1
|
Jilberto F, Zbawicka M, Wenne R, Larraín MA, Araneda C. SNP genotyping revealed a hybrid zone between Mytilus chilensis and M. platensis in southern South America (the Strait of Magellan, Isla Grande de Tierra del Fuego and the Falkland Islands). Mol Ecol 2024; 33:e17211. [PMID: 37996993 DOI: 10.1111/mec.17211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023]
Abstract
Hybrid zones among mussel species have been extensively studied in the northern hemisphere. In South America, it has only recently become possible to study the natural hybrid zones, due to the clarification of the taxonomy of native mussels of the Mytilus genus. Analysing 54 SNP markers, we show the genetic species composition and admixture in the hybrid zone between M. chilensis and M. platensis in the southern end of South America. Bayesian, non-Bayesian clustering and re-assignment algorithms showed that the natural hybrid zone between M. chilensis and M. platensis in the Strait of Magellan, Isla Grande de Tierra del Fuego and the Falkland Islands shows clinal architecture. The hybrid zone can be divided into three different areas: the first one is on the Atlantic coast where only pure M. platensis and hybrid were found. In the second one, inside the Strait of Magellan, pure individuals of both species and mussels with variable degrees of hybridisation coexist. In the last area at the Strait in front of Punta Arenas City, fjords on the Isla Grande de Tierra del Fuego, and at the Beagle Channel, only M. chilensis and a low number of hybrids were found. According to the proportion of hybrids, bays with protected conditions away from strong currents would give better conditions for hybridisation. We do not find evidence of any other mussel species such as M. edulis, M. galloprovincialis, M. planulatus or M. trossulus in the zone.
Collapse
Affiliation(s)
- Felipe Jilberto
- Food Quality Research Center, Universidad de Chile, Santiago, Chile
| | | | - Roman Wenne
- Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
| | - María Angélica Larraín
- Food Quality Research Center, Universidad de Chile, Santiago, Chile
- Departamento de Ciencia de los Alimentos y Tecnología Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Cristián Araneda
- Food Quality Research Center, Universidad de Chile, Santiago, Chile
- Departamento de Producción Animal, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago, Chile
| |
Collapse
|
2
|
Skazina M, Ponomartsev N, Maiorova M, Khaitov V, Marchenko J, Lentsman N, Odintsova N, Strelkov P. Genetic features of bivalve transmissible neoplasia in blue mussels from the Kola Bay (Barents Sea) suggest a recent trans-Arctic migration of the cancer lineages. Mol Ecol 2023; 32:5724-5741. [PMID: 37795906 DOI: 10.1111/mec.17157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/06/2023]
Abstract
Ecology and biogeography of bivalve transmissible neoplasia (BTN) are underexplored due to its recent discovery and a challenging diagnostics. Blue mussels harbour two evolutionary lineages of BTN, MtrBTN1 and MtrBTN2, both derived from Mytilus trossulus. MtrBTN1 has been found only in M. trossulus from North Pacific. MtrBTN2 parasitizes different Mytilus spp. worldwide. BTN in M. trossulus in the Atlantic sector has never been studied. We looked for BTN in mussels from the Barents Sea using flow cytometry of cells, qPCR with primers specific to cancer-associated alleles and sequencing of mtDNA and nuclear loci. Both MtrBTN1 and MtrBTN2 were present in our material, though their prevalence was low (~0.4%). All cancers parasitized M. trossulus except one, MtrBTN1, which was found in a hybrid between M. trossulus and M. edulis. The mtDNA haplotypes found in both lineages were nearly identical to those known from the Northwest Pacific but not from elsewhere. Our results suggest that these two lineages may have arrived in the Barents Sea in recent decades with the maritime transport along the Northern Sea Route. A young evolutionary age of MtrBTN1 seems to indicate that it is an emerging disease in the process of niche expansion. Comparing the new and the published sequence data on tumour suppressor p53, we proved that the prevalence of BTN in mussels can reach epizootic levels. The finding of diverse recombinants between paternally and maternally inherited mtDNAs in somatic tissues of M. trossulus was an unexpected result of our study.
Collapse
Affiliation(s)
- Maria Skazina
- St. Petersburg State University, St. Petersburg, Russia
| | | | - Mariia Maiorova
- National Scientific Center of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Vadim Khaitov
- St. Petersburg State University, St. Petersburg, Russia
- Kandalaksha State Nature Reserve, Kandalaksha, Russia
| | | | | | - Nelly Odintsova
- National Scientific Center of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Petr Strelkov
- St. Petersburg State University, St. Petersburg, Russia
- Laboratory of Monitoring and Conservation of Natural Arctic Ecosystems, Murmansk Arctic State University, Murmansk, Russia
| |
Collapse
|
3
|
Wenne R. Microsatellites as Molecular Markers with Applications in Exploitation and Conservation of Aquatic Animal Populations. Genes (Basel) 2023; 14:genes14040808. [PMID: 37107566 PMCID: PMC10138012 DOI: 10.3390/genes14040808] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/28/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
A large number of species and taxa has been studied for genetic polymorphism. Microsatellites have been known as hypervariable neutral molecular markers with the highest resolution power in comparison with any other markers. However, the discovery of a new type of molecular marker—single nucleotide polymorphism (SNP) has put the existing applications of microsatellites to the test. To ensure good resolution power in studies of populations and individuals, a number of microsatellite loci from 14 to 20 was often used, which corresponds to about 200 independent alleles. Recently, these numbers have tended to be increased by the application of genomic sequencing of expressed sequence tags (ESTs), and the choice of the most informative loci for genotyping depends on the aims of research. Examples of successful applications of microsatellite molecular markers in aquaculture, fisheries, and conservation genetics in comparison with SNPs have been summarized in this review. Microsatellites can be considered superior markers in such topics as kinship and parentage analysis in cultured and natural populations, the assessment of gynogenesis, androgenesis and ploidization. Microsatellites can be coupled with SNPs for mapping QTL. Microsatellites will continue to be used in research on genetic diversity in cultured stocks, and also in natural populations as an economically advantageous genotyping technique.
Collapse
Affiliation(s)
- Roman Wenne
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
| |
Collapse
|
4
|
Li H, Yu R, Ma P, Li C. Complete mitochondrial genome of Cultellus attenuatus and its phylogenetic implications. Mol Biol Rep 2022; 49:8163-8168. [PMID: 35716283 DOI: 10.1007/s11033-022-07276-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND The mitochondrial genomes of three species in Solenoidea of Heterodonta have been reported, but the mitochondrial genes and phylogenetic relationships of Cultellus attenuatus, which also belongs to this superfamily and has high economic value, are unknown. METHODS AND RESULTS The complete mitochondrial genome of C. attenuatus was sequenced and compared with mitogenomes of seven species of Heterodonta bivalve mollusks in GenBank. The mitochondrial genome of C. attenuatus has a length of 16,888 bp and contains 36 genes, including 12 protein-coding genes, 2 ribosomal RNAs and 22 transfer RNAs. In comparison with C. attenuates, the mitochondrial genes of Sinonovacula constricta from the same family were not rearranged, but those of six other species from different families were rearranged to different degrees. The location, size, and composition of the largest noncoding regions in eight species suggested a closer relationship between C. attenuatus and S. constricta. The phylogenetic analysis showed that C. attenuatus and S. constricta belonging to Cultellidae cluster into one branch and that two species of Solenidae (Solen grandis and Solen strictus) clustered as their sister taxa. CONCLUSIONS Overall, we used mitochondrial genome data to demonstrate that C. attenuatus and S. constricta exhibit the closest relationship in Heterodonta. These data and analyses provide new insights into the phylogenetic relationships in Heterodonta.
