1
|
Jomrich G, Kollmann D, Yan W, Winkler D, Paireder M, Gensthaler L, Puhr HC, Ilhan-Mutlu A, Asari R, Schoppmann SF. Overexpression of Fibroblast Growth Factor 8 Is a Predictor of Impaired Survival in Esophageal Squamous Cell Carcinoma and Correlates with ALK/EML4 Alteration. Cancers (Basel) 2024; 16:3624. [PMID: 39518064 PMCID: PMC11545777 DOI: 10.3390/cancers16213624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/15/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
FGF8, ALK, and EML4 have been identified as promising biomarkers in a number of malignancies. The aim of this study was to examine the prognostic role of FGF8, ALK, and EML4 in esophageal squamous cell carcinoma (ESCC). Methods: Consecutive patients with ESCC who underwent upfront resection were included in this study. ALK and EML4 gene status was evaluated by fluorescence in situ hybridization (FISH) using a triple-color break-apart single-fusion probe and a probe against 2p11. FGF8, ALK, and EML4 protein expression was determined by immunohistochemistry. Results: A total of 122 patients were included in this study. Multivariate analysis revealed that FGF8 overexpression is an independent negative prognostic factor for patients' overall survival (OS) (p = 0.04). Furthermore, a significant correlation between the expression of FGF8, and ALK (p = 0.04) and EML4 (p = 0.01) alteration was found. Conclusions: FGF8 overexpression is an adverse independent prognostic factor in patients with upfront resected ESCC. Furthermore, FGF8 expression significantly correlates with ALK and EML4 amplification and may therefore qualify as a future therapeutic target.
Collapse
Affiliation(s)
- Gerd Jomrich
- Department of General Surgery, Medical University of Vienna and Gastroesophageal Tumor Unit, Comprehensive Cancer Center (CCC), 1090 Vienna, Austria; (G.J.); (D.K.); (W.Y.); (M.P.); (L.G.)
| | - Dagmar Kollmann
- Department of General Surgery, Medical University of Vienna and Gastroesophageal Tumor Unit, Comprehensive Cancer Center (CCC), 1090 Vienna, Austria; (G.J.); (D.K.); (W.Y.); (M.P.); (L.G.)
| | - Winny Yan
- Department of General Surgery, Medical University of Vienna and Gastroesophageal Tumor Unit, Comprehensive Cancer Center (CCC), 1090 Vienna, Austria; (G.J.); (D.K.); (W.Y.); (M.P.); (L.G.)
| | - Daniel Winkler
- Institute for Retailing and Data Science, Vienna University of Economics and Business, 1020 Vienna, Austria; (D.W.); (R.A.)
| | - Matthias Paireder
- Department of General Surgery, Medical University of Vienna and Gastroesophageal Tumor Unit, Comprehensive Cancer Center (CCC), 1090 Vienna, Austria; (G.J.); (D.K.); (W.Y.); (M.P.); (L.G.)
| | - Lisa Gensthaler
- Department of General Surgery, Medical University of Vienna and Gastroesophageal Tumor Unit, Comprehensive Cancer Center (CCC), 1090 Vienna, Austria; (G.J.); (D.K.); (W.Y.); (M.P.); (L.G.)
| | - Hannah Christina Puhr
- Department of Medicine 1, Medical University of Vienna and Gastroesophageal Tumor Unit, Comprehensive Cancer Center (CCC), 1090 Vienna, Austria; (H.C.P.); (A.I.-M.)
| | - Aysegül Ilhan-Mutlu
- Department of Medicine 1, Medical University of Vienna and Gastroesophageal Tumor Unit, Comprehensive Cancer Center (CCC), 1090 Vienna, Austria; (H.C.P.); (A.I.-M.)
| | - Reza Asari
- Institute for Retailing and Data Science, Vienna University of Economics and Business, 1020 Vienna, Austria; (D.W.); (R.A.)
| | - Sebastian F. Schoppmann
- Department of General Surgery, Medical University of Vienna and Gastroesophageal Tumor Unit, Comprehensive Cancer Center (CCC), 1090 Vienna, Austria; (G.J.); (D.K.); (W.Y.); (M.P.); (L.G.)
