1
|
Liu B, Liu Y, Li S, Chen P, Zhang J, Feng L. Depletion of placental brain-derived neurotrophic factor (BDNF) is attributed to premature ovarian insufficiency (POI) in mice offspring. J Ovarian Res 2024; 17:141. [PMID: 38982490 PMCID: PMC11232340 DOI: 10.1186/s13048-024-01467-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 06/29/2024] [Indexed: 07/11/2024] Open
Abstract
INTRODUCTION Premature ovarian insufficiency (POI) is one of the causes of female infertility. Unexplained POI is increasingly affecting women in their reproductive years. However, the etiology of POI is diverse and remains elusive. We and others have shown that brain-derived neurotrophic factor (BDNF) plays an important role in adult ovarian function. Here, we report on a novel role of BDNF in the Developmental Origins of POI. METHODS Placental BDNF knockout mice were created using CRISPR/CAS9. Homozygous knockout (cKO(HO)) mice didn't survive, while heterozygous knockout (cKO(HE)) mice did. BDNF reduction in cKO(HE) mice was confirmed via immunohistochemistry and Western blots. Ovaries were collected from cKO(HE) mice at various ages, analyzing ovarian metrics, FSH expression, and litter sizes. In one-month-old mice, oocyte numbers were assessed using super-ovulation, and oocyte gene expression was analyzed with smart RNAseq. Ovaries of P7 mice were studied with SEM, and gene expression was confirmed with RT-qPCR. Alkaline phosphatase staining at E11.5 and immunofluorescence for cyclinD1 assessed germ cell number and cell proliferation. RESULTS cKO(HE) mice had decreased ovarian function and litter size in adulthood. They were insensitive to ovulation induction drugs manifested by lower oocyte release after superovulation in one-month-old cKO(HE) mice. The transcriptome and SEM results indicate that mitochondria-mediated cell death or aging might occur in cKO(HE) ovaries. Decreased placental BDNF led to diminished primordial germ cell proliferation at E11.5 and ovarian reserve which may underlie POI in adulthood. CONCLUSION The current results showed decreased placental BDNF diminished primordial germ cell proliferation in female fetuses during pregnancy and POI in adulthood. Our findings can provide insights into understanding the underlying mechanisms of POI.
Collapse
Affiliation(s)
- Bin Liu
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
- Department of Reproduction, School of Medicine, Xinhua Hospital, Shanghai Jiao-Tong University, Shanghai, China
| | - Yongjie Liu
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Shuman Li
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Pingping Chen
- Department of Reproduction, School of Medicine, Xinhua Hospital, Shanghai Jiao-Tong University, Shanghai, China
| | - Jun Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China.
| | - Liping Feng
- Department of Obstetrics and Gynaecology, Duke University, Durham, NC, USA.
| |
Collapse
|
2
|
Wu Q, Jiang Y, You C. The SUMO components in rheumatoid arthritis. Rheumatology (Oxford) 2022; 61:4619-4630. [PMID: 35595244 DOI: 10.1093/rheumatology/keac297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/30/2022] [Accepted: 04/19/2022] [Indexed: 01/10/2023] Open
Abstract
Small ubiquitin-like modifier (SUMO) proteins can reversibly attach covalently or non-covalently to lysine residues of various substrates. The processes are named SUMOylation and de-SUMOylation, which maintain a dynamic balance in the physiological state, and are regulated by SUMO components. However, the dysregulation of components disturbs the balance and alters the functions of target proteins, which causes the occurrence of diseases. To date, certain SUMO components, including SUMO-1, SUMO-2/3, SAE1/Uba2, Ubc9, PIASs (protein inhibitors of activated signal transducer and activator of transcription) and SENPs (SUMO-specific proteases), have been found to participate in the pathogenesis of RA and their potential value as therapeutic targets also have been highlighted. In addition, single nucleotide polymorphisms (SNPs) in the SUMO components have been reported to be associated with disease susceptibility. Until now, only the SNP site of SUMO-4 has been reported in RA. Here we provided a systematic overview of the general characteristics of SUMO components and highlighted a summary of their impact on RA.