Collapse
Affiliation(s)
- Haikun Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, 266003, Qingdao, China
| | - Ruihai Yu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, 266003, Qingdao, China.
| | - Peizhen Ma
- Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, 266071, Qingdao, China
| | - Chunhua Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, 266003, Qingdao, China
| |
Collapse
|
5
|
Couton M, Lévêque L, Daguin-Thiébaut C, Comtet T, Viard F. Water eDNA metabarcoding is effective in detecting non-native species in marinas, but detection errors still hinder its use for passive monitoring. BIOFOULING 2022; 38:367-383. [PMID: 35575060 DOI: 10.1080/08927014.2022.2075739] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/21/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Marinas are high-priority targets for marine non-indigenous species (NIS), where they compose a large portion of the biofouling communities. The practicality of water samples collection makes environmental DNA (eDNA) metabarcoding an interesting tool for routine NIS surveys. Here the effectiveness of water-eDNA-metabarcoding to identify biofouling NIS, in 10 marinas from western France, was examined. Morphological identification of specimens collected in quadrats brought out 18 sessile benthic NIS beneath floating pontoons. Water-eDNA-metabarcoding detected two thirds of them, failing to detect important NIS. However, sampling and bioinformatics filtering steps can be optimized to identify more species. In addition, this method allowed the detection of additional NIS from neighboring micro-habitats. Caution should, however, be taken when reporting putative novel NIS, because of errors in species assignment. This work highlights that water-eDNA-metabarcoding is effective for active (targeted) NIS surveys and could be significantly improved for its further use in marine NIS passive surveys.
Collapse
Affiliation(s)
- Marjorie Couton
- Sorbonne Université, CNRS, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, Roscoff, France
| | - Laurent Lévêque
- Sorbonne Université, CNRS, FR 2424, Station Biologique de Roscoff, Place Georges Teissier, Roscoff, France
| | - Claire Daguin-Thiébaut
- Sorbonne Université, CNRS, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, Roscoff, France
| | - Thierry Comtet
- Sorbonne Université, CNRS, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, Roscoff, France
| | - Frédérique Viard
- Sorbonne Université, CNRS, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, Roscoff, France
- ISEM, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| |
Collapse
|
6
|
Maeda GP, Iannello M, McConie HJ, Ghiselli F, Havird JC. Relaxed selection on male mitochondrial genes in DUI bivalves eases the need for mitonuclear coevolution. J Evol Biol 2021; 34:1722-1736. [PMID: 34533872 DOI: 10.1111/jeb.13931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/21/2021] [Accepted: 09/05/2021] [Indexed: 12/31/2022]
Abstract
Mitonuclear coevolution is an important prerequisite for efficient energy production in eukaryotes. However, many bivalve taxa experience doubly uniparental inheritance (DUI) and have sex-specific mitochondrial (mt) genomes, providing a challenge for mitonuclear coevolution. We examined possible mechanisms to reconcile mitonuclear coevolution with DUI. No nuclear-encoded, sex-specific OXPHOS paralogs were found in the DUI clam Ruditapes philippinarum, refuting OXPHOS paralogy as a solution in this species. It is also unlikely that mt changes causing disruption of nuclear interactions are strongly selected against because sex-specific mt-residues or those under positive selection in M mt genes were not depleted for contacting nuclear-encoded residues. However, M genomes showed consistently higher dN /dS ratios compared to putatively ancestral F genomes in all mt OXPHOS genes and across all DUI species. Further analyses indicated that this was consistently due to relaxed, not positive selection on M vs. F mt OXPHOS genes. Similarly, selection was relaxed on the F genome of DUI species compared to species with strict maternal inheritance. Coupled with recent physiological and molecular evolution studies, we suggest that relaxed selection on M mt function limits the need to maintain mitonuclear interactions in M genomes compared to F genomes. We discuss our findings with regard to OXPHOS function and the origin of DUI.
Collapse
Affiliation(s)
- Gerald P Maeda
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Mariangela Iannello
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Hunter J McConie
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Fabrizio Ghiselli
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Justin C Havird
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
7
|
Michalek K, Vendrami DLJ, Bekaert M, Green DH, Last KS, Telesca L, Wilding TA, Hoffman JI. Mytilus trossulus introgression and consequences for shell traits in longline cultivated mussels. Evol Appl 2021; 14:1830-1843. [PMID: 34295367 PMCID: PMC8288009 DOI: 10.1111/eva.13245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/30/2021] [Accepted: 04/14/2021] [Indexed: 01/13/2023] Open
Abstract
Mussels belonging to the Mytilus species complex (M. edulis, ME; M. galloprovincialis, MG; and M. trossulus, MT) often occur in sympatry, facilitating introgressive hybridization. This may be further promoted by mussel aquaculture practices, with MT introgression often resulting in commercially unfavourable traits such as low meat yield and weak shells. To investigate the relationship between genotype and shell phenotype, genetic and morphological variability was quantified across depth (1 m to 7 m) along a cultivation rope at a mussel farm on the West coast of Scotland. A single nuclear marker (Me15/16) and a novel panel of 33 MT-diagnostic single nucleotide polymorphisms were used to evaluate stock structure and the extent of MT introgression across depth. Variation in shell strength, determined as the maximum compression force for shell puncture, and shell shape using geometric morphometric analysis were evaluated in relation to cultivation depth and the genetic profiles of the mussels. Overall, ME was the dominant genotype across depth, followed by ME × MG hybrids and smaller quantities of ME × MT hybrids and pure MT individuals. In parallel, we identified multiple individuals that were either predominantly homozygous or heterozygous for MT-diagnostic alleles, likely representing pure MT and first-generation ME × MT hybrids, respectively. Both the proportion of individuals carrying MT alleles and MT allele frequency declined with depth. Furthermore, MT-introgressed individuals had significantly weaker and more elongate shells than nonintrogressed individuals. This study provides detailed insights into stock structure along a cultivation rope and suggests that practical methods to assess shell strength and shape of cultivated mussels may facilitate the rapid identification of MT, limiting the impact of this commercially damaging species.
Collapse
Affiliation(s)
| | | | - Michaël Bekaert
- Institute of AquacultureFaculty of Natural SciencesUniversity of StirlingStirlingUK
| | | | - Kim S. Last
- The Scottish Association for Marine ScienceObanUK
| | - Luca Telesca
- Department of Earth SciencesUniversity of CambridgeCambridgeUK
- British Antarctic SurveyCambridgeUK
- Present address:
Lamont‐Doherty Earth Observatory of Columbia UniversityPalisadesNYUSA
| | | | - Joseph I. Hoffman
- Department of Animal BehaviourUniversity of BielefeldBielefeldGermany
- British Antarctic SurveyCambridgeUK
| |
Collapse
|
8
|
Johannesson K, Le Moan A, Perini S, André C. A Darwinian Laboratory of Multiple Contact Zones. Trends Ecol Evol 2020; 35:1021-1036. [DOI: 10.1016/j.tree.2020.07.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 07/25/2020] [Accepted: 07/27/2020] [Indexed: 12/11/2022]
|
9
|
Vendrami DLJ, De Noia M, Telesca L, Brodte E, Hoffman JI. Genome-wide insights into introgression and its consequences for genome-wide heterozygosity in the Mytilus species complex across Europe. Evol Appl 2020; 13:2130-2142. [PMID: 32908609 PMCID: PMC7463347 DOI: 10.1111/eva.12974] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/24/2020] [Indexed: 11/26/2022] Open
Abstract
The three mussel species comprising the Mytilus complex are widespread across Europe and readily hybridize when they occur in sympatry, resulting in a mosaic of populations with varying genomic backgrounds. Two of these species, M. edulis and M. galloprovincialis, are extensively cultivated across Europe, with annual production exceeding 230,000 tonnes. The third species, M. trossulus, is considered commercially damaging as hybridization with this species results in weaker shells and poor meat quality. We therefore used restriction site associated DNA sequencing to generate high-resolution insights into the structure of the Mytilus complex across Europe and to resolve patterns of introgression. Inferred species distributions were concordant with the results of previous studies based on smaller numbers of genetic markers, with M. edulis and M. galloprovincialis predominating in northern and southern Europe respectively, while introgression between these species was most pronounced in northern France and the Shetland Islands. We also detected traces of M. trossulus ancestry in several northern European populations, especially around the Baltic and in northern Scotland. Finally, genome-wide heterozygosity, whether quantified at the population or individual level, was lowest in M. edulis, intermediate in M. galloprovincialis, and highest in M. trossulus, while introgression was positively associated with heterozygosity in M. edulis but negatively associated with heterozygosity in M. galloprovincialis. Our study will help to inform mussel aquaculture by providing baseline information on the genomic backgrounds of different Mytilus populations across Europe and by elucidating the effects of introgression on genome-wide heterozygosity, which is known to influence commercially important traits such as growth, viability, and fecundity in mussels.
Collapse
Affiliation(s)
| | - Michele De Noia
- Department of Animal BehaviorUniversity of BielefeldBielefeldGermany
- Institute of Biodiversity, Animal Health & Comparative MedicineCollege of Medical Veterinary & Life SciencesUniversity of GlasgowGlasgowUK
| | - Luca Telesca
- Department of Earth SciencesUniversity of CambridgeCambridgeUK
- British Antarctic Survey, High CrossCambridgeUK
| | | | - Joseph I. Hoffman
- Department of Animal BehaviorUniversity of BielefeldBielefeldGermany
- British Antarctic Survey, High CrossCambridgeUK
| |
Collapse
|
10
|
Soroka M. Doubly uniparental inheritance of mitochondrial DNA in freshwater mussels: History and status of the European species. J ZOOL SYST EVOL RES 2020. [DOI: 10.1111/jzs.12381] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Wenne R, Zbawicka M, Bach L, Strelkov P, Gantsevich M, Kukliński P, Kijewski T, McDonald JH, Sundsaasen KK, Árnyasi M, Lien S, Kaasik A, Herkül K, Kotta J. Trans-Atlantic Distribution and Introgression as Inferred from Single Nucleotide Polymorphism: Mussels Mytilus and Environmental Factors. Genes (Basel) 2020; 11:genes11050530. [PMID: 32397617 PMCID: PMC7288462 DOI: 10.3390/genes11050530] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/30/2020] [Accepted: 05/02/2020] [Indexed: 12/11/2022] Open
Abstract
Large-scale climate changes influence the geographic distribution of biodiversity. Many taxa have been reported to extend or reduce their geographic range, move poleward or displace other species. However, for closely related species that can hybridize in the natural environment, displacement is not the only effect of changes of environmental variables. Another option is subtler, hidden expansion, which can be found using genetic methods only. The marine blue mussels Mytilus are known to change their geographic distribution despite being sessile animals. In addition to natural dissemination at larval phase—enhanced by intentional or accidental introductions and rafting—they can spread through hybridization and introgression with local congeners, which can create mixed populations sustaining in environmental conditions that are marginal for pure taxa. The Mytilus species have a wide distribution in coastal regions of the Northern and Southern Hemisphere. In this study, we investigated the inter-regional genetic differentiation of the Mytilus species complex at 53 locations in the North Atlantic and adjacent Arctic waters and linked this genetic variability to key local environmental drivers. Of seventy-nine candidate single nucleotide polymorphisms (SNPs), all samples were successfully genotyped with a subset of 54 SNPs. There was a clear interregional separation of Mytilus species. However, all three Mytilus species hybridized in the contact area and created hybrid zones with mixed populations. Boosted regression trees (BRT) models showed that inter-regional variability was important in many allele models but did not prevail over variability in local environmental factors. Local environmental variables described over 40% of variability in about 30% of the allele frequencies of Mytilus spp. For the 30% of alleles, variability in their frequencies was only weakly coupled with local environmental conditions. For most studied alleles the linkages between environmental drivers and the genetic variability of Mytilus spp. were random in respect to “coding” and “non-coding” regions. An analysis of the subset of data involving functional genes only showed that two SNPs at Hsp70 and ATPase genes correlated with environmental variables. Total predictive ability of the highest performing models (r2 between 0.550 and 0.801) were for alleles that discriminated most effectively M. trossulus from M. edulis and M. galloprovincialis, whereas the best performing allele model (BM101A) did the best at discriminating M. galloprovincialis from M. edulis and M. trossulus. Among the local environmental variables, salinity, water temperature, ice cover and chlorophyll a concentration were by far the greatest predictors, but their predictive performance varied among different allele models. In most cases changes in the allele frequencies along these environmental gradients were abrupt and occurred at a very narrow range of environmental variables. In general, regions of change in allele frequencies for M. trossulus occurred at 8–11 psu, 0–10 °C, 60%–70% of ice cover and 0–2 mg m−3 of chlorophyll a, M. edulis at 8–11 and 30–35 psu, 10–14 °C and 60%–70% of ice cover and for M. galloprovincialis at 30–35 psu, 14–20 °C.
Collapse
Affiliation(s)
- Roman Wenne
- Institute of Oceanology, Polish Academy of Sciences, 81-712 Sopot, Poland; (M.Z.); (P.K.); (T.K.)
- Correspondence: ; Tel.: +48-58-7311763
| | - Małgorzata Zbawicka
- Institute of Oceanology, Polish Academy of Sciences, 81-712 Sopot, Poland; (M.Z.); (P.K.); (T.K.)
| | - Lis Bach
- Arctic Research Centre, Department of Bioscience, Aarhus University, 4000 Roskilde, Denmark;
| | - Petr Strelkov
- Department of Ichthyology and Hydrobiology, St. Petersburg State University, 199034 St. Petersburg, Russia;
| | - Mikhail Gantsevich
- Department of Invertebrate Zoology, Faculty of Biology, Moscow MV Lomonosov State University, 119234 Moscow, Russia;
| | - Piotr Kukliński
- Institute of Oceanology, Polish Academy of Sciences, 81-712 Sopot, Poland; (M.Z.); (P.K.); (T.K.)
| | - Tomasz Kijewski
- Institute of Oceanology, Polish Academy of Sciences, 81-712 Sopot, Poland; (M.Z.); (P.K.); (T.K.)
| | - John H. McDonald
- Biology Department, Western Washington University, Bellingham, WA 98225, USA;
| | - Kristil Kindem Sundsaasen
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, 1432 Ås, Norway; (K.K.S.); (M.Á.); (S.L.)
| | - Mariann Árnyasi
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, 1432 Ås, Norway; (K.K.S.); (M.Á.); (S.L.)
| | - Sigbjørn Lien
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, 1432 Ås, Norway; (K.K.S.); (M.Á.); (S.L.)
| | - Ants Kaasik
- Estonian Marine Institute, University of Tartu, 12619 Tallinn, Estonia; (A.K.); (K.H.); (J.K.)
| | - Kristjan Herkül
- Estonian Marine Institute, University of Tartu, 12619 Tallinn, Estonia; (A.K.); (K.H.); (J.K.)