| |
Collapse
|
2
|
Schuster J, Wendler O, Pesold VV, Koch M, Sievert M, Balk M, Rupp R, Mueller SK. Exosomal Serum Biomarkers as Predictors for Laryngeal Carcinoma. Cancers (Basel) 2024; 16:2028. [PMID: 38893148 PMCID: PMC11171163 DOI: 10.3390/cancers16112028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/18/2024] [Accepted: 05/19/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND The lack of screening methods for LSCC is a critical issue, as treatment options and the treatment outcome greatly depend on the stage of LSCC at initial diagnosis. Therefore, the objective of this study was to identify potential exosomal serum biomarkers that can diagnose LSCC and distinguish between early- and late-stage disease. METHODS A multiplexed proteomic array was used to identify differentially expressed proteins in exosomes isolated from the serum samples of LSCC patients compared to the control group (septorhinoplasty, SRP). The most promising proteins for diagnosis and differentiation were calculated using biostatistical methods and were validated by immunohistochemistry (IHC), Western blots (WB), and ELISA. RESULTS Exosomal insulin-like growth factor binding protein 7 (IGFBP7) and Annexin A1 (ANXA1) were the most promising exosomal biomarkers for distinguishing between control and LSCC patients and also between different stages of LSCC (fold change up to 15.9, p < 0.001 for all). CONCLUSION The identified proteins represent potentially novel non-invasive biomarkers. However, these results need to be validated in larger cohorts with a long-term follow-up. Exosomal biomarkers show a superior signal-to-noise ratio compared to whole serum and may therefore be an important tool for non-invasive biomarker profiling for laryngeal carcinoma in the future.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sarina Katrin Mueller
- Department of Otolaryngology, Head and Neck Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg, Waldstrasse 1, 91054 Erlangen, Germany; (J.S.); (O.W.); (V.-V.P.); (M.K.); (M.S.); (M.B.); (R.R.)
| |
Collapse
|
3
|
Louati K, Maalej A, Kolsi F, Kallel R, Gdoura Y, Borni M, Hakim LS, Zribi R, Choura S, Sayadi S, Chamkha M, Mnif B, Khemakhem Z, Boudawara TS, Boudawara MZ, Safta F. Shotgun Proteomic-Based Approach with a Q-Exactive Hybrid Quadrupole-Orbitrap High-Resolution Mass Spectrometer for Protein Adductomics on a 3D Human Brain Tumor Neurospheroid Culture Model: The Identification of Adduct Formation in Calmodulin-Dependent Protein Kinase-2 and Annexin-A1 Induced by Pesticide Mixture. J Proteome Res 2023; 22:3811-3832. [PMID: 37906427 PMCID: PMC10696604 DOI: 10.1021/acs.jproteome.3c00484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/27/2023] [Accepted: 10/16/2023] [Indexed: 11/02/2023]
Abstract
Pesticides are increasingly used in combinations in crop protection, resulting in enhanced toxicities for various organisms. Although protein adductomics is challenging, it remains a powerful bioanalytical tool to check environmental exposure and characterize xenobiotic adducts as putative toxicity biomarkers with high accuracy, facilitated by recent advances in proteomic methodologies and a mass spectrometry high-throughput technique. The present study aims to predict the potential neurotoxicity effect of imidacloprid and λ-cyhalothrin insecticides on human neural cells. Our protocol consisted first of 3D in vitro developing neurospheroids derived from human brain tumors and then treatment by pesticide mixture. Furthermore, we adopted a bottom-up proteomic-based approach using nanoflow ultraperformance liquid chromatography coupled with a high-resolution mass spectrometer for protein-adduct analysis with prediction of altered sites. Two proteins were selected, namely, calcium-calmodulin-dependent protein kinase-II (CaMK2) and annexin-A1 (ANXA1), as key targets endowed with primordial roles. De novo sequencing revealed several adduct formations in the active site of 82-ANXA1 and 228-CaMK2 as a result of neurotoxicity, predicted by the added mass shifts for the structure of electrophilic precursors. To the best of our knowledge, our study is the first to adopt a proteomic-based approach to investigate in depth pesticide molecular interactions and their potential to adduct proteins which play a crucial role in the neurotoxicity mechanism.