Collapse
Affiliation(s)
- Qian Wu
- Laboratory Medicine Center, Lanzhou University Second Hospital, Lanzhou, China
| | - Yao Jiang
- Laboratory Medicine Center, Lanzhou University Second Hospital, Lanzhou, China
| | - Chongge You
- Laboratory Medicine Center, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
3
|
Liu H, Craig SEL, Molchanov V, Floramo JS, Zhao Y, Yang T. SUMOylation in Skeletal Development, Homeostasis, and Disease. Cells 2022; 11:cells11172710. [PMID: 36078118 PMCID: PMC9454984 DOI: 10.3390/cells11172710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/19/2022] [Accepted: 08/27/2022] [Indexed: 11/18/2022] Open
Abstract
The modification of proteins by small ubiquitin-related modifier (SUMO) molecules, SUMOylation, is a key post-translational modification involved in a variety of biological processes, such as chromosome organization, DNA replication and repair, transcription, nuclear transport, and cell signaling transduction. In recent years, emerging evidence has shown that SUMOylation regulates the development and homeostasis of the skeletal system, with its dysregulation causing skeletal diseases, suggesting that SUMOylation pathways may serve as a promising therapeutic target. In this review, we summarize the current understanding of the molecular mechanisms by which SUMOylation pathways regulate skeletal cells in physiological and disease contexts.
Collapse
Affiliation(s)
| | | | | | | | | | - Tao Yang
- Laboratory of Skeletal Biology, Department of Cell Biology, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI 49503, USA
- Correspondence: ; Tel.: +1-616-234-5820
| |
Collapse
|
4
|
Neefjes M, van Caam APM, van der Kraan PM. Transcription Factors in Cartilage Homeostasis and Osteoarthritis. BIOLOGY 2020; 9:biology9090290. [PMID: 32937960 PMCID: PMC7563835 DOI: 10.3390/biology9090290] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/07/2020] [Accepted: 09/07/2020] [Indexed: 12/13/2022]
Abstract
Osteoarthritis (OA) is the most common degenerative joint disease, and it is characterized by articular cartilage loss. In part, OA is caused by aberrant anabolic and catabolic activities of the chondrocyte, the only cell type present in cartilage. These chondrocyte activities depend on the intra- and extracellular signals that the cell receives and integrates into gene expression. The key proteins for this integration are transcription factors. A large number of transcription factors exist, and a better understanding of the transcription factors activated by the various signaling pathways active during OA can help us to better understand the complex etiology of OA. In addition, establishing such a profile can help to stratify patients in different subtypes, which can be a very useful approach towards personalized therapy. In this review, we discuss crucial transcription factors for extracellular matrix metabolism, chondrocyte hypertrophy, chondrocyte senescence, and autophagy in chondrocytes. In addition, we discuss how insight into these factors can be used for treatment purposes.
Collapse
|
5
|
Dehnavi S, Sadeghi M, Johnston TP, Barreto G, Shohan M, Sahebkar A. The role of protein SUMOylation in rheumatoid arthritis. J Autoimmun 2019; 102:1-7. [PMID: 31078376 DOI: 10.1016/j.jaut.2019.05.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/02/2019] [Accepted: 05/04/2019] [Indexed: 01/09/2023]
Abstract
Small ubiquitin-like modifier (SUMO) proteins, as a subgroup of post-translational modifiers, act to change the function of proteins. Through their interactions with different targets, immune pathways, and the responses they elicit, can be affected by these SUMO conjugations. Thus, both a change to protein function and involvement in immune pathways has the potential to promote an efficient immune response to either a pathogenic challenge, or the development of an imbalance that could lead to an autoimmune-based disease. Also, a variety of changes such as mutations and polymorphisms can interfere with common functions of these modifications and move an effective immune response in the direction of an autoimmune disease. The present review discusses the general characteristics of SUMO proteins and focuses on their involvement in rheumatoid arthritis as an autoimmune disease.