| | - Jonne Kotta
- Estonian Marine Institute, University of Tartu, 12619 Tallinn, Estonia; (A.K.); (K.H.); (J.K.)
| |
Collapse
|
12
|
Passamonti M, Plazzi F. Doubly Uniparental Inheritance and beyond: The contribution of the Manila clamRuditapes philippinarum. J ZOOL SYST EVOL RES 2020. [DOI: 10.1111/jzs.12371] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Marco Passamonti
- Department of Biological, Geological, and Environmental Sciences University of Bologna Bologna Italy
| | - Federico Plazzi
- Department of Biological, Geological, and Environmental Sciences University of Bologna Bologna Italy
| |
Collapse
|
13
|
Larraín MA, González P, Pérez C, Araneda C. Comparison between single and multi-locus approaches for specimen identification in Mytilus mussels. Sci Rep 2019; 9:19714. [PMID: 31873129 PMCID: PMC6928075 DOI: 10.1038/s41598-019-55855-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/30/2019] [Indexed: 01/19/2023] Open
Abstract
Mytilus mussels have been the object of much research given their sentinel role in coastal ecosystems and significant value as an aquaculture resource appreciated for both, its flavour and nutritional content. Some of the most-studied Mytilus species are M. edulis, M. galloprovincialis, M. chilensis and M. trossulus. As species identification based on morphological characteristics of Mytilus specimens is difficult, molecular markers are often used. Single-locus markers can give conflicting results when used independently; not all markers differentiate among all species, and the markers target genomic regions with different evolutionary histories. We evaluated the concordance between the PCR-RFLP markers most commonly-used for species identification in mussels within the Mytilus genus (Me15-16, ITS, mac-1, 16S rRNA and COI) when used alone (mono-locus approach) or together (multi-locus approach). In this study, multi-locus strategy outperformed the mono-locus methods, clearly identifying all four species and also showed similar specimen identification performance than a 49 SNPs panel. We hope that these findings will contribute to a better understanding of DNA marker-based analysis of Mytilus taxa. These results support the use of a multi-locus approach when studying this important marine resource, including research on food quality and safety, sustainable production and conservation.
Collapse
Affiliation(s)
- María Angélica Larraín
- Food Quality Research Center, Universidad de Chile, Santiago, Chile.
- Departamento de Ciencia de los Alimentos y Tecnología Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile.
| | - Pía González
- Food Quality Research Center, Universidad de Chile, Santiago, Chile
- Programa de Magister en Alimentos. Mención Gestión, Calidad e Inocuidad de los Alimentos. Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Claudio Pérez
- Laboratorio de Genética y Biotecnología en Acuicultura, Departamento de Producción Animal, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago, Chile
| | - Cristián Araneda
- Food Quality Research Center, Universidad de Chile, Santiago, Chile
- Laboratorio de Genética y Biotecnología en Acuicultura, Departamento de Producción Animal, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago, Chile
| |
Collapse
|
14
|
Chacón GM, Arias‐Pérez A, Freire R, Martínez L, Nóvoa S, Naveira H, Insua A. Evidence of doubly uniparental inheritance of the mitochondrial
DNA
in
Polititapes rhomboides
(Bivalvia, Veneridae): Evolutionary and population genetic analysis of F and M mitotypes. J ZOOL SYST EVOL RES 2019. [DOI: 10.1111/jzs.12267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Ginna M. Chacón
- Departamento de Bioloxía‐Facultade de Ciencias and Centro de Investigacións Científicas Avanzadas (CICA)Universidade da Coruña A Coruña Spain
| | - Alberto Arias‐Pérez
- Departamento de Bioloxía‐Facultade de Ciencias and Centro de Investigacións Científicas Avanzadas (CICA)Universidade da Coruña A Coruña Spain
| | - Ruth Freire
- Departamento de Bioloxía‐Facultade de Ciencias and Centro de Investigacións Científicas Avanzadas (CICA)Universidade da Coruña A Coruña Spain
| | - Luisa Martínez
- Departamento de Bioloxía‐Facultade de Ciencias and Centro de Investigacións Científicas Avanzadas (CICA)Universidade da Coruña A Coruña Spain
| | - Susana Nóvoa
- Centro de Cultivos Marinos de Ribadeo‐CIMAXunta de Galicia Ribadeo (Lugo) Spain
| | - Horacio Naveira
- Departamento de Bioloxía‐Facultade de Ciencias and Centro de Investigacións Científicas Avanzadas (CICA)Universidade da Coruña A Coruña Spain
| | - Ana Insua
- Departamento de Bioloxía‐Facultade de Ciencias and Centro de Investigacións Científicas Avanzadas (CICA)Universidade da Coruña A Coruña Spain
| |
Collapse
|
15
|
Kartavtsev YP, Sharina SN, Chichvarkhin AY, Chichvarkhina OV, Masalkova NA, Lutaenko KA, Oliveira C. Genetic Divergence of Mussels (Mollusca, Mytilidae) Based on the 28S rRNA, 18S rRNA, and H3 Nuclear Gene Sequences. RUSS J GENET+ 2018. [DOI: 10.1134/s1022795418060078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Śmietanka B, Burzyński A. Disruption of doubly uniparental inheritance of mitochondrial DNA associated with hybridization area of European Mytilus edulis and Mytilus trossulus in Norway. MARINE BIOLOGY 2017; 164:209. [PMID: 29056761 PMCID: PMC5630648 DOI: 10.1007/s00227-017-3235-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 09/11/2017] [Indexed: 06/07/2023]
Abstract
Doubly uniparental inheritance of mitochondria (DUI) is best known in the blue mussel Mytilus. Under this model, two types of mitochondrial DNA exist: female type (F), transmitted from females to offspring of both genders, and male type (M), transmitted exclusively from males to sons. The mitogenomes are usually highly divergent, but an occasional replacement of a typical M genome by a particular F genome has been postulated to explain reduction of this divergence. Disruption of the DUI model has been reported in hybridization areas. Here, we present a new case of DUI disruption in a hybrid M. trossulus/M. edulis population from the North Sea (Norway). No M haplotypes derived from M. trossulus were identified in this population. Typical M haplotypes derived from M. edulis (ME) were rare. Two F-type haplogroups were found: one derived from M. edulis (FE) and the second derived from M. trossulus (FT). Many haplotypes from the FT group were recombinants, with the male CR sequence coming from the M. trossulus genome (FT1 haplogroup) in contrast to M. edulis CR as in the Baltic. FT1 haplotypes were abundant in the studied population, including homoplasmic females. However, males significantly more often carried these haplotypes; therefore, male heteroplasmy involved the original FE and recombinant FT, indicating that the FT genome undergoes masculinization. Structural similarity of FT1 CR with previously reported, masculinized Baltic haplotypes, which were derived from FE/ME recombination, provides further evidence that CR M-F recombination is a prerequisite for masculinization, also in the context of native M. trossulus mtDNA.
Collapse
Affiliation(s)
- Beata Śmietanka
- Department of Genetics and Marine Biotechnology, Institute of Oceanology Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
| | - Artur Burzyński
- Department of Genetics and Marine Biotechnology, Institute of Oceanology Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
| |
Collapse
|
17
|
Breton S, Bouvet K, Auclair G, Ghazal S, Sietman BE, Johnson N, Bettinazzi S, Stewart DT, Guerra D. The extremely divergent maternally- and paternally-transmitted mitochondrial genomes are co-expressed in somatic tissues of two freshwater mussel species with doubly uniparental inheritance of mtDNA. PLoS One 2017; 12:e0183529. [PMID: 28817688 PMCID: PMC5560648 DOI: 10.1371/journal.pone.0183529] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 08/05/2017] [Indexed: 12/15/2022] Open
Abstract
Freshwater mussel species with doubly uniparental inheritance (DUI) of mtDNA are unique because they are naturally heteroplasmic for two extremely divergent mtDNAs with ~50% amino acid differences for protein-coding genes. The paternally-transmitted mtDNA (or M mtDNA) clearly functions in sperm in these species, but it is still unknown whether it is transcribed when present in male or female soma. In the present study, we used PCR and RT-PCR to detect the presence and expression of the M mtDNA in male and female somatic and gonadal tissues of the freshwater mussel species Venustaconcha ellipsiformis and Utterbackia peninsularis (Unionidae). This is the first study demonstrating that the M mtDNA is transcribed not only in male gonads, but also in male and female soma in freshwater mussels with DUI. Because of the potentially deleterious nature of heteroplasmy, we suggest the existence of different mechanisms in DUI species to deal with this possibly harmful situation, such as silencing mechanisms for the M mtDNA at the transcriptional, post-transcriptional and/or post-translational levels. These hypotheses will necessitate additional studies in distantly-related DUI species that could possess different mechanisms of action to deal with heteroplasmy.
Collapse
Affiliation(s)
- Sophie Breton
- Department of Biological Sciences, Université de Montréal, Montréal, Québec, Canada
- * E-mail:
| | - Karim Bouvet
- Department of Biological Sciences, Université de Montréal, Montréal, Québec, Canada
| | - Gabrielle Auclair
- Department of Biological Sciences, Université de Montréal, Montréal, Québec, Canada
| | - Stéphanie Ghazal
- Department of Biological Sciences, Université de Montréal, Montréal, Québec, Canada
| | - Bernard E. Sietman
- Minnesota Department of Natural Resources, Division of Ecological and Water Resources, Lake City, Minnesota, United States of America
| | - Nathan Johnson
- U. S. Geological Survey, Wetland and Aquatic Research Center, Gainesville, Florida, United States of America
| | - Stefano Bettinazzi
- Department of Biological Sciences, Université de Montréal, Montréal, Québec, Canada
| | - Donald T. Stewart
- Department of Biology, Acadia University, Wolfville, Nova Scotia, Canada
| | - Davide Guerra
- Department of Biological Sciences, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
18
|
Wen HB, Cao ZM, Hua D, Xu P, Ma XY, Jin W, Yuan XH, Gu RB. The Complete Maternally and Paternally Inherited Mitochondrial Genomes of a Freshwater Mussel Potamilus alatus (Bivalvia: Unionidae). PLoS One 2017; 12:e0169749. [PMID: 28068380 PMCID: PMC5222514 DOI: 10.1371/journal.pone.0169749] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 12/21/2016] [Indexed: 11/18/2022] Open
Abstract
Doubly uniparental inheritance (DUI) of mitochondrial DNA, found only in some bivalve families and characterized by the existence of gender-associated mtDNA lineages that are inherited through males (M-type) or females (F-type), is one of the very few exceptions to the general rule of strict maternal mtDNA inheritance in animals. M-type sequences are often undetected and hence still underrepresented in the GenBank, which hinders the progress of the understanding of the DUI phenomenon. We have sequenced and analyzed the complete M and F mitogenomes of a freshwater mussel, Potamilus alatus. The M-type was 493 bp longer (M = 16 560, F = 16 067 bp). Gene contents, order and the distribution of genes between L and H strands were typical for unionid mussels. Candidates for the two ORFan genes (forf and morf) were found in respective mitogenomes. Both mitogenomes had a very similar A+T bias: F = 61% and M = 62.2%. The M mitogenome-specific cox2 extension (144 bp) is much shorter than in other sequenced unionid mitogenomes (531-576 bp), which might be characteristic for the Potamilus genus. The overall topology of the phylogenetic tree is in very good agreement with the currently accepted phylogenetic relationships within the Unionidae: both studied sequences were placed within the Ambleminae subfamily clusters in the corresponding M and F clades.
Collapse
Affiliation(s)
- Hai B Wen
- Wuxi Fishery College, Nanjing Agriculture University, Jiangsu, China.,Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes-Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Jiangsu, China.,Sino-US Cooperative Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Jiangsu, China
| | - Zhe M Cao
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes-Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Jiangsu, China
| | - Dan Hua
- Sino-US Cooperative Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Jiangsu, China
| | - Pao Xu
- Wuxi Fishery College, Nanjing Agriculture University, Jiangsu, China.,Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes-Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Jiangsu, China.,Sino-US Cooperative Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Jiangsu, China
| | - Xue Y Ma
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes-Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Jiangsu, China.,Sino-US Cooperative Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Jiangsu, China
| | - Wu Jin
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes-Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Jiangsu, China.,Sino-US Cooperative Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Jiangsu, China
| | - Xin H Yuan
- Wuxi Fishery College, Nanjing Agriculture University, Jiangsu, China.,Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes-Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Jiangsu, China.,Sino-US Cooperative Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Jiangsu, China
| | - Ruo B Gu
- Wuxi Fishery College, Nanjing Agriculture University, Jiangsu, China.,Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes-Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Jiangsu, China.,Sino-US Cooperative Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Jiangsu, China
| |
Collapse
|
19
|
Robicheau BM, Breton S, Stewart DT. Sequence motifs associated with paternal transmission of mitochondrial DNA in the horse mussel, Modiolus modiolus (Bivalvia: Mytilidae). Gene 2016; 605:32-42. [PMID: 28027966 DOI: 10.1016/j.gene.2016.12.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/10/2016] [Accepted: 12/23/2016] [Indexed: 12/01/2022]
Abstract
In the majority of metazoans paternal mitochondria represent evolutionary dead-ends. In many bivalves, however, this paradigm does not hold true; both maternal and paternal mitochondria are inherited. Herein, we characterize maternal and paternal mitochondrial control regions of the horse mussel, Modiolus modiolus (Bivalvia: Mytilidae). The maternal control region is 808bp long, while the paternal control region is longer at 2.3kb. We hypothesize that the size difference is due to a combination of repeated duplications within the control region of the paternal mtDNA genome, as well as an evolutionarily ancient recombination event between two sex-associated mtDNA genomes that led to the insertion of a second control region sequence in the genome that is now transmitted via males. In a comparison to other mytilid male control regions, we identified two evolutionarily Conserved Motifs, CMA and CMB, associated with paternal transmission of mitochondrial DNA. CMA is characterized by a conserved purine/pyrimidine pattern, while CMB exhibits a specific 13bp nucleotide string within a stem and loop structure. The identification of motifs CMA and CMB in M. modiolus extends our understanding of Sperm Transmission Elements (STEs) that have recently been identified as being associated with the paternal transmission of mitochondria in marine bivalves.
Collapse
Affiliation(s)
| | - Sophie Breton
- Departement de Science Biologiques, Université de Montréal, QC, Canada
| | - Donald T Stewart
- Departement de Science Biologiques, Université de Montréal, QC, Canada.
| |
Collapse
|
20
|
Amaro R, Bouza C, Pardo BG, Castro J, San Miguel E, Villalba A, Lois S, Outeiro A, Ondina P. Identification of novel gender-associated mitochondrial haplotypes in Margaritifera margaritifera(Linnaeus, 1758). Zool J Linn Soc 2016. [DOI: 10.1111/zoj.12472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Rafaela Amaro
- Department of Genetics; Faculty of Veterinary Science; University of Santiago de Compostela; 27002 Lugo Spain
| | - Carmen Bouza
- Department of Genetics; Faculty of Veterinary Science; University of Santiago de Compostela; 27002 Lugo Spain
| | - Belén G. Pardo
- Department of Genetics; Faculty of Veterinary Science; University of Santiago de Compostela; 27002 Lugo Spain
| | - Jaime Castro
- Department of Genetics; Faculty of Veterinary Science; University of Santiago de Compostela; 27002 Lugo Spain
| | - Eduardo San Miguel
- Department of Genetics; Faculty of Veterinary Science; University of Santiago de Compostela; 27002 Lugo Spain
| | - Antonio Villalba
- Centro de Investigacións Mariñas de Corón (CIMA); Consellería do Medio Rural e do Mar da Xunta de Galicia; Aptdo. 13 36620 Vilanova de Arousa Spain
| | - Sabela Lois
- Department of Zoology; Faculty of Veterinary Science; University of Santiago de Compostela; 27002 Lugo Spain
| | - Adolfo Outeiro
- Department of Zoology; Faculty of Veterinary Science; University of Santiago de Compostela; 27002 Lugo Spain
| | - Paz Ondina
- Department of Zoology; Faculty of Veterinary Science; University of Santiago de Compostela; 27002 Lugo Spain
| |
Collapse
|
21
|
Katolikova M, Khaitov V, Väinölä R, Gantsevich M, Strelkov P. Genetic, Ecological and Morphological Distinctness of the Blue Mussels Mytilus trossulus Gould and M. edulis L. in the White Sea. PLoS One 2016; 11:e0152963. [PMID: 27044013 PMCID: PMC4820271 DOI: 10.1371/journal.pone.0152963] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/22/2016] [Indexed: 11/25/2022] Open
Abstract
Two blue mussel lineages of Pliocene origin, Mytilus edulis (ME) and M. trossulus (MT), co-occur and hybridize in several regions on the shores of the North Atlantic. The two species were distinguished from each other by molecular methods in the 1980s, and a large amount of comparative data on them has been accumulated since that time. However, while ME and MT are now routinely distinguished by various genetic markers, they tend to be overlooked in ecological studies since morphological characters for taxonomic identification have been lacking, and no consistent habitat differences between lineages have been reported. Surveying a recently discovered area of ME and MT co-occurrence in the White Sea and employing a set of allozyme markers for identification, we address the issue whether ME and MT are true biological species with distinct ecological characteristics or just virtual genetic entities with no matching morphological and ecological identities. We find that: (1) in the White Sea, the occurrence of MT is largely concentrated in harbors, in line with observations from other subarctic regions of Europe; (2) mixed populations of ME and MT are always dominated by purebred individuals, animals classified as hybrids constituting only ca. 18%; (3) in terms of shell morphology, 80% of MT bear a distinct uninterrupted dark prismatic strip under the ligament while 97% of ME lack this character; (4) at sites of sympatry MT is more common on algal substrates while ME mostly lives directly on the bottom. This segregation by the substrate may contribute to maintaining reproductive isolation and decreasing competition between taxa. We conclude that while ME and MT are not fully reproductively isolated, they do represent clearly distinguishable biological, ecological and morphological entities in the White Sea. It remains to be documented whether the observed morphological and ecological differences are of a local character, or whether they have simply been overlooked in other contact zones.
Collapse
Affiliation(s)
- Marina Katolikova
- Department of Ichthyology and Hydrobiology, Saint-Petersburg State University, Saint-Petersburg, Russia
- * E-mail:
| | - Vadim Khaitov
- Department of Invertebrate Zoology, Saint-Petersburg State University, Saint-Petersburg, Russia
- Kandalaksha State Nature Reserve, Kandalaksha, Murmansk Region, Russia
| | - Risto Väinölä
- Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - Michael Gantsevich
- Department of Invertebrate Zoology, Lomonosov Moscow State University, Moscow, Russia
| | - Petr Strelkov
- Department of Ichthyology and Hydrobiology, Saint-Petersburg State University, Saint-Petersburg, Russia
| |
Collapse
|
22
|
A first report on coexistence and hybridization of Mytilus trossulus and M. edulis mussels in Greenland. Polar Biol 2015. [DOI: 10.1007/s00300-015-1785-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
23
|
Zbawicka M, Wenne R, Burzyński A. Mitogenomics of recombinant mitochondrial genomes of Baltic Sea Mytilus mussels. Mol Genet Genomics 2014; 289:1275-87. [PMID: 25079914 PMCID: PMC4236608 DOI: 10.1007/s00438-014-0888-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 07/07/2014] [Indexed: 01/17/2023]
Abstract
Recombination in the control region (CR) of Mytilus mitochondrial DNA (mtDNA) was originally reported based on the relatively short, sequenced fragments of mitochondrial genomes. Recombination outside the CR has been reported recently with the suggestion that such processes are common in Mytilus. We have fully sequenced a set of 11 different mitochondrial haplotypes representing the high diversity of paternally inherited mitochondrial genomes of Baltic Sea Mytilus mussels, including the haplotype close to the native Mytilus trossulus mitochondrial genome, which was thought to have been entirely eliminated from this population. Phylogenetic and comparative analysis showed that the recombination is limited to the vicinity of the CR in all sequenced genomes. Coding sequence comparison indicated that all paternally inherited genomes showed increased accumulation of nonsynonymous substitutions, including the genomes which switched their transmission route very recently. The acquisition of certain CR sequences through recombination with highly divergent paternally inherited genomes seems to precede and favor the switch, but it is not a prerequisite for this process. Interspecies hybridization in the Baltic Sea during the recent 10,000 years created conditions for both structural and evolutionary mitochondrial instability which resulted in the observed variation and dynamics of mtDNA in Baltic Sea Mytilus mussels. In conclusion, the data shows that the effects of mitochondrial recombination are limited to the CR of few phylogenetic lineages.
Collapse
Affiliation(s)
- Małgorzata Zbawicka
- Department of Genetics and Marine Biotechnology, Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712, Sopot, Poland,
| | | | | |
Collapse
|
24
|
Plazzi F, Cassano A, Passamonti M. The quest for Doubly Uniparental Inheritance in heterodont bivalves and its detection inMeretrix lamarckii(Veneridae: Meretricinae). J ZOOL SYST EVOL RES 2014. [DOI: 10.1111/jzs.12078] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Federico Plazzi
- Dipartimento di Scienze Biologiche; Geologiche e Ambientali; Bologna Italy
| | - Antonello Cassano
- Dipartimento di Scienze Biologiche; Geologiche e Ambientali; Bologna Italy
| | - Marco Passamonti
- Dipartimento di Scienze Biologiche; Geologiche e Ambientali; Bologna Italy
| |
Collapse
|
25
|
Chatzoglou E, Kyriakou E, Zouros E, Rodakis GC. The mRNAs of maternally and paternally inherited mtDNAs of the mussel Mytilus galloprovincialis: Start/end points and polycistronic transcripts. Gene 2013; 520:156-65. [DOI: 10.1016/j.gene.2013.02.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 02/07/2013] [Indexed: 10/27/2022]
|
26
|
Śmietanka B, Zbawicka M, Sańko T, Wenne R, Burzyński A. Molecular population genetics of male and female mitochondrial genomes in subarctic Mytilus trossulus.. MARINE BIOLOGY 2013; 160:1709-1721. [PMID: 24391284 PMCID: PMC3873064 DOI: 10.1007/s00227-013-2223-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 03/16/2013] [Indexed: 06/03/2023]
Abstract
The doubly uniparental inheritance system allows for the use of two independent mitochondrial genomes for population history investigations. Under this system, two lineages of mitochondrial DNA (mtDNA) exist and males are typically heteroplasmic, having the additional, usually divergent, mitochondrial genome inherited from their male parent. This additional mtDNA typically evolves faster, potentially allowing for insight into more recent events in population history. Few studies did explore this possibility in marine mussels Mytilus showing its usefulness. Recent observations of the Mytilus trossulus mussels who have retained their native mtDNA in European waters posed the question of their origin. Are they part of a population present, but previously undetected, or is this a potentially human mediated, ongoing spread of an invasive species? To tackle this question, we amplified with species-specific primers and sequenced an approximately 1,200-bp-long fragment spanning COIII and ND2 genes from both mitochondrial genomes of mussels sampled at five locations worldwide, covering the whole M. trossulus range. The overall pattern of polymorphisms is compatible with the entirely postglacial history of the whole species, indicating a very deep bottleneck at last glacial maximum, with possible retention of the whole species in a single refugium, and the effective population size of no more than a few thousands. Both analyses of molecular variance and isolation with migration (IM) models point at the West Atlantic as the source of the European M. trossulus mussels, at least the ones who retained their native mtDNA. The hypothesis that this is an ongoing, human-mediated process was considered. To this end, comparison with the well-known case: the introduction of congeneric mussel, Mytilus galloprovincialis, from Mediterranean Sea to Asia was used. This introduction occurred within the last 100 years. The results inferred by the IM model suggest that the timing and structure of transatlantic migration of M. trossulus differs significantly from the M. galloprovincialis case: it is more than 1,000 years old and involves a much larger fraction of the ancestral population. Therefore, most likely, this invasion is not a human-mediated process.
Collapse
Affiliation(s)
- Beata Śmietanka
- Department of Genetics and Marine Biotechnology, Institute of Oceanology Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
| | - Małgorzata Zbawicka
- Department of Genetics and Marine Biotechnology, Institute of Oceanology Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
| | - Tomasz Sańko
- Department of Genetics and Marine Biotechnology, Institute of Oceanology Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
| | - Roman Wenne
- Department of Genetics and Marine Biotechnology, Institute of Oceanology Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
| | - Artur Burzyński
- Department of Genetics and Marine Biotechnology, Institute of Oceanology Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
| |
Collapse
|
27
|
Krebs RA, Borden WC, Evans NM, Doerder FP. Differences in population structure estimated within maternally- and paternally-inherited forms of mitochondria inLampsilis siliquoidea(Bivalvia: Unionidae). Biol J Linn Soc Lond 2013. [DOI: 10.1111/bij.12025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Robert A. Krebs
- Department of Biological, Geological, and Environmental Sciences; Cleveland State University; Cleveland; OH; 44115-2406; USA
| | - W. Calvin Borden
- Department of Biology; Loyola University Chicago; Chicago; IL; 60660; USA
| | - Na'tasha M. Evans
- Department of Biological, Geological, and Environmental Sciences; Cleveland State University; Cleveland; OH; 44115-2406; USA
| | - F. Paul Doerder
- Department of Biological, Geological, and Environmental Sciences; Cleveland State University; Cleveland; OH; 44115-2406; USA
| |
Collapse
|
28
|
Ghiselli F, Milani L, Guerra D, Chang PL, Breton S, Nuzhdin SV, Passamonti M. Structure, transcription, and variability of metazoan mitochondrial genome: perspectives from an unusual mitochondrial inheritance system. Genome Biol Evol 2013; 5:1535-54. [PMID: 23882128 PMCID: PMC3762199 DOI: 10.1093/gbe/evt112] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2013] [Indexed: 12/13/2022] Open
Abstract
Despite its functional conservation, the mitochondrial genome (mtDNA) presents strikingly different features among eukaryotes, such as size, rearrangements, and amount of intergenic regions. Nonadaptive processes such as random genetic drift and mutation rate play a fundamental role in shaping mtDNA: the mitochondrial bottleneck and the number of germ line replications are critical factors, and different patterns of germ line differentiation could be responsible for the mtDNA diversity observed in eukaryotes. Among metazoan, bivalve mollusc mtDNAs show unusual features, like hypervariable gene arrangements, high mutation rates, large amount of intergenic regions, and, in some species, an unique inheritance system, the doubly uniparental inheritance (DUI). The DUI system offers the possibility to study the evolutionary dynamics of mtDNAs that, despite being in the same organism, experience different genetic drift and selective pressures. We used the DUI species Ruditapes philippinarum to study intergenic mtDNA functions, mitochondrial transcription, and polymorphism in gonads. We observed: 1) the presence of conserved functional elements and novel open reading frames (ORFs) that could explain the evolutionary persistence of intergenic regions and may be involved in DUI-specific features; 2) that mtDNA transcription is lineage-specific and independent from the nuclear background; and 3) that male-transmitted and female-transmitted mtDNAs have a similar amount of polymorphism but of different kinds, due to different population size and selection efficiency. Our results are consistent with the hypotheses that mtDNA evolution is strongly dependent on the dynamics of germ line formation, and that the establishment of a male-transmitted mtDNA lineage can increase male fitness through selection on sperm function.
Collapse
Affiliation(s)
- Fabrizio Ghiselli
- Dipartimento di Scienze Biologiche, Geologiche ed Ambientali (BiGeA), Università di Bologna, Bologna, Italy.
| | | | | | | | | | | | | |
Collapse
|
29
|
Biparental Inheritance Through Uniparental Transmission: The Doubly Uniparental Inheritance (DUI) of Mitochondrial DNA. Evol Biol 2012. [DOI: 10.1007/s11692-012-9195-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
30
|
Van Wormhoudt A, Roussel V, Courtois G, Huchette S. Mitochondrial DNA Introgression in the European abalone Haliotis tuberculata tuberculata: evidence for experimental mtDNA paternal inheritance and a natural hybrid sequence. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2011; 13:563-574. [PMID: 20938796 DOI: 10.1007/s10126-010-9327-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Accepted: 09/17/2010] [Indexed: 05/30/2023]
Abstract
Two subspecies of the European abalone have been morphologically recognized: Haliotis tuberculata tuberculata, present in the North Atlantic, and Haliotis tuberculata coccinea, present in the Canary Islands. Among the different nuclear markers used to differentiate these two subspecies, the sperm lysin gene was the most reliable, leading to a 2.2% divergence. Concerning the subunit I of the mitochondrial cytochrome oxydase gene (COI), we observed a difference of 3.3% between the two subspecies. In the North Atlantic, an introgression of mitochondrial DNA from H. tuberculata coccinea to H. tuberculata tuberculata was evident in around 30% of individuals. Due to this difference, we were able to experimentally detect the transfer of paternal mitochondrial DNA (mtDNA) by specific quantitative polymerase chain reaction measurements. The presence of the two mtDNA signatures was also detected in 20% of individuals tested in the field. Moreover, one mt DNA hybrid sequence was identified. The sequencing of this mitochondrial DNA hybrid revealed a mosaic structure with many specific mutations. The origin of this hybrid sequence is discussed.
Collapse
Affiliation(s)
- Alain Van Wormhoudt
- CNRS UMR 7208, Station de Biologie Marine du Muséum National d'Histoire Naturelle, 29900, Concarneau, France.
| | | | | | | |
Collapse
|
31
|
Yu H, Li Q. Complete mitochondrial DNA sequence of Crassostrea nippona: comparative and phylogenomic studies on seven commercial Crassostrea species. Mol Biol Rep 2011; 39:999-1009. [PMID: 21562763 DOI: 10.1007/s11033-011-0825-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Accepted: 05/03/2011] [Indexed: 02/07/2023]
Abstract
The complete mitochondrial genome of Crassostrea nippona was determined and compared with six other Crassostrea mitogenomes from GenBank in an attempt to shed light on the evolutionary relatedness within Crassostrea. The total length of the mitogenome was 20,030 bp for C. nippona, which was the largest among seven Crassostrea mitogenomes. Among six Asian oysters, the gene order of mitochondrial DNA was identical except for C. nippona with a transposition of trnG. While the American oyster C. virginica and Asian oysters showed broad differences in gene order with relocation of most tRNA genes and indels of duplicated tRNAs and rrnS, indicating the relatively distant relationships between the American oyster and Asian oysters. Different from other six Crassostrea oysters, C. nippona had two repeats of 66 bp in non-coding regions. Pairwise divergence among the seven Crassostrea oysters based on DNA sequences of 12 protein-coding genes ranged from 3.1 to 44.4% (Kimura two-parameter distance, K2P). The close relationship between C. nippona and C. hongkongensis was revealed by K2P of 18.9%. Phylogenetic analyses robustly revealed Crassostrea monophyly, with C. virginica at the basal position. The results of phylogenetic analyses strongly supported C. gigas and C. angulata had the closest relationship, with C. sikamea being the sister taxon. These findings presented here provide a better insight into the relationships within Crassostrea and will be useful for further evolution studies of oysters.
Collapse
Affiliation(s)
- Hong Yu
- Fisheries College, Ocean University of China, Yushan Road 5, Qingdao 266003, China
| | | |
Collapse
|
32
|
Breton S, Ghiselli F, Passamonti M, Milani L, Stewart DT, Hoeh WR. Evidence for a fourteenth mtDNA-encoded protein in the female-transmitted mtDNA of marine Mussels (Bivalvia: Mytilidae). PLoS One 2011; 6:e19365. [PMID: 21556327 PMCID: PMC3083442 DOI: 10.1371/journal.pone.0019365] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 04/02/2011] [Indexed: 11/30/2022] Open
Abstract
Background A novel feature for animal mitochondrial genomes has been recently established: i.e., the presence of additional, lineage-specific, mtDNA-encoded proteins with functional significance. This feature has been observed in freshwater mussels with doubly uniparental inheritance of mtDNA (DUI). The latter unique system of mtDNA transmission, which also exists in some marine mussels and marine clams, is characterized by one mt genome inherited from the female parent (F mtDNA) and one mt genome inherited from the male parent (M mtDNA). In freshwater mussels, the novel mtDNA-encoded proteins have been shown to be mt genome-specific (i.e., one novel protein for F genomes and one novel protein for M genomes). It has been hypothesized that these novel, F- and M-specific, mtDNA-encoded proteins (and/or other F- and/or M-specific mtDNA sequences) could be responsible for the different modes of mtDNA transmission in bivalves but this remains to be demonstrated. Methodology/Principal Findings We investigated all complete (or nearly complete) female- and male-transmitted marine mussel mtDNAs previously sequenced for the presence of ORFs that could have functional importance in these bivalves. Our results confirm the presence of a novel F genome-specific mt ORF, of significant length (>100aa) and located in the control region, that most likely has functional significance in marine mussels. The identification of this ORF in five Mytilus species suggests that it has been maintained in the mytilid lineage (subfamily Mytilinae) for ∼13 million years. Furthermore, this ORF likely has a homologue in the F mt genome of Musculista senhousia, a DUI-containing mytilid species in the subfamily Crenellinae. We present evidence supporting the functionality of this F-specific ORF at the transcriptional, amino acid and nucleotide levels. Conclusions/Significance Our results offer support for the hypothesis that “novel F genome-specific mitochondrial genes” are involved in key biological functions in bivalve species with DUI.
Collapse
Affiliation(s)
- Sophie Breton
- Kent State University, Kent, Ohio, United States of America.
| | | | | | | | | | | |
Collapse
|
33
|
Characteristics of mitochondrial DNA of unionid bivalves (Mollusca: Bivalvia: Unionidae). I. Detection and characteristics of doubly uniparental inheritance (DUI) of unionid mitochondrial DNA. FOLIA MALACOLOGICA 2011. [DOI: 10.2478/v10125-010-0015-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
34
|
Characteristics of mitochondrial DNA of unionid bivalves (Mollusca: Bivalvia: Unionidae). II. Comparison of complete sequences of maternally inherited mitochondrial genomes of Sinanodonta woodiana and Unio pictorum. FOLIA MALACOLOGICA 2011. [DOI: 10.2478/v10125-010-0016-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
35
|
Ladoukakis ED, Theologidis I, Rodakis GC, Zouros E. Homologous recombination between highly diverged mitochondrial sequences: examples from maternally and paternally transmitted genomes. Mol Biol Evol 2011; 28:1847-59. [PMID: 21220759 DOI: 10.1093/molbev/msr007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Homologous recombination is restricted to sequences of low divergence. This is attributed to the mismatch repairing system (MMR), which does not allow recombination between sequences that are highly divergent. This acts as a safeguard against recombination between nonhomologous sequences that could result in genome imbalance. Here, we report recombination between maternal and paternal mitochondrial genomes of the sea mussel, whose sequences differ by >20%. We propose that the strict maternal inheritance of the animal mitochondrial DNA and the ensuing homoplasmy has relieved the MMR system of the animal mitochondrion from the pressure to tolerate recombination only among sequences with a high degree of similarity.
Collapse
|
36
|
Väinölä R, Strelkov P. Mytilus trossulus in Northern Europe. MARINE BIOLOGY 2011; 158:817-833. [PMID: 24391261 PMCID: PMC3873017 DOI: 10.1007/s00227-010-1609-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 12/14/2010] [Indexed: 05/04/2023]
Abstract
From data on allozyme, nuclear DNA and mitochondrial DNA markers, we show that the originally North Pacific/Northwest Atlantic mussel Mytilus trossulus is widespread on North European coasts, earliM. trossuluser thought to be inhabited only by Mytilus edulis. Several local occurrences of , interspersed with a dominant M. edulis, were recorded on the North Sea, Norwegian Sea and Barents Sea coasts of Norway and the Barents and White Sea coasts of Kola Peninsula in Russia. The proportion of M. trossulus genetic background observed at any one site varied from 0 to 95%. These new occurrences are not related to the previously known, introgressed M. trossulus population that occupies the Baltic Sea. The new northern occurrences retain both the F and M M. trossulus mitochondria, which have been lost from the Baltic stock. While hybridization takes place wherever M. trossulus and M. edulis meet, the extent of hybrization varies between the different contact areas. Hybrids are rare, and the hybrid zones are bimodal in the northern areas; more interbreeding has taken place further south in Norway, but even there genotypic disequilibria are higher than those in the steep transition zone between the Baltic mussel and M. edulis: there is no evidence of a collapse toward a hybrid swarm unlike in the Baltic. The Barents and White Sea M. trossulus are genetically slightly closer to the NW Atlantic than NE Pacific populations, while the Baltic mussel has unique features distinguishing it from the others. We postulate that the presence of M. trossulus in Northern Europe is a result of repeated independent inter- or transoceanic cryptic invasions of various ages, up to recent times.
Collapse
Affiliation(s)
- Risto Väinölä
- Finnish Museum of Natural History, University of Helsinki, POB 17, 00014 Helsinki, Finland
| | - Petr Strelkov
- Finnish Museum of Natural History, University of Helsinki, POB 17, 00014 Helsinki, Finland
- Department of Ichthyology and Hydrobiology, St Petersburg State University, 16 Line, 29, Vasilevsky Island, St Petersburg, 199178 Russia
| |
Collapse
|