th Floor, 4401 Penn Avenue, Pittsburgh, PA 15224, United States; University of Pittsburgh School of Medicine, Department of Critical Care Medicine, Scaife Hall, 3550 Terrace Street, United States
| |
Collapse
|
11
|
Loiselle JJ, Roy JG, Sutherland LC. RBM5 reduces small cell lung cancer growth, increases cisplatin sensitivity and regulates key transformation-associated pathways. Heliyon 2016; 2:e00204. [PMID: 27957556 PMCID: PMC5133678 DOI: 10.1016/j.heliyon.2016.e00204] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/07/2016] [Accepted: 11/22/2016] [Indexed: 12/21/2022] Open
Abstract
Small cell lung cancer (SCLC) is the most aggressive type of lung cancer, with almost 95% of patients succumbing to the disease. Although RBM5, a tumor suppressor gene, is downregulated in the majority of lung cancers, its role in SCLC is unknown. Using the GLC20 SCLC cell line, which has a homozygous deletion encompassing the RBM5 gene locus, we established stable RBM5 expressing sublines and investigated the effects of RBM5 re-expression. Transcriptome and target identification studies determined that RBM5 directly regulates the cell cycle and apoptosis in SCLC cells, as well as significantly downregulates other important transformation-associated pathways such as angiogenesis and cell adhesion. RNA sequencing of paired non-tumor and tumor SCLC patient specimens showed decreased RBM5 expression in the tumors, and expression alterations in the majority of the same pathways that were altered in the GLC20 cells and sublines. Functional studies confirmed RBM5 expression slows SCLC cell line growth, and increases sensitivity to the chemotherapy drug cisplatin. Overall, our work demonstrates the importance of RBM5 expression to the non-transformed state of lung cells and the consequences of its deletion to SCLC development and progression.
Collapse
Affiliation(s)
- Julie J. Loiselle
- Biomolecular Sciences Program, Laurentian University, Sudbury, ON P3E 2C6, Canada
| | - Justin G. Roy
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON P3E 2C6, Canada
| | - Leslie C. Sutherland
- Biomolecular Sciences Program, Laurentian University, Sudbury, ON P3E 2C6, Canada
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON P3E 2C6, Canada
- Health Sciences North Research Institute (HSNRI), 41 Ramsey Lake Road, Sudbury, ON P3E 5J1, Canada
| |
Collapse
|
12
|
Di Cecilia S, Zhang F, Sancho A, Li S, Aguiló F, Sun Y, Rengasamy M, Zhang W, Del Vecchio L, Salvatore F, Walsh MJ. RBM5-AS1 Is Critical for Self-Renewal of Colon Cancer Stem-like Cells. Cancer Res 2016; 76:5615-5627. [PMID: 27520449 DOI: 10.1158/0008-5472.can-15-1824] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 07/11/2016] [Indexed: 01/05/2023]
Abstract
Cancer-initiating cells (CIC) undergo asymmetric growth patterns that increase phenotypic diversity and drive selection for chemotherapeutic resistance and tumor relapse. WNT signaling is a hallmark of colon CIC, often caused by APC mutations, which enable activation of β-catenin and MYC Accumulating evidence indicates that long noncoding RNAs (lncRNA) contribute to the stem-like character of colon cancer cells. In this study, we report enrichment of the lncRNA RBM5-AS1/LUST during sphere formation of colon CIC. Its silencing impaired WNT signaling, whereas its overexpression enforced WNT signaling, cell growth, and survival in serum-free media. RBM5-AS1 has been little characterized previously, and we determined it to be a nuclear-retained transcript that selectively interacted with β-catenin. Mechanistic investigations showed that silencing or overexpression of RBM5-AS1 caused a respective loss or retention of β-catenin from TCF4 complexes bound to the WNT target genes SGK1, YAP1, and MYC Our work suggests that RBM5-AS1 activity is critical for the functional enablement of colon cancer stem-like cells. Furthermore, it defines the mechanism of action of RBM5-AS1 in the WNT pathway via physical interactions with β-catenin, helping organize transcriptional complexes that sustain colon CIC function. Cancer Res; 76(19); 5615-27. ©2016 AACR.