Collapse
Affiliation(s)
- Sajad Dehnavi
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahvash Sadeghi
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - George Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia; Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Mojtaba Shohan
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Romo-García MF, Nava-Ramírez HS, Zapata-Zúñiga M, Macías-Segura N, Santiago-Algarra D, Castillo-Ortiz JD, Bastián Y, Ramos-Remus C, Enciso-Moreno JA, Castañeda-Delgado JE. Evaluation of SUMO1 and POU2AF1 in whole blood from rheumatoid arthritis patients and at risk relatives. Int J Immunogenet 2019; 46:59-66. [PMID: 30681271 DOI: 10.1111/iji.12414] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 08/21/2018] [Accepted: 11/25/2018] [Indexed: 12/27/2022]
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disorder characterized by chronic and symmetrical inflammation of synovial tissue with subsequent joint destruction. SUMO1 is an important regulator of apoptosis through non-canonical mechanism in synovial fibroblasts, and POU2AF1 is a known B-cell transcriptional co-activator. The specific objective of this study was to measure the expression of SUMO1 and POU2AF1 on first-degree relatives of patients with RA and also in the preclinical and clinical stages of RA and describe their possible role in RA physiopathology. Blood samples were collected from ACPA+, ACPA-, early and established RA subjects recruited. ACPAs and CarP autoantibodies were determined by ELISA Eurodiagnostica CCplus kit according to previously described protocols. RNA was isolated from blood samples; the purity as integrity was determined. Gene expression analysis was made by RT-qPCR using specific primers for SUMO1 and POU2AF1 mRNAs; relative expression was determined according to the 2-ΔΔct method procedure. Significant differences in the expression of both, SUMO1 and POU2AF1 were identified when comparing arthritis versus healthy or ACPA+ individuals, suggesting that the down regulation of such genes starts after the onset of symptoms in RA patients. Also, a significant correlation was identified for POU2AF1 and disease progression whit a downward trend for those with established RA. The implications of such gene down regulation are discussed in the context of RA physiopathology.
Collapse
Affiliation(s)
- Maria Fernanda Romo-García
- Unidad de Investigación Biomédica de Zacatecas, IMSS, Zacatecas, México.,Facultad de Medicina, Departamento de Inmunología, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | | | - Martin Zapata-Zúñiga
- Hospital Rural No 51 IMSS Bienestar, Villanueva, Zacatecas, México.,Facultad de Medicina y Ciencias de la Salud, Universidad Autónoma de Zacatecas, Zacatecas, México
| | - Noe Macías-Segura
- Unidad de Investigación Biomédica de Zacatecas, IMSS, Zacatecas, México.,Departamento de Fisiología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México
| | | | | | - Yadira Bastián
- Cátedras-CONACyT-Unidad de Investigación Biomédica de Zacatecas-IMSS, Zacatecas, México
| | - Cesar Ramos-Remus
- Unidad de Investigación en Enfermedades Crónico-Degenerativas, Guadalajara, México.,Universidad Autónoma de Guadalajara, Guadalajara, México
| | | | | |
Collapse
|
7
|
Abstract
Protein modification with the small ubiquitin-related modifier (SUMO) can affect protein function, enzyme activity, protein-protein interactions, protein stability, protein targeting and cellular localization. SUMO influences the function and regulation of metabolic enzymes within pathways, and in some cases targets entire metabolic pathways by affecting the activity of transcription factors or by facilitating the translocation of entire metabolic pathways to subcellular compartments. SUMO modification is also a key component of nutrient- and metabolic-sensing mechanisms that regulate cellular metabolism. In addition to its established roles in maintaining metabolic homeostasis, there is increasing evidence that SUMO is a key factor in facilitating cellular stress responses through the regulation and/or adaptation of the most fundamental metabolic processes, including energy and nucleotide metabolism. This review focuses on the role of SUMO in cellular metabolism and metabolic disease.
Collapse
|
8
|
Abstract
OBJECTIVE The objective of this study was to determine the mechanism by which activation of peroxisome proliferator-activated receptor-γ promotes apoptosis of acinar cells in pancreatitis. METHODS AR42j cells pretreated with the peroxisome proliferator-activated receptor-γ agonist pioglitazone were activated by cerulein as an in vitro model of acute pancreatitis. Inflammatory cytokines and amylase were detected by enzyme-linked immunosorbent assay. Cell viability was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Cell apoptosis was measured by flow cytometry and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling staining. Activity of caspases was determined. Bax and Bcl-2 levels were assayed by Western blot. RESULTS Cytokines, amylase, and cellular proliferation decreased in pioglitazone-pretreated cells. Pioglitazone increased the activity of caspases 3, 8, and 9 in cerulein-activated AR42j cells as well as in the pancreas of rats 3 hours after induction of severe acute pancreatitis. Acinar cell apoptosis was induced by reducing the mitochondrial membrane potential in the pioglitazone group. Pioglitazone increased expression of proapoptotic Bax proteins and decreased antiapoptotic Bcl-2 in cerulein-induced AR42j cells and decreased Bcl-2 levels in pancreatic tissue of severe acute pancreatitis rats 1 and 3 hours after induction. CONCLUSION Pioglitazone may promote apoptosis of acinar cells through both intrinsic and extrinsic apoptotic pathways in acute pancreatitis.
Collapse
|
9
|
Functional characterisation of the osteoarthritis susceptibility locus at chromosome 6q14.1 marked by the polymorphism rs9350591. BMC MEDICAL GENETICS 2015; 16:81. [PMID: 26346884 PMCID: PMC4562116 DOI: 10.1186/s12881-015-0215-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 08/12/2015] [Indexed: 01/15/2023]
Abstract
BACKGROUND The arcOGEN genome-wide association study reported the rs9350591 C/T single nucleotide polymorphism (SNP) as marking a region on chromosome 6q14.1 that is associated with hip osteoarthritis (OA) in Europeans, with an odds ratio (OR) of 1.18 and a p-value of 2.42 × 10(-9). rs9350591 is an intergenic SNP surrounded by seven genes within 1 Mb. Six of the genes are expressed in cartilage. We sought to characterise this signal to assess whether the association of rs9350591 with OA is mediated by modulating gene expression. METHODS Total RNA was extracted from hip or knee cartilage of 161 OA patients and from hip cartilage of 29 non-OA patients who had undergone hip replacements as a result of neck-of-femur (NOF) fractures. We used quantitative PCR (qPCR) to measure overall gene expression, and pyrosequencing to assess allelic expression of the genes. A mesenchymal stem cell (MSC) differentiation model was used to assess gene expression during chondrogenesis. RESULTS We identified a significant decrease in the expression of SENP6 (p = 0.005) and MYO6 (p = 0.026) in OA hip cartilage relative to the non-OA hip control cartilage. However, we found no evidence for a correlation between gene expression and rs9350591 genotype for any of the six genes. In addition, we identified expression quantitative trait loci (eQTLs) operating on COL12A1, TMEM30A, SENP6 and MYO6, although these were not relevant to the OA associated signal. Finally, all genes were dynamically expressed during chondrogenesis. CONCLUSIONS The regulation of gene expression at this locus is complex, highlighted by the down-regulation of SENP6 and MYO6 in OA hip cartilage and by eQTLs operating on four of the genes at the locus. However, modulation of gene expression in the end-stage OA cartilage that we have investigated is not the mechanism by which this association signal is operating. As implied by the dynamic patterns of gene expression throughout chondrogenesis, the association signal marked by rs9350591 could instead be exerting its effects during joint development.
Collapse
|
10
|
The role of intravenous immunoglobulins in the treatment of rheumatoid arthritis. Autoimmun Rev 2015; 14:651-8. [PMID: 25870941 DOI: 10.1016/j.autrev.2015.04.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 04/02/2015] [Indexed: 12/11/2022]
Abstract
Intravenous immunoglobulins (IVIGs) are beneficial and safe for various diseases other than primary immunodeficiencies. Over the years, IVIG has been given for autoimmune diseases as an off-label adjunct therapy. While other biologic agents are indicated for rheumatoid arthritis (RA), IVIG may have a role for specific subgroups of RA patients where anti-cytokine blockers or rituximab may be unwarranted. Such subgroups may include patients with vasculitis, overlap rhupus syndrome, severe infections with active disease, and pregnancy. In addition, IVIG may be considered for juvenile chronic arthritis (JCA) and adult Still's disease. We review the literature for IVIG treatment in RA patients and for these subgroups.
Collapse
|
11
|
Xu P, Lou XL, Chen C, Yang ZW. Effects of peroxisome proliferator-activated receptor-γ activation on apoptosis in rats with acute pancreatitis. Dig Dis Sci 2013; 58:3516-23. [PMID: 24185678 DOI: 10.1007/s10620-013-2842-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 08/08/2013] [Indexed: 01/12/2023]
Abstract
PURPOSE To investigate the effects and mechanisms of peroxisome proliferator-activated receptor-γ (PPAR-γ) activation on the induction of apoptosis in rats with acute pancreatitis. METHODS Severe acute pancreatitis (SAP) and mild acute pancreatitis (MAP) were induced and pre-treated with pioglitazone, which is a ligand of PPAR-γ. The expression of inflammatory factors (TNF-α and IL6) of the pancreas was detected by ELISA. The apoptosis in pancreas were detected by TUNEL assay and the activity of caspase 3 was determined. Phosphorylation of p65 in pancreas of SAP or MAP was determined by western-blot. RESULTS Expression levels of PPAR-γ proteins were elevated in the pancreases of SAP or MAP rats pre-injected with pioglitazone intraperitoneally. Downregulation of the expression TNF-α and IL6 and relief of pathological changes in the pancreas suggested that pioglitazone had protective effects on acute panceatitis. In pioglitazone pre-treated groups, a TUNEL assay indicated a high level of apoptosis in SAP but little apoptosis in MAP, showing pioglitazone could promote taurocholate-induced apoptosis but inhibit ceruleininduced apoptosis in pancraeatic aniniar cells. Furthermore, caspase 3 activity was high in SAP but low in MAP, implying that the apoptotic mechanism in pancreatic acinar cells of AP rats was correlated with caspase 3 activity. Phosphorylation of p65 was reduced in SAP or MAP group pretreated with pioglitazone, indicating that pioglitazone reduced the inflammation reaction by inhibiting the activation of the NF-κB. CONCLUSIONS These results indicated that activation of PPAR-γ induced apoptosis in pancreatic acinar cells of SAP rats but inhibited apoptosis in pancraeatic acinar cells of MAP rats, which demonstrated that PPAR-γ may be an efficiently therapeutic target in pancreatic inflammation.