Collapse
Affiliation(s)
- Kaouthar Louati
- Faculty
of Pharmacy, Laboratory of Pharmacology, Analytics & Galenic Drug
Development-LR12ES09, University of Monastir, Road Avicenne, Monastir 5000, Tunisia
| | - Amina Maalej
- Laboratory
of Environmental Bioprocesses, Centre of
Biotechnology of Sfax, Road of Sidi-Mansour, P.O. Box 1177, Sfax 3018, Tunisia
| | - Fatma Kolsi
- Department
of Neurosurgery, Habib Bourguiba University
Hospital, Road El Ain
km 1.5, Avenue of Ferdaous, Sfax 3089, Tunisia
- Faculty
of Medicine, Avenue of Majida Boulila, University
of sfax, Sfax 3029, Tunisia
| | - Rim Kallel
- Laboratory
of Pathological Anatomy and Cytology, Habib
Bourguiba University Hospital, Road El Ain km 1.5, Avenue of Ferdaous, Sfax 3089, Tunisia
- Faculty
of Medicine, Avenue of Majida Boulila, University
of sfax, Sfax 3029, Tunisia
| | - Yassine Gdoura
- Department
of Neurosurgery, Habib Bourguiba University
Hospital, Road El Ain
km 1.5, Avenue of Ferdaous, Sfax 3089, Tunisia
- Faculty
of Medicine, Avenue of Majida Boulila, University
of sfax, Sfax 3029, Tunisia
| | - Mahdi Borni
- Department
of Neurosurgery, Habib Bourguiba University
Hospital, Road El Ain
km 1.5, Avenue of Ferdaous, Sfax 3089, Tunisia
- Faculty
of Medicine, Avenue of Majida Boulila, University
of sfax, Sfax 3029, Tunisia
| | - Leila Sellami Hakim
- Laboratory
of Pathological Anatomy and Cytology, Habib
Bourguiba University Hospital, Road El Ain km 1.5, Avenue of Ferdaous, Sfax 3089, Tunisia
| | - Rania Zribi
- Higher
Institute of Applied Studies to Humanities of Tunis (ISEAHT), University of Tunis, 11 Road of Jebel Lakdhar, Tunis 1005, Tunisia
| | - Sirine Choura
- Laboratory
of Environmental Bioprocesses, Centre of
Biotechnology of Sfax, Road of Sidi-Mansour, P.O. Box 1177, Sfax 3018, Tunisia
| | - Sami Sayadi
- Biotechnology
Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha 2713, Qatar
| | - Mohamed Chamkha
- Laboratory
of Environmental Bioprocesses, Centre of
Biotechnology of Sfax, Road of Sidi-Mansour, P.O. Box 1177, Sfax 3018, Tunisia
| | - Basma Mnif
- Department
of Bacteriology, Habib Bourguiba University
Hospital, Road El Ain
km 1.5, Avenue of Ferdaous, Sfax 3089, Tunisia
- Faculty
of Medicine, Avenue of Majida Boulila, University
of sfax, Sfax 3029, Tunisia
| | - Zouheir Khemakhem
- Legal Medicine
Department, Habib Bourguiba University Hospital, Road El Ain km 1.5, Avenue of Ferdaous, Sfax 3089, Tunisia
- Faculty
of Medicine, Avenue of Majida Boulila, University
of sfax, Sfax 3029, Tunisia
| | - Tahya Sellami Boudawara
- Laboratory
of Pathological Anatomy and Cytology, Habib
Bourguiba University Hospital, Road El Ain km 1.5, Avenue of Ferdaous, Sfax 3089, Tunisia
- Faculty
of Medicine, Avenue of Majida Boulila, University
of sfax, Sfax 3029, Tunisia
| | - Mohamed Zaher Boudawara
- Department
of Neurosurgery, Habib Bourguiba University
Hospital, Road El Ain
km 1.5, Avenue of Ferdaous, Sfax 3089, Tunisia
- Faculty
of Medicine, Avenue of Majida Boulila, University
of sfax, Sfax 3029, Tunisia
| | - Fathi Safta
- Faculty
of Pharmacy, Laboratory of Pharmacology, Analytics & Galenic Drug
Development-LR12ES09, University of Monastir, Road Avicenne, Monastir 5000, Tunisia
| |
Collapse
|
4
|
Ji L, Wang J, Yang B, Zhu J, Wang Y, Jiao J, Zhu K, Zhang M, Zhai L, Gong T, Sun C, Qin J, Wang G. Urinary protein biomarker panel predicts esophageal squamous carcinoma from control cases and other tumors. Esophagus 2022; 19:604-616. [PMID: 35792948 DOI: 10.1007/s10388-022-00932-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/07/2022] [Indexed: 02/03/2023]
Abstract
PURPOSE Discovery of noninvasive urinary biomarkers for the early diagnosis of esophageal squamous carcinoma (ESCC). METHODS We conducted proteomic analyses of 499 human urine samples obtained from healthy individuals (n = 321) and ESCC (n = 83), bladder cancer (n = 17), breast cancer (n = 12), colorectal cancer (n = 16), lung cancer (n = 33) and thyroid cancer (n = 17) patients from multiple medical centers. Those samples were divided into a discovery set (n = 247) and an independent validation set (n = 157). RESULTS Among urinary proteins identified in the comprehensive quantitative proteomics analysis, we selected a panel of three urinary biomarkers (ANXA1, S100A8, TMEM256), and established a logistic regression model in the discovery set that can correctly classify the majority of ESCC cases in the validation sets with the area under the curve (AUC) values of 0.825. This urinary biomarker panel not only discriminates ESCC patients from healthy individuals but also differentiates ESCC from other common tumors. Notably, the panel distinguishes stage I ESCC patients from healthy individuals with AUC values of 0.886. On the analysis of stage-specific biomarkers, another combination panel of protein (ANXA1, S100A8, SOD3, TMEM256) demonstrated a good AUC value of 0.792 for stage I ESCC. CONCLUSIONS Urinary biomarker panel represents a promising auxiliary diagnostic tool for ESCC, including early-stage ESCC.
Collapse
Affiliation(s)
- Linlin Ji
- Department of Thoracic Surgery, Baodi Clinical College, Tianjin Medical University, Tianjin, 301800, China.,State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Jianping Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Bo Yang
- Department of Thoracic Surgery, Baodi Clinical College, Tianjin Medical University, Tianjin, 301800, China.,State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Jianping Zhu
- Department of Thoracic Surgery, Henan Cancer Hospital, Zhengzhou, 450000, China
| | - Yini Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Jiaqi Jiao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Kai Zhu
- Department of Thoracic Surgery, Baodi Clinical College, Tianjin Medical University, Tianjin, 301800, China
| | - Min Zhang
- Department of Oncology, Baodi Clinical College, Tianjin Medical University, Tianjin, 301800, China
| | - Liqiang Zhai
- Department of Oncology, Baodi Clinical College, Tianjin Medical University, Tianjin, 301800, China
| | - Tongqing Gong
- Beijing Pineal Health Management Co., Ltd, Beijing, 102206, China
| | - Changqing Sun
- Joint Center for Translational Medicine, Baodi Clinical College, Tianjin Medical University, Tianjin, 301800, China
| | - Jun Qin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China.
| | - Guangshun Wang
- Department of Thoracic Surgery, Baodi Clinical College, Tianjin Medical University, Tianjin, 301800, China.
| |
Collapse
|
5
|
Wu W, Jia G, Chen L, Liu H, Xia S. Analysis of the Expression and Prognostic Value of Annexin Family Proteins in Bladder Cancer. Front Genet 2021; 12:731625. [PMID: 34484309 PMCID: PMC8414640 DOI: 10.3389/fgene.2021.731625] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 07/27/2021] [Indexed: 01/02/2023] Open
Abstract
Background Bladder cancer (BC) is the most common tumor of the urinary system. Non-muscle-invasive bladder cancer (NMIBC) has a high recurrence rate after surgery, and patients with muscle-invasive bladder cancer (MIBC) have poor quality of life after radical surgery. Understanding the molecular mechanism of bladder cancer is helpful for providing a more appropriate treatment approach. Annexins are calcium-binding proteins and play an important role in different tumor cells. However, the role of the annexin family in bladder cancer has not been studied in detail. Methods ONCOMINE, UALCAN, TIMER2.0, Kaplan-Meier Plotter, cBioPortal, and WebGestalt were utilized in this study. Results ANXA2, ANXA3, ANXA4, ANXA8, and ANXA9 were significantly increased in bladder tumor tissues, while ANXA6, ANXA7, and ANXA11 were significantly decreased. ANXA1, ANXA2, ANXA3, ANXA5, ANXA6, ANXA7, and ANXA9 had prognostic value in bladder cancer. In addition, specific annexins were specifically expressed in different subtypes of MIBC and were related to the histological morphology of bladder tumors. ANXA1, ANXA2, ANXA3, ANXA5, ANXA6, ANXA7, and ANXA8 were highly expressed in basal-subtype MIBC, while ANXA4, ANXA9, ANXA10, and ANXA11 were mainly expressed in luminal-subtype MIBC. Finally, we analyzed the possible mechanisms of ANXAs in different subtypes of bladder cancer through GO and KEGG analyses and the correlation between ANXAs and immune infiltration in the tumor microenvironment. Conclusion Taken together, our results indicate that annexins might play important roles in BC and have the potential to be used as markers for subtype classification.
Collapse
Affiliation(s)
- WenBo Wu
- Department of Urology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - GaoZhen Jia
- Department of Urology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Chen
- Department of Urology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - HaiTao Liu
- Department of Urology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - ShuJie Xia
- Department of Urology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Punicalagin in Cancer Prevention-Via Signaling Pathways Targeting. Nutrients 2021; 13:nu13082733. [PMID: 34444893 PMCID: PMC8400644 DOI: 10.3390/nu13082733] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/02/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022] Open
Abstract
The extract of pomegranate (Punica granatum) has been applied in medicine since ancient times due to its broad-spectrum health-beneficial properties. It is a rich source of hydrolyzable tannins and anthocyanins, exhibiting strong antioxidative, anti-inflammatory, and antineoplastic properties. Anticancer activities of pomegranate with reference to modulated signaling pathways in various cancer diseases have been recently reviewed. However, less is known about punicalagin (Pug), a prevailing compound in pomegranate, seemingly responsible for its most beneficial properties. In this review, the newest data derived from recent scientific reports addressing Pug impact on neoplastic cells are summarized and discussed. Its attenuating effect on signaling circuits promoting cancer growth and invasion is depicted. The Pug-induced redirection of signal-transduction pathways from survival and proliferation into cell-cycle arrest, apoptosis, senescence, and autophagy (thus compromising neoplastic progression) is delineated. Considerations presented in this review are based mainly on data obtained from in vitro cell line models and concern the influence of Pug on human cervical, ovarian, breast, lung, thyroid, colorectal, central nervous system, bone, as well as other cancer types.
Collapse
|
7
|
Li L, Wang Z, Lu T, Li Y, Pan M, Yu D, Hu G. Expression and Functional Relevance of ANXA1 in Hypopharyngeal Carcinoma with Lymph Node Metastasis. Onco Targets Ther 2021; 14:1387-1399. [PMID: 33658802 PMCID: PMC7920586 DOI: 10.2147/ott.s292287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/11/2021] [Indexed: 12/27/2022] Open
Abstract
Purpose The purpose of this study is to investigate the expression and functional role of Annexin (ANXA1) in lymph node (LN) metastasis of hypopharyngeal carcinoma (HSCC). Methods Differentially expressed genes in tissue from HSCC with or without LN metastasis were obtained from a previous RNA sequencing experiment. The presence of LN metastasis is determined by pathological diagnosis after neck dissection. ANXA1 expression was detected by qRT-PCR and Western blotting. Immunohistochemistry was used to detect the expression of ANXA1 in 74 cases of HSCC and normal control tissues. We also evaluated the clinical significance of ANXA1 in HSCC. Differentially expressed genes related to ANXA1 were analyzed using bioinformatic tools, and potential mechanisms of action of ANXA1 were assessed using in vitro experiments. In these in vitro experiments, cell proliferation was detected by CCK8 staining, and colony formation, migration and invasion were assessed using Transwell assays, and apoptosis as well as cell cycle status were quantified by flow cytometry. Results ANXA1 was significantly downregulated in HSCC with LN metastasis. The survival rate of patients with low ANXA1 expression was significantly worse than that of patients with high ANXA1 expression (p<0.05). Silencing ANXA1 in cell culture experiments promoted the proliferation, migration and invasion of FaDu cells, inhibited apoptosis, and increased the proportion of cells in S phase. We furthermore found that the mRNA expression of ANXA1 was positively correlated with Yap1 expression (p<0.0001). Our in vitro experiments showed that ANXA1 regulates the expression of Yap1, and over-expression of Yap1 could reverse the effect of ANXA1 silencing on cancer cell progression. Conclusion Our findings suggest that ANXA1 is a putative LN metastasis suppressor gene in tumor, which may suppress the LN metastasis of HSCC by regulating the expression of Yap1.
Collapse
Affiliation(s)
- Lei Li
- Department of Otolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Zhihai Wang
- Department of Otolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Tao Lu
- Department of Otolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Yanshi Li
- Department of Otolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Min Pan
- Department of Otolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Dan Yu
- Department of Otolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Guohua Hu
- Department of Otolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
8
|
Yang X, Suo C, Zhang T, Yin X, Man J, Yuan Z, Yu J, Jin L, Chen X, Lu M, Ye W. Targeted proteomics-derived biomarker profile develops a multi-protein classifier in liquid biopsies for early detection of esophageal squamous cell carcinoma from a population-based case-control study. Biomark Res 2021; 9:12. [PMID: 33597040 PMCID: PMC7890600 DOI: 10.1186/s40364-021-00266-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/04/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Early diagnosis of esophageal squamous cell carcinoma (ESCC) remains a challenge due to the lack of specific blood biomarkers. We aimed to develop a serum multi-protein signature for the early detection of ESCC. METHODS We selected 70 healthy controls, 30 precancerous patients, 60 stage I patients, 70 stage II patients and 70 stage III/IV ESCC patients from a completed ESCC case-control study in a high-risk area of China. Olink Multiplex Oncology II targeted proteomics panel was used to simultaneously detect the levels of 92 cancer-related proteins in serum using proximity extension assay. RESULTS We found that 10 upregulated and 13 downregulated protein biomarkers in serum could distinguish the early-stage ESCC from healthy controls, which were validated by the significant dose-response relationships with ESCC pathological progression. Applying least absolute shrinkage and selection operator (LASSO) regression and backward elimination algorithm, ANXA1 (annexin A1), hK8 (kallikrein-8), hK14 (kallikrein-14), VIM (vimentin), and RSPO3 (R-spondin-3) were kept in the final model to discriminate early ESCC cases from healthy controls with an area under curve (AUC) of 0.936 (95% confidence interval: 0.899 ~ 0.973). The average accuracy rates of the five-protein classifier were 0.861 and 0.825 in training and test data by five-fold cross-validation. CONCLUSIONS Our study suggested that a combination of ANXA1, hK8, hK14, VIM and RSPO3 serum proteins could be considered as a potential tool for screening and early diagnosis of ESCC, especially with the establishment of a three-level hierarchical screening strategy for ESCC control.
Collapse
Affiliation(s)
- Xiaorong Yang
- Clinical Epidemiology Unit, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong, China.,Clinical Research Center of Shandong University, Qilu Hospital of Shandong University, Jinan, China
| | - Chen Suo
- Department of Epidemiology and Health Statistics, School of Public Health, Fudan University, Shanghai, China
| | - Tongchao Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Shandong University, Jinan, China
| | - Xiaolin Yin
- Department of Epidemiology and Health Statistics, School of Public Health, Shandong University, Jinan, China
| | - Jinyu Man
- Department of Epidemiology and Health Statistics, School of Public Health, Shandong University, Jinan, China
| | - Ziyu Yuan
- Fudan University Taizhou Institute of Health Sciences, Taizhou, China
| | - Jingru Yu
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Li Jin
- Fudan University Taizhou Institute of Health Sciences, Taizhou, China.,State Key Laboratory of Genetic Engineering, Human Phenome Institute, and School of Life Sciences, Fudan University, Songhu Road 2005, Shanghai, 200438, China
| | - Xingdong Chen
- Fudan University Taizhou Institute of Health Sciences, Taizhou, China. .,State Key Laboratory of Genetic Engineering, Human Phenome Institute, and School of Life Sciences, Fudan University, Songhu Road 2005, Shanghai, 200438, China.
| | - Ming Lu
- Clinical Epidemiology Unit, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong, China. .,Clinical Research Center of Shandong University, Qilu Hospital of Shandong University, Jinan, China. .,Fudan University Taizhou Institute of Health Sciences, Taizhou, China.
| | - Weimin Ye
- Fudan University Taizhou Institute of Health Sciences, Taizhou, China.,Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,Department of Epidemiology and Health Statistics & Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| |
Collapse
|
9
|
Dagamajalu S, Vijayakumar M, Shetty R, Rex DAB, Narayana Kotimoole C, Prasad TSK. Proteogenomic examination of esophageal squamous cell carcinoma (ESCC): new lines of inquiry. Expert Rev Proteomics 2020; 17:649-662. [PMID: 33151123 DOI: 10.1080/14789450.2020.1845146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Introduction: Esophageal squamous cell carcinoma (ESCC), a histopathologic subtype of esophageal cancer is a major cause of cancer-related morbidity and mortality worldwide. This is primarily because patients are diagnosed at an advanced stage by the time symptoms appear. The genomics and mass spectrometry-based proteomics continue to provide important leads toward biomarker discovery for ESCC. However, such leads are yet to be translated into clinical utilities. Areas covered: We gathered information pertaining to proteomics and proteogenomics efforts in ESCC from the literature search until 2020. An overview of omics approaches to discover the candidate biomarkers for ESCC were highlighted. We present a summary of recent investigations of alterations in the level of gene and protein expression observed in biological samples including body fluids, tissue/biopsy and in vitro-based models. Expert opinion: A large number of protein-based biomarkers and therapeutic targets are being used in cancer therapy. Several candidates are being developed as diagnostics and prognostics for the management of cancers. High-resolution proteomic and proteogenomic approaches offer an efficient way to identify additional candidate biomarkers for diagnosis, monitoring of disease progression, prediction of response to chemo and radiotherapy. Some of these biomarkers can also be developed as therapeutic targets.
Collapse
Affiliation(s)
- Shobha Dagamajalu
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University) , Mangalore, India
| | - Manavalan Vijayakumar
- Department of Surgical Oncology, Yenepoya Medical College, Yenepoya (Deemed to Be University) , Mangalore, India
| | - Rohan Shetty
- Department of Surgical Oncology, Yenepoya Medical College, Yenepoya (Deemed to Be University) , Mangalore, India
| | - D A B Rex
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University) , Mangalore, India
| | - Chinmaya Narayana Kotimoole
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University) , Mangalore, India
| | - T S Keshava Prasad
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University) , Mangalore, India
| |
Collapse
|
10
|
Althurwi SI, Yu JQ, Beale P, Huq F. Sequenced Combinations of Cisplatin and Selected Phytochemicals towards Overcoming Drug Resistance in Ovarian Tumour Models. Int J Mol Sci 2020; 21:ijms21207500. [PMID: 33053689 PMCID: PMC7589098 DOI: 10.3390/ijms21207500] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/27/2020] [Accepted: 10/09/2020] [Indexed: 12/19/2022] Open
Abstract
In the present study, cisplatin, artemisinin, and oleanolic acid were evaluated alone, and in combination, on human ovarian A2780, A2780ZD0473R, and A2780cisR cancer cell lines, with the aim of overcoming cisplatin resistance and side effects. Cytotoxicity was assessed by MTT reduction assay. Combination index (CI) values were used as a measure of combined drug effect. MALDI TOF/TOF MS/MS and 2-DE gel electrophoresis were used to identify protein biomarkers in ovarian cancer and to evaluate combination effects. Synergism from combinations was dependent on concentration and sequence of administration. Generally, bolus was most synergistic. Moreover, 49 proteins differently expressed by 2 ≥ fold were: CYPA, EIF5A1, Op18, p18, LDHB, P4HB, HSP7C, GRP94, ERp57, mortalin, IMMT, CLIC1, NM23, PSA3,1433Z, and HSP90B were down-regulated, whereas hnRNPA1, hnRNPA2/B1, EF2, GOT1, EF1A1, VIME, BIP, ATP5H, APG2, VINC, KPYM, RAN, PSA7, TPI, PGK1, ACTG and VDAC1 were up-regulated, while TCPA, TCPH, TCPB, PRDX6, EF1G, ATPA, ENOA, PRDX1, MCM7, GBLP, PSAT, Hop, EFTU, PGAM1, SERA and CAH2 were not-expressed in A2780cisR cells. The proteins were found to play critical roles in cell cycle regulation, metabolism, and biosynthetic processes and drug resistance and detoxification. Results indicate that appropriately sequenced combinations of cisplatin with artemisinin (ART) and oleanolic acid (OA) may provide a means to reduce side effects and circumvent platinum resistance.
Collapse
Affiliation(s)
- Safiah Ibrahim Althurwi
- School of Medical Sciences, University of Sydney, Sydney NSW 2006, Australia; (S.I.A.); (J.Q.Y.)
| | - Jun Q. Yu
- School of Medical Sciences, University of Sydney, Sydney NSW 2006, Australia; (S.I.A.); (J.Q.Y.)
| | - Philip Beale
- Department of Medical Oncology, Concord Repatriation General Hospital, Concord NSW 2137, Australia;
| | - Fazlul Huq
- Eman Research Ltd., Canberra ACT 2609, Australia
- Correspondence: ; Tel.: +61-411235462
| |
Collapse
|
11
|
da Fonseca ACC, Matias D, Geraldo LHM, Leser FS, Pagnoncelli I, Garcia C, do Amaral RF, da Rosa BG, Grimaldi I, de Camargo Magalhães ES, Cóppola-Segovia V, de Azevedo EM, Zanata SM, Lima FRS. The multiple functions of the co-chaperone stress inducible protein 1. Cytokine Growth Factor Rev 2020; 57:73-84. [PMID: 32561134 DOI: 10.1016/j.cytogfr.2020.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/22/2020] [Accepted: 06/02/2020] [Indexed: 12/18/2022]
Abstract
Stress inducible protein 1 (STI1) is a co-chaperone acting with Hsp70 and Hsp90 for the correct client proteins' folding and therefore for the maintenance of cellular homeostasis. Besides being expressed in the cytosol, STI1 can also be found both in the cell membrane and the extracellular medium playing several relevant roles in the central nervous system (CNS) and tumor microenvironment. During CNS development, in association with cellular prion protein (PrPc), STI1 regulates crucial events such as neuroprotection, neuritogenesis, astrocyte differentiation and survival. In cancer, STI1 is involved with tumor growth and invasion, is undoubtedly a pro-tumor factor, being considered as a biomarker and possibly therapeutic target for several malignancies. In this review, we discuss current knowledge and new findings on STI1 function as well as its role in tissue homeostasis, CNS and tumor progression.
Collapse
Affiliation(s)
| | - Diana Matias
- Molecular Bionics Laboratory, Department of Chemistry, University College London, London, WC1H 0AJ, United Kingdom
| | - Luiz Henrique Medeiros Geraldo
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21949-590, Brazil; Université de Paris, PARCC, INSERM, Paris, 75015, France
| | - Felipe Saceanu Leser
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21949-590, Brazil
| | - Iohana Pagnoncelli
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21949-590, Brazil
| | - Celina Garcia
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21949-590, Brazil
| | - Rackele Ferreira do Amaral
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21949-590, Brazil
| | - Barbara Gomes da Rosa
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21949-590, Brazil
| | - Izabella Grimaldi
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21949-590, Brazil
| | - Eduardo Sabino de Camargo Magalhães
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21949-590, Brazil; European Research Institute for the Biology of Aging, University of Groningen, Groningen, 9713 AV, Netherlands
| | - Valentín Cóppola-Segovia
- Departments of Basic Pathology and Cell Biology, Federal University of Paraná, Paraná, RJ, 81531-970, Brazil
| | - Evellyn Mayla de Azevedo
- Departments of Basic Pathology and Cell Biology, Federal University of Paraná, Paraná, RJ, 81531-970, Brazil
| | - Silvio Marques Zanata
- Departments of Basic Pathology and Cell Biology, Federal University of Paraná, Paraná, RJ, 81531-970, Brazil
| | - Flavia Regina Souza Lima
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21949-590, Brazil.
| |
Collapse
|
12
|
Fu Z, Zhang S, Wang B, Huang W, Zheng L, Cheng A. Annexin A1: A double-edged sword as novel cancer biomarker. Clin Chim Acta 2020; 504:36-42. [DOI: 10.1016/j.cca.2020.01.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/22/2020] [Accepted: 01/22/2020] [Indexed: 02/07/2023]
|
13
|
Baracco EE, Petrazzuolo A, Kroemer G. Assessment of annexin A1 release during immunogenic cell death. Methods Enzymol 2019; 629:71-79. [PMID: 31727257 DOI: 10.1016/bs.mie.2019.06.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The protein annexin A1 (ANXA1) belongs to the danger-associated molecular patterns (DAMPs) that alert the innate immune system about tissue perturbations. In the context of immunogenic cell death (ICD), ANXA1 is released from the cytoplasm of dying cells and, once extracellular, acts on formyl peptide receptor 1 (FPR1) expressed on dendritic cells to favor long-term interactions between dying and dendritic cells. As a result, the accumulation of extracellular ANXA1 constitutes one of the hallmarks of ICD. In the past, the detection of ANXA1 was based on semiquantitative immunoblots. More recently, a commercial enzyme-linked immunosorbent assay (ELISA) has been developed to measure ANXA1 in an accurate fashion. Here, we detail the protocol to measure the concentration of ANXA1 in the supernatants of cancer cells treated with chemotherapy.
Collapse
Affiliation(s)
- Elisa Elena Baracco
- Equipe labellisée Ligue Nationale Contre le Cancer, Université Paris Descartes, Université Sorbonne Paris Cité, Université Paris Diderot, Institut National de la Santé et de la Recherche Médicale (INSERM), UMR1138, Centre de Recherche des Cordeliers, Paris, France.
| | - Adriana Petrazzuolo
- Equipe labellisée Ligue Nationale Contre le Cancer, Université Paris Descartes, Université Sorbonne Paris Cité, Université Paris Diderot, Institut National de la Santé et de la Recherche Médicale (INSERM), UMR1138, Centre de Recherche des Cordeliers, Paris, France
| | - Guido Kroemer
- Equipe labellisée Ligue Nationale Contre le Cancer, Université Paris Descartes, Université Sorbonne Paris Cité, Université Paris Diderot, Institut National de la Santé et de la Recherche Médicale (INSERM), UMR1138, Centre de Recherche des Cordeliers, Paris, France; Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France; Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China; Department of Women's and Children's Health, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
14
|
Sheikh MH, Solito E. Annexin A1: Uncovering the Many Talents of an Old Protein. Int J Mol Sci 2018; 19:E1045. [PMID: 29614751 PMCID: PMC5979524 DOI: 10.3390/ijms19041045] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 03/07/2018] [Accepted: 03/15/2018] [Indexed: 12/11/2022] Open
Abstract
Annexin A1 (ANXA1) has long been classed as an anti-inflammatory protein due to its control over leukocyte-mediated immune responses. However, it is now recognized that ANXA1 has widespread effects beyond the immune system with implications in maintaining the homeostatic environment within the entire body due to its ability to affect cellular signalling, hormonal secretion, foetal development, the aging process and development of disease. In this review, we aim to provide a global overview of the role of ANXA1 covering aspects of peripheral and central inflammation, immune repair and endocrine control with focus on the prognostic, diagnostic and therapeutic potential of the molecule in cancer, neurodegeneration and inflammatory-based disorders.
Collapse
Affiliation(s)
- Madeeha H Sheikh
- The William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK.
| | - Egle Solito
- The William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK.
| |
Collapse
|
15
|
Kashyap MK, Abdel-Rahman O. Expression, regulation and targeting of receptor tyrosine kinases in esophageal squamous cell carcinoma. Mol Cancer 2018. [PMID: 29455652 DOI: 10.1186/s12943-018-0790-4,] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Esophageal cancer is one of the most common types of cancer, which is a leading cause of cancer-related death worldwide. Based on histological behavior, it is mainly of two types (i) Esophageal squamous cell carcinoma (ESCC), and (ii) esophageal adenocarcinoma (EAD or EAC). In astronomically immense majority of malignancies, receptor tyrosine kinases (RTKs) have been kenned to play a consequential role in cellular proliferation, migration, and metastasis of the cells. The post-translational modifications (PTMs) including phosphorylation of tyrosine (pY) residue of the tyrosine kinase (TK) domain have been exploited for treatment in different malignancies. Lung cancer where pY residues of EGFR have been exploited for treatment purpose in lung adenocarcinoma patients, but we do not have such kind of felicitously studