1
|
Stokes JV, Walker DH, Varela-Stokes AS. The guinea pig model for tick-borne spotted fever rickettsioses: A second look. Ticks Tick Borne Dis 2020; 11:101538. [PMID: 32993947 PMCID: PMC7530330 DOI: 10.1016/j.ttbdis.2020.101538] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/22/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022]
Abstract
The guinea pig (Cavia porcellus) has an established track record as an animal model, with its utility in rickettsial research documented as early as the turn of the 20th century. From identifying Rickettsia rickettsii as the agent of Rocky Mountain spotted fever and ticks as the natural transmission route to evaluating protective immunity and treatment for tick-borne rickettsiae, guinea pigs have been essential for advances in our understanding of spotted fever rickettsioses (SFR). Tick feeding on guinea pigs is feasible and results in transmission of tick-borne rickettsiae. The resulting infection leads to the recapitulation of SFR as defined by clinical signs that include fever, unthrift, and in the case of transmission by a Rickettsia parkeri-infected Amblyomma maculatum tick, a characteristic eschar at the site of the bite. No other small animal model recapitulates SFR, is large enough to collect multiple blood and skin samples for longitudinal studies, and has an immune system as similar to the human immune system. In the 1980s, the use of the guinea pig was significantly reduced due to advances made to the more reproductively prolific and inexpensive murine model. These advances included the development of genetically modified murine strains, which resulted in the expansion of murine-specific reagents and assays. Still, the advantages of the guinea pig as a model for SFR persist, novel assays are being developed to better monitor guinea pig immune responses, and tools, like CRISPR/Cas9, are now available. These technical advances allow guinea pigs to again contribute to our understanding of SFR. Importantly, returning to the guinea pig model with enhanced tools will enable rickettsial researchers to corroborate and potentially refine results acquired using mice. This minireview summarizes Cavia porcellus as an animal model for human tick-borne rickettsial diseases.
Collapse
Affiliation(s)
- John V Stokes
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA
| | - David H Walker
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Andrea S Varela-Stokes
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA.
| |
Collapse
|
2
|
Omanakuttan M, Konatham HR, Dirisala VR, Jeevan A, Mawatwal S, Dhiman R, Ly LH, McMurray D. Prokaryotic Expression, In Vitro Biological Analysis, and In Silico Structural Evaluation of Guinea Pig IL-4. Mol Biotechnol 2020; 62:104-110. [PMID: 31758487 DOI: 10.1007/s12033-019-00227-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Interleukin-4 is a signature cytokine of T-helper type 2 (Th2) cells that play a major role in shaping immune responses. Its role in highly relevant animal model of tuberculosis (TB) like guinea pig has not been studied till date. In the current study, the guinea pig IL-4 gene was cloned and expressed using a prokaryotic expression vector (pET30 a(+)). This approach yielded a recombinant protein of 19 kDa as confirmed by mass spectrometry analysis and named as recombinant guinea pig (rgp)IL-4 protein. The authenticity of the expression of rgpIL-4 protein was further verified through polyclonal anti-IL4 antiserum raised in rabbits that showed specific and strong binding with the recombinant protein. The biological activity of the rgpIL-4 was ascertained in RAW264.7 cells where LPS-treated nitric oxide (NO) production was found to be suppressed in the presence of this protein. The three-dimensional structure of guinea pig IL-4 was predicted by utilizing the template structure of human interleukin-4, which shared a sequence homology of 58%. The homology modeling result showed clear resemblance of guinea pig IL-4 structure with the human IL-4. Taken together, our study indicates that the newly expressed, biologically active rgpIL-4 protein could provide deeper understanding of the immune responses in guinea pig to different infectious diseases like TB and non-infectious ones.
Collapse
Affiliation(s)
- Madhavan Omanakuttan
- Department of Biotechnology, Vignan's Foundation for Science, Technology & Research, Guntur, Andhra Pradesh, 522213, India
| | - Hanumohan R Konatham
- Department of Biotechnology, Vignan's Foundation for Science, Technology & Research, Guntur, Andhra Pradesh, 522213, India
| | - Vijaya R Dirisala
- Department of Biotechnology, Vignan's Foundation for Science, Technology & Research, Guntur, Andhra Pradesh, 522213, India.
| | - Amminikutty Jeevan
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science Center, College Station, TX, 77843, USA
| | - Shradha Mawatwal
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Rohan Dhiman
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Lan H Ly
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science Center, College Station, TX, 77843, USA
| | - David McMurray
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science Center, College Station, TX, 77843, USA
| |
Collapse
|
3
|
Animal Models of Tuberculosis Vaccine Research: An Important Component in the Fight against Tuberculosis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4263079. [PMID: 32025519 PMCID: PMC6984742 DOI: 10.1155/2020/4263079] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/25/2019] [Accepted: 08/20/2019] [Indexed: 12/23/2022]
Abstract
Tuberculosis (TB), an infectious disease caused by Mycobacterium tuberculosis, is one of the top ten infectious diseases worldwide, and is the leading cause of morbidity from a single infectious agent. M. tuberculosis can cause infection in several species of animals in addition to humans as the natural hosts. Although animal models of TB disease cannot completely simulate the occurrence and development of human TB, they play an important role in studying the pathogenesis, immune responses, and pathological changes as well as for vaccine research. This review summarizes the commonly employed animal models, including mouse, guinea pig, rabbit, rat, goat, cattle, and nonhuman primates, and their characteristics as used in TB vaccine research, and provides a basis for selecting appropriate animal models according to specific research needs. Furthermore, some of the newest animal models used for TB vaccine research (such as humanized animal models, zebrafish, Drosophila, and amoeba) are introduced, and their characteristics and research progress are discussed.