Collapse
Affiliation(s)
- Serena Di Cecilia
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York. Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York. Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York. SEMM, European School of Molecular Medicine, Naples, Italy
| | - Fan Zhang
- Department of Medicine, Division of Nephrology, Bioinformatics Laboratory, Icahn School of Medicine at Mount Sinai, New York
| | - Ana Sancho
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York. Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York. Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York
| | - SiDe Li
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York
| | - Francesca Aguiló
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York. Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York. Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York
| | - Yifei Sun
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York. Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York. Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York
| | - Madhumitha Rengasamy
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York. Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York. Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York
| | - Weijia Zhang
- Department of Medicine, Division of Nephrology, Bioinformatics Laboratory, Icahn School of Medicine at Mount Sinai, New York
| | - Luigi Del Vecchio
- CEINGE-Biotecnologie avanzate, Università degli Studi di Napoli-Federico II, Naples, Italy
| | - Francesco Salvatore
- CEINGE-Biotecnologie avanzate, Università degli Studi di Napoli-Federico II, Naples, Italy
| | - Martin J Walsh
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York. Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York. Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York.
| |
Collapse
|
13
|
Ozuemba B, Masilamani TJ, Loiselle JJ, Koenderink B, Vanderbeck KA, Knee J, Larivière C, Sutherland LC. Co- and post-transcriptional regulation of Rbm5 and Rbm10 in mouse cells as evidenced by tissue-specific, developmental and disease-associated variation of splice variant and protein expression levels. Gene 2016; 580:26-36. [PMID: 26784654 DOI: 10.1016/j.gene.2015.12.070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 12/31/2015] [Indexed: 01/09/2023]
Abstract
BACKGROUND Expression and function of the two RNA binding proteins and regulators of alternative splicing, RBM5 and RBM10, have largely been studied in human tissue and cell lines. The objective of the study described herein was to examine their expression in mouse tissue, in order to lay the framework for comprehensive functional studies using mouse models. METHODS All RNA variants of Rbm5 and Rbm10 were examined in a range of normal primary mouse tissues. RNA and protein were examined in differentiating C2C12 myoblasts and in denervated and dystonin-deficient mouse skeletal muscle. RESULTS All Rbm5 and Rbm10 variants examined were expressed in all mouse tissues and cell lines. In general, Rbm5 and Rbm10 RNA expression was higher in brain than in skin. RNA expression levels were more varied between cardiac and skeletal muscle, depending on the splice variant: for instance, Rbm10v1 RNA was higher in skeletal than cardiac muscle, whereas Rbm10v3 RNA was higher in cardiac than skeletal muscle. In mouse brain, cardiac and skeletal muscle, RNA encoding an approximately 17kDa potential paralogue of a small human RBM10 isoform was detected, and the protein observed in myoblasts and myotubes. Expression of Rbm5 and Rbm10 RNA remained constant during C2C12 myogenesis, but protein levels significantly decreased. In two muscle disease models, neither Rbm10 nor Rbm5 showed significant transcriptional changes, although significant specific alternative splicing changes of Rbm5 pre-mRNA were observed. Increased RBM10 protein levels were observed following denervation. CONCLUSIONS The varied co-transcriptional and post-transcriptional regulation aspects of Rbm5 and Rbm10 expression associated with mouse tissues, myogenesis and muscle disease states suggest that a mouse model would be an interesting and useful model in which to study comprehensive functional aspects of RBM5 and RBM10.
Collapse
Affiliation(s)
| | - Twinkle J Masilamani
- Biomolecular Sciences Program, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON, P3E 2C6, Canada
| | - Julie J Loiselle
- Biomolecular Sciences Program, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON, P3E 2C6, Canada
| | - Benjamin Koenderink
- AMRIC, Health Sciences North, 41 Ramsey Lake Road, Sudbury, ON, P3E 5J1, Canada
| | - Kaitlin A Vanderbeck
- School of Human Kinetics, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON, P3E 2C6, Canada
| | - Jose Knee
- AMRIC, Health Sciences North, 41 Ramsey Lake Road, Sudbury, ON, P3E 5J1, Canada
| | - Céline Larivière
- Biomolecular Sciences Program, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON, P3E 2C6, Canada; School of Human Kinetics, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON, P3E 2C6, Canada
| | - Leslie C Sutherland
- Biomolecular Sciences Program, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON, P3E 2C6, Canada; AMRIC, Health Sciences North, 41 Ramsey Lake Road, Sudbury, ON, P3E 5J1, Canada; Division of Medical Sciences, Northern Ontario School of Medicine, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON, P3E 2C6, Canada; Department of Chemistry and Biochemistry, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON, P3E 2C6, Canada; Department of Medicine, Division of Medical Oncology, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
14
|
Loiselle JJ, Tessier SJ, Sutherland LC. Post-transcriptional regulation of Rbm5 expression in undifferentiated H9c2 myoblasts. In Vitro Cell Dev Biol Anim 2015; 52:327-336. [PMID: 26659391 PMCID: PMC4833810 DOI: 10.1007/s11626-015-9976-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 11/04/2015] [Indexed: 12/20/2022]
Abstract
We previously examined the expression of Rbm5 during myoblast differentiation and found significantly more protein in the early stages of skeletal myoblast differentiation than during the later stages. We decided to determine if this elevated level was necessary for differentiation. Our hypothesis was that if high levels of Rbm5 protein expression were necessary for the initiation of skeletal myoblast differentiation, then inhibition of expression would prevent differentiation. Our long-term objective is to inhibit Rbm5 expression and examine the effect on H9c2 differentiation. Towards this end, stable knockdown clones and transient knockdown populations were generated. Expression analyses in H9c2 myoblasts demonstrated significant Rbm5 messenger RNA (mRNA) inhibition but, surprisingly, no effect on RBM5 protein levels. Expression of the Rbm5 paralogue Rbm10 was examined in order to (a) ensure no off-target knockdown effect, and (b) investigate any possible compensatory effects. RBM10 protein levels were found to be elevated, in both the clonal and transiently transfected populations. These results suggest that myoblast RBM5 expression is regulated by a process that includes RNA sequestration and/or controlled translation, and that (a) RBM5 function is compensated for by RBM10, and/or (b) RBM5 regulates RBM10 expression. We have developed a model to describe our findings, and suggest further experiments for testing its validity. Since upregulation of Rbm10 might compensate for downregulated Rbm5, and consequently might mask any potential knockdown effect, it could lead to incorrect conclusions regarding the importance of Rbm5 for differentiation. It is therefore imperative to determine how both RBM5 and RBM10 protein expression is regulated.
Collapse
Affiliation(s)
- Julie J Loiselle
- Biomolecular Sciences Program, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON, P3E 2C6, Canada. .,AMRIC, Health Sciences North, 41 Ramsey Lake Road, Sudbury, ON, P3E 5J1, Canada.
| | - Sarah J Tessier
- Department of Biology, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON, P3E 2C6, Canada
| | - Leslie C Sutherland
- Biomolecular Sciences Program, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON, P3E 2C6, Canada.,AMRIC, Health Sciences North, 41 Ramsey Lake Road, Sudbury, ON, P3E 5J1, Canada.,Department of Chemistry and Biochemistry, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON, P3E 2C6, Canada.,Division of Medical Sciences, Northern Ontario School of Medicine, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON, P3E 2C6, Canada.,Department of Medicine, Division of Medical Oncology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
15
|
Exploration of Deregulated Long Non-Coding RNAs in Association with Hepatocarcinogenesis and Survival. Cancers (Basel) 2015; 7:1847-62. [PMID: 26378581 PMCID: PMC4586798 DOI: 10.3390/cancers7030865] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 09/01/2015] [Accepted: 09/02/2015] [Indexed: 12/20/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are larger than 200 nucleotides in length and pervasively expressed across the genome. An increasing number of studies indicate that lncRNA transcripts play integral regulatory roles in cellular growth, division, differentiation and apoptosis. Deregulated lncRNAs have been observed in a variety of human cancers, including hepatocellular carcinoma (HCC). We determined the expression profiles of 90 lncRNAs for 65 paired HCC tumor and adjacent non-tumor tissues, and 55 lncRNAs were expressed in over 90% of samples. Eight lncRNAs were significantly down-regulated in HCC tumor compared to non-tumor tissues (p < 0.05), but no lncRNA achieved statistical significance after Bonferroni correction for multiple comparisons. Within tumor tissues, carrying more aberrant lncRNAs (6–7) was associated with a borderline significant reduction in survival (HR = 8.5, 95% CI: 1.0–72.5). The predictive accuracy depicted by the AUC was 0.93 for HCC survival when using seven deregulated lncRNAs (likelihood ratio test p = 0.001), which was similar to that combining the seven lncRNAs with tumor size and treatment (AUC = 0.96, sensitivity = 87%, specificity = 87%). These data suggest the potential association of deregulated lncRNAs with hepatocarcinogenesis and HCC survival.