Collapse
Affiliation(s)
- Ping Xu
- Department of Gastroenterology, Songjiang Hospital Affiliated First People's Hospital, Shanghai Jiao Tong University, Shanghai, 201600, China,
| | | | | | | |
Collapse
|
12
|
Peluso JJ. Progesterone receptor membrane component 1 and its role in ovarian follicle growth. Front Neurosci 2013; 7:99. [PMID: 23781168 PMCID: PMC3680780 DOI: 10.3389/fnins.2013.00099] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 05/22/2013] [Indexed: 12/11/2022] Open
Abstract
Progesterone (P4) is synthesized in the ovary and acts directly on granulosa cells of developing ovarian follicles to suppress their rate of mitosis and apoptosis. Granulosa cells do not express nuclear progesterone receptor (PGR) but rather progesterone receptor membrane component-1 (PGRMC1). PGRMC1 binds P4 and mediates P4's actions, as evidenced by PGRMC1 siRNA studies. PGRMC1 acts by binding plasminogen activator inhibitor 1 RNA-binding protein and regulating gene expression. Specifically, PGRMC1 suppresses some genes that promote cell death (i.e., Bad, Caspase-3, Caspase-4). P4 regulates gene expression in part by inhibiting PGRMC1 binding to Tcf/Lef transcription sites, thereby reducing Tcf/Lef transcriptional activity. Since Tcf/Lef transcription sites are located within the promoters of genes that initiate mitosis and/or apoptosis (i.e., c-jun and c-myc), P4-PGRMC1 mediated suppression of these Tcf/Lef regulated genes could account for P4's actions. PGRMC1 expression is also altered in women with polycystic ovarian syndrome, premature ovarian failure and infertility. Collectively, these observations support a role for PGRMC1 in regulating human ovarian follicle development.
Collapse
Affiliation(s)
- John J Peluso
- Department of Cell Biology, University of Connecticut Health Center Farmington CT, USA ; Department of Obstetrics and Gynecology, University of Connecticut Health Center Farmington CT, USA
| |
Collapse
|
13
|
Dipeptidyl peptidases in atherosclerosis: expression and role in macrophage differentiation, activation and apoptosis. Basic Res Cardiol 2013; 108:350. [DOI: 10.1007/s00395-013-0350-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 03/18/2013] [Accepted: 04/06/2013] [Indexed: 12/20/2022]
|
14
|
Im HJ, Li X, Chen D, Yan D, Kim J, Ellman MB, Stein GS, Cole B, Kc R, Cs-Szabo G, van Wijnen AJ. Biological effects of the plant-derived polyphenol resveratrol in human articular cartilage and chondrosarcoma cells. J Cell Physiol 2012; 227:3488-97. [PMID: 22252971 DOI: 10.1002/jcp.24049] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The natural phytoestrogen resveratrol (RSV) may have therapeutic potential for arthritic conditions. RSV is chondroprotective for articular cartilage in rabbit models for arthritis, but its biological effects on human articular cartilage and chondrosarcoma cells are unknown. Effects of RSV on human articular cartilage homeostasis were studied by assessing production of matrix-degrading enzymes (MMP-13, ADAMTS4, and ADAMTS5), as well as proteoglycan production and synthesis. The counteractions of RSV against catabolic factors (e.g., FGF-2 or IL-1β) were examined by in vitro and ex vivo using monolayer, three-dimensional alginate beads and cartilage explants cultures, respectively. RSV improves cell viability of articular chondrocytes and effectively antagonizes cartilage-degrading protease production that was initiated by catabolic and/or anti-anabolic cytokines in human articular chondrocytes. RSV significantly also enhances BMP7-promoted proteoglycan synthesis as assessed by (35) S-sulfate incorporation. Protein-DNA interaction arrays suggest that RSV inhibits the activation of transcription factors involved in inflammation and cartilage catabolic signaling pathways, including direct downstream regulators of MAPK (e.g., AP-1, PEA3) and NFκB. RSV selectively compromises survival of human chondrosarcoma cells, but not primary articular chondrocytes, revealing cell-specific activity of RSV on non-tumorigenic versus tumor-derived cells. We propose that RSV exerts its chondroprotective functions, in part, by deactivating p53-induced apoptosis in human primary chondrocytes, but not human chondrosarcoma. Our findings suggest that RSV has potential as a unique biologic treatment for both prevention and treatment of cartilage degenerative diseases.
Collapse
Affiliation(s)
- Hee-Jeong Im
- Department of Biochemistry, Rush University Medical Center, Chicago, IL, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Yun SM, Cho SJ, Song JC, Song SY, Jo SA, Jo C, Yoon K, Tanzi RE, Choi EJ, Koh YH. SUMO1 modulates Aβ generation via BACE1 accumulation. Neurobiol Aging 2012; 34:650-62. [PMID: 22975420 DOI: 10.1016/j.neurobiolaging.2012.08.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 07/25/2012] [Accepted: 08/02/2012] [Indexed: 01/03/2023]
Abstract
Accumulation of disease-related proteins is a characteristic event observed in the pathogenesis of neurodegenerative diseases. β-secretase (BACE)-1, which initiates generation of β-amyloid (Aβ), is increased in the Alzheimer's diseased brain. However, the mechanisms of BACE1 accumulation in Alzheimer's disease are largely unknown. In this report, we found that small ubiquitin-like modifier (SUMO)-1 interacts with the dileucine motif of BACE1 and regulates the level of BACE1 protein. This was proved by the coimmunoprecipitation, and gain or loss of function experiments. Altering 3 SUMO isoforms affects BACE1 protein levels, and consequently results in altered amyloid precursor protein processing and Aβ generation. BACE1 levels were increased in response to Aβ or apoptosis, but not in cells lacking SUMO1. Aβ increased SUMO1 protein levels in rat cortical neurons. Moreover, SUMO1 immunoreactivity was increased in the amyloid precursor protein transgenic mice. Furthermore, the C-terminus fragments of BACE1 containing dileucine motif reduced Aβ generation by SUMO1 overexpression. Our study indicates SUMO1 is not only a novel and potent regulator of BACE1 accumulation and Aβ generation but also a potential therapeutic target for Alzheimer's disease.
Collapse
Affiliation(s)
- Sang-Moon Yun
- Division of Brain Diseases, Center for Biomedical Sciences, Korea National Institute of Health, Chungcheongbuk-do, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Transcriptional control of metabolic and inflammatory pathways by nuclear receptor SUMOylation. Biochim Biophys Acta Mol Basis Dis 2011; 1812:909-18. [DOI: 10.1016/j.bbadis.2010.12.008] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 12/08/2010] [Accepted: 12/09/2010] [Indexed: 02/07/2023]
|
17
|
Osteoarthritic tissues modulate functional properties of sensory neurons associated with symptomatic OA pain. Mol Biol Rep 2011; 38:5335-9. [PMID: 21327824 DOI: 10.1007/s11033-011-0684-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 02/04/2011] [Indexed: 02/07/2023]
Abstract
Osteoarthritis (OA) is an age-related degenerative disease of cartilaginous tissues that is accompanied by hyperalgesia. Molecular cause and effect relationships between OA and pain remain to be elucidated. In this study, we have developed an experimental ex vivo organ co-culture system with dorsal root ganglia (DRGs) and knee synovial tissues from OA patients or unaffected human subjects. Our results suggest that tissues may generate symptomatic pain by altering the functional properties of sensory neurons. Specifically, we find that the expression levels of genes associated with neuronal pathways (e.g., SP, NK1, NK2, NPYR1, NPYR2, α2δ1) or inflammation (COX2/PTGS2 and IL6/interferon β2) are clearly elevated in DRG explants cultured in the presence of OA derived synovial tissues. These findings are consistent with a model in which cytokines and pain molecules produced by knee synovium sensitize nociceptive neurons in tissues peripheral to joint cartilage.
Collapse
|
18
|
Roles of Small Ubiquitin-Related Modifiers in Male Reproductive Function. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 288:227-59. [DOI: 10.1016/b978-0-12-386041-5.00006-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|