Collapse
|
4
|
Molecular and biochemical characterization of recombinant guinea pig tumor necrosis factor-alpha. Mediators Inflamm 2015; 2015:619480. [PMID: 25999670 PMCID: PMC4427127 DOI: 10.1155/2015/619480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 03/20/2015] [Accepted: 03/30/2015] [Indexed: 12/15/2022] Open
Abstract
Tumor necrosis factor alpha (TNF-α) is a cytokine which plays opposing roles in the context of infectious disease pathogenesis. TNF-α is essential for the development of a protective immune response to some pathogens, for example, Mycobacterium tuberculosis, by synergizing with other cytokines. However, exorbitant or uncontrolled TNF-α activity may also drive pathology and disease symptoms in many infectious diseases. In order to elucidate the beneficial and detrimental roles of TNF-α in tuberculosis (TB) and other diseases for which the guinea pig is the small animal model of choice, recombinant guinea pig (rgp)TNF-α has been produced using prokaryotic expression systems. However, it is unknown whether posttranslational modifications which cannot be made in the prokaryotic expression systems may be important for rgpTNF-α structure and function. Therefore, we carried out a comparative study by expressing rgpTNF-α in prokaryotic and eukaryotic expression systems and analyzed the eukaryotic-expressed rgpTNF-α for the presence of posttranslational modifications by subjecting it to NanoLC-MS/MS. We conclude that the eukaryotic-expressed rgpTNF-α lacks posttranslational modifications, and we found no significant difference in terms of the biological activity between prokaryotic- and eukaryotic-expressed rgpTNF-α. Taken together, results from our study show that a prokaryotic expression system can be used for generating large amounts of rgpTNF-α without concern for the biological integrity.
Collapse
|
5
|
Dirisala VR, Jeevan A, Ramasamy SK, McMurray DN. Molecular cloning, expression, and in silico structural analysis of guinea pig IL-17. Mol Biotechnol 2014; 55:277-87. [PMID: 23813049 DOI: 10.1007/s12033-013-9679-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Interleukin-17A (IL-17A) is a potent proinflammatory cytokine and the signature cytokine of Th17 cells, a subset which is involved in cytokine and chemokine production, neutrophil recruitment, promotion of T cell priming, and antibody production. IL-17 may play an important role in tuberculosis and other infectious diseases. In preparation for investigating its role in the highly relevant guinea pig model of pulmonary tuberculosis, we cloned guinea pig IL-17A for the first time. The complete coding sequence of the guinea pig IL-17A gene (477 nucleotides; 159 amino acids) was subcloned into a prokaryotic expression vector (pET-30a) resulting in the expression of a 17 kDa recombinant guinea pig IL-17A protein which was confirmed by mass spectrometry analysis. Homology modeling of guinea pig IL-17A revealed that the three-dimensional structure resembles that of human IL-17A. The secondary structure predicted for this protein showed the presence of one extra helix in the N-terminal region. The expression profile of IL-17A was analyzed quantitatively in spleen, lymph node, and lung cells from BCG-vaccinated guinea pigs by real-time PCR. The guinea pig IL-17A cDNA and its recombinant protein will serve as valuable tools for molecular and immunological studies in the guinea pig model of pulmonary TB and other human diseases.
Collapse
Affiliation(s)
- Vijaya R Dirisala
- Department of Microbial and Molecular Pathogenesis, College of Medicine, Texas A&M Health Science Center, College Station, TX, 77843-1114, USA,
| | | | | | | |
Collapse
|
6
|
Dirisala VR, Jeevan A, Ly LH, McMurray DN. Prokaryotic expression and in vitro functional analysis of IL-1β and MCP-1 from guinea pig. Mol Biotechnol 2013; 54:312-9. [PMID: 22744745 PMCID: PMC3594633 DOI: 10.1007/s12033-012-9574-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Guinea pig (Cavia porcellus) is an excellent animal model for studying human tuberculosis (TB) and also for a number of other infectious and non-infectious diseases. One of the major roadblocks in effective utilization of this animal model is the lack of readily available immunological reagents. In order to address this issue, guinea pig interleukin 1 beta (IL-1β) and monocyte chemoattractant protein-1 (MCP-1) were efficiently cloned and expressed in a prokaryotic expression vector, and the expressed proteins in soluble form from both the genes were confirmed by N-terminal sequencing. The biological activity of recombinant guinea pig IL-1β was demonstrated by its ability to drive proliferation in thymocytes, and the recombinant guinea pig MCP-1 exhibited chemotactic activity for guinea pig resident peritoneal macrophages. These biologically active recombinant guinea pig proteins will facilitate an in-depth understanding of the role they play in the immune responses of the guinea pig to TB and other diseases.
Collapse
Affiliation(s)
- Vijaya R Dirisala
- Department of Microbial and Molecular Pathogenesis, Texas A&M Health Science Center, College Station, TX, USA.
| | | | | | | |
Collapse
|
7
|
Roh IS, Cho S, Eum SY, Cho SN. Kinetics of IFN-gamma and TNF-alpha gene expression and their relationship with disease progression after infection with Mycobacterium tuberculosis in guinea pigs. Yonsei Med J 2013; 54:707-14. [PMID: 23549819 PMCID: PMC3635641 DOI: 10.3349/ymj.2013.54.3.707] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
PURPOSE Guinea pig is one of the most suitable animal models for Mycobacterium tuberculosis (M. tb) infection since it shows similarities to pulmonary infection in humans. Although guinea pig shows hematogenous spread of M. tb infection into the whole body, immunological studies have mainly focused on granulomatous tissues in lungs and spleens. In order to investigate the time-course of disease pathogenesis and immunological profiles in each infected organ, we performed the following approaches with guinea pigs experimentally infected with M. tb over a 22-week post-infection period. MATERIALS AND METHODS We examined body weight changes, M. tb growth curve, cytokine gene expression (IFN-γ and TNF-α), and histopathology in liver, spleen, lungs and lymph nodes of infected guinea pigs. RESULTS The body weights of infected guinea pigs did not increase as much as uninfected ones and the number of M. tb bacilli in their organs increased except bronchotracheal lymph node during the experimental period. The gene expression of IFN-γ and TNF-α was induced between 3 and 6 weeks of infection; however, kinetic profiles of cytokine gene expression showed heterogeneity among organs over the study period. Histophathologically granulomatous lesions were developed in all four organs of infected guinea pigs. CONCLUSION Although IFN-γ and TNF-α gene expression profiles showed heterogeneity, the granuloma formation was clearly observed in every organ regardless of whether the number of bacilli increased or decreased. However, this protective immunity was accompanied with severe tissue damage in all four organs, which may lead to the death of guinea pigs.
Collapse
Affiliation(s)
- In Soon Roh
- Department of Microbiology, Yonsei University College of Medicine, Seoul, Korea
- Animal, Plant and Fisheries Quarantine and Inspection Agency, Anyang, Korea
| | - Sungae Cho
- Institute of Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Korea
- Basic Science Institute for Cell Damage Control, Sogang University, Seoul, Korea
| | - Seok-Yong Eum
- Division of Immunopathology and Cellular Immunology, International Tuberculosis Research Center, Changwon, Korea
| | - Sang-Nae Cho
- Department of Microbiology, Yonsei University College of Medicine, Seoul, Korea
- Institute of Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
8
|
Jeevan A, Formichella CR, Russell KE, Dirisala VR. Guinea pig skin, a model for epidermal cellular and molecular changes induced by UVR in vivo and in vitro: effects on Mycobacterium bovis Bacillus Calmette-Guérin vaccination. Photochem Photobiol 2012; 89:189-98. [PMID: 22882532 DOI: 10.1111/j.1751-1097.2012.01218.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 07/22/2012] [Indexed: 11/27/2022]
Abstract
Previously, we reported that ultraviolet B-radiation (UVR) suppressed Bacillus Calmette-Guérin (BCG) vaccine-induced resistance to Mycobacterium tuberculosis in guinea pigs (GP). Herein, we investigated the cellular and molecular changes within the irradiated GP epidermis and the in vivo effect of supernatants from UV-irradiated (200 J m(-2)) epidermal cells (UV-sup) on M. bovis BCG vaccination. UVR increased the number of nucleated keratinocytes in the skin, but caused a decrease in the proportions of CD25(+)T cells. In the spleen, UVR resulted in a decrease in the proportions of T-cell subsets including CD25(+)T cells, and major histocompatibility complex (MHC) class II(+) and CD14(+) cells. Similarly, significant up-regulation of several cytokine mRNAs including IL-10 was also observed. Furthermore, UV-sup significantly reduced the MHC class II expression in peritoneal cells and reduced T-cell proliferation to ConA. The proliferation to purified protein derivative (PPD) was restored to normal levels by anti-IL-10 antibody. The UV-sup when injected into BCG-vaccinated GP significantly diminished the skin test response and T-cell proliferation to PPD and up-regulated the expression of IL-10, IL-4, IL-1β and Foxp3 mRNAs in the lymph node or spleen. Thus, whole body UVR induces profound cellular and molecular changes and injection of UV-sup from epidermal cells mimics the effect of whole body UVR in BCG-vaccinated GP.
Collapse
Affiliation(s)
- Amminikutty Jeevan
- Microbial and Molecular Pathogenesis, Texas A&M Health Science Center, College Station, TX, USA.
| | | | | | | |
Collapse
|