Collapse
|
16
|
Amaral PP, Dinger ME, Mattick JS. Non-coding RNAs in homeostasis, disease and stress responses: an evolutionary perspective. Brief Funct Genomics 2013; 12:254-78. [PMID: 23709461 DOI: 10.1093/bfgp/elt016] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cells and organisms are subject to challenges and perturbations in their environment and physiology in all stages of life. The molecular response to such changes, including insulting conditions such as pathogen infections, involves coordinated modulation of gene expression programmes and has not only homeostatic but also ecological and evolutionary importance. Although attention has been primarily focused on signalling pathways and protein networks, non-coding RNAs (ncRNAs), which comprise a significant output of the genomes of prokaryotes and especially eukaryotes, are increasingly implicated in the molecular mechanisms of these responses. Long and short ncRNAs not only regulate development and cell physiology, they are also involved in disease states, including cancers, in host-pathogen interactions, and in a variety of stress responses. Indeed, regulatory RNAs are part of genetically encoded response networks and also underpin epigenetic processes, which are emerging as key mechanisms of adaptation and transgenerational inheritance. Here we present the growing evidence that ncRNAs are intrinsically involved in cellular and organismal adaptation processes, in both robustness and protection to stresses, as well as in mechanisms generating evolutionary change.
Collapse
|
17
|
Loiselle JJ, Sutherland LC. Differential downregulation of Rbm5 and Rbm10 during skeletal and cardiac differentiation. In Vitro Cell Dev Biol Anim 2013; 50:331-9. [DOI: 10.1007/s11626-013-9708-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 10/11/2013] [Indexed: 12/30/2022]
|
18
|
Dave RK, Dinger ME, Andrew M, Askarian-Amiri M, Hume DA, Kellie S. Regulated expression of PTPRJ/CD148 and an antisense long noncoding RNA in macrophages by proinflammatory stimuli. PLoS One 2013; 8:e68306. [PMID: 23840844 PMCID: PMC3695918 DOI: 10.1371/journal.pone.0068306] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 05/28/2013] [Indexed: 12/28/2022] Open
Abstract
PTPRJ/CD148 is a tyrosine phosphatase that has tumour suppressor-like activity. Quantitative PCR of various cells and tissues revealed that it is preferentially expressed in macrophage-enriched tissues. Within lymphoid tissues immunohistochemistry revealed that PTPRJ/CD148 co-localised with F4/80, indicating that macrophages most strongly express the protein. Macrophages express the highest basal level of ptprj, and this is elevated further by treatment with LPS and other Toll-like receptor ligands. In contrast, CSF-1 treatment reduced basal and stimulated Ptprj expression in human and mouse cells, and interferon also repressed Ptprj expression. We identified a 1006 nucleotide long noncoding RNA species, Ptprj-as1 that is transcribed antisense to Ptprj. Ptprj-as1 was highly expressed in macrophage-enriched tissue and was transiently induced by Toll-like receptor ligands with a similar time course to Ptprj. Finally, putative transcription factor binding sites in the promoter region of Ptprj were identified.
Collapse
Affiliation(s)
- Richa K. Dave
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, Australia
- The University of Queensland, Cooperative Research Centre for Chronic Inflammatory Diseases (CRC-CID), Brisbane, Australia
- The University of Queensland, Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, Australia
| | - Marcel E. Dinger
- The University of Queensland Diamantina Institute, Brisbane, Australia
- Garvan Institute of Medical Research, Darlinghurst, Australia
| | - Megan Andrew
- The University of Queensland, Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, Australia
| | - Marjan Askarian-Amiri
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, Australia
| | - David A. Hume
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, Australia
- The University of Queensland, Cooperative Research Centre for Chronic Inflammatory Diseases (CRC-CID), Brisbane, Australia
- The Roslin Institute, University of Edinburgh, Roslin, Scotland, United Kingdom
| | - Stuart Kellie
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, Australia
- The University of Queensland, Cooperative Research Centre for Chronic Inflammatory Diseases (CRC-CID), Brisbane, Australia
- The University of Queensland, Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, Australia
| |
Collapse
|
19
|
Abstract
Long non-coding RNAs (lncRNAs) have been found to perform various functions in a wide variety of important biological processes. To make easier interpretation of lncRNA functionality and conduct deep mining on these transcribed sequences, it is convenient to classify lncRNAs into different groups. Here, we summarize classification methods of lncRNAs according to their four major features, namely, genomic location and context, effect exerted on DNA sequences, mechanism of functioning and their targeting mechanism. In combination with the presently available function annotations, we explore potential relationships between different classification categories, and generalize and compare biological features of different lncRNAs within each category. Finally, we present our view on potential further studies. We believe that the classifications of lncRNAs as indicated above are of fundamental importance for lncRNA studies, helpful for further investigation of specific lncRNAs, for formulation of new hypothesis based on different features of lncRNA and for exploration of the underlying lncRNA functional mechanisms.
Collapse
Affiliation(s)
- Lina Ma
- CAS Key Laboratory of Genome Sciences and Information; Beijing Institute of Genomics; Chinese Academy of Sciences; Beijing, China
| | - Vladimir B. Bajic
- King Abdullah University of Science and Technology (KAUST); Computational Bioscience Research Center; Computer, Electrical and Mathematical Sciences and Engineering Division; Thuwal, Kingdom of Saudi Arabia
| | - Zhang Zhang
- CAS Key Laboratory of Genome Sciences and Information; Beijing Institute of Genomics; Chinese Academy of Sciences; Beijing, China
- Correspondence to: Zhang Zhang,
| |
Collapse
|
20
|
Gutschner T, Diederichs S. The hallmarks of cancer: a long non-coding RNA point of view. RNA Biol 2012. [PMID: 22664915 DOI: 10.4161/rna.20481395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
With the advent of next generation sequencing methods and progress in transcriptome analysis, it became obvious that the human genome contains much more than just protein-coding genes. In fact, up to 70% of our genome is transcribed into RNA that does not serve as templates for proteins. In this review, we focus on the emerging roles of these long non-coding RNAs (lncRNAs) in the field of tumor biology. Long ncRNAs were found to be deregulated in several human cancers and show tissue-specific expression. Functional studies revealed a broad spectrum of mechanisms applied by lncRNAs such as HOTAIR, MALAT1, ANRIL or lincRNA-p21 to fulfill their functions. Here, we link the cellular processes influenced by long ncRNAs to the hallmarks of cancer and therefore provide an ncRNA point-of-view on tumor biology. This should stimulate new research directions and therapeutic options considering long ncRNAs as novel prognostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Tony Gutschner
- Helmholtz-University-Group "Molecular RNA Biology & Cancer", German Cancer Research Center DKFZ, Heidelberg, Germany
| | | |
Collapse
|
21
|
Abstract
With the advent of next generation sequencing methods and progress in transcriptome analysis, it became obvious that the human genome contains much more than just protein-coding genes. In fact, up to 70% of our genome is transcribed into RNA that does not serve as templates for proteins. In this review, we focus on the emerging roles of these long non-coding RNAs (lncRNAs) in the field of tumor biology. Long ncRNAs were found to be deregulated in several human cancers and show tissue-specific expression. Functional studies revealed a broad spectrum of mechanisms applied by lncRNAs such as HOTAIR, MALAT1, ANRIL or lincRNA-p21 to fulfill their functions. Here, we link the cellular processes influenced by long ncRNAs to the hallmarks of cancer and therefore provide an ncRNA point-of-view on tumor biology. This should stimulate new research directions and therapeutic options considering long ncRNAs as novel prognostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Tony Gutschner
- Helmholtz-University-Group "Molecular RNA Biology & Cancer", German Cancer Research Center DKFZ, Heidelberg, Germany
| | | |
Collapse
|
22
|
Abstract
Tiling array and novel sequencing technologies have made available the transcription profile of the entire human genome. However, the extent of transcription and the function of genetic elements that occur outside of protein-coding genes, particularly those involved in disease, are still a matter of debate. In this review, we focus on long non-coding RNAs (lncRNAs) that are involved in cancer. We define lncRNAs and present a cancer-oriented list of lncRNAs, list some tools (for example, public databases) that classify lncRNAs or that scan genome spans of interest to find whether known lncRNAs reside there, and describe some of the functions of lncRNAs and the possible genetic mechanisms that underlie lncRNA expression changes in cancer, as well as current and potential future applications of lncRNA research in the treatment of cancer.
Collapse
|
23
|
Li Y, Wang Z, Chang H, Wang Y, Guo M. Expression of CT-wpr, screened by cDNA-AFLP approach, associated with hydroxysafflor yellow A in Carthamus tinctorius L. BIOCHEM SYST ECOL 2010. [DOI: 10.1016/j.bse.2010.10.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
|
25
|
Teng G, Papavasiliou FN. Long noncoding RNAs: implications for antigen receptor diversification. Adv Immunol 2009; 104:25-50. [PMID: 20457115 DOI: 10.1016/s0065-2776(08)04002-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Noncoding RNAs (ncRNAs), both small and large, have recently risen to prominence as surprisingly versatile regulators of gene expression. In fact, eukaryotic transcriptomes are rife with RNAs that do not code for protein, though the majority of these species remains wholly uncharacterized. The functional diversity among the mere handful of validated ncRNAs hints at the vast regulatory potential of these silent biomolecules. Though the act of noncoding transcription and the resultant ncRNAs do not directly produce proteins, they represent powerful means of gene control. Here we survey the accumulating literature on the myriad functions of long ncRNAs and emphasize one curious case of noncoding transcription at antigen receptor loci in lymphocytes.
Collapse
Affiliation(s)
- Grace Teng
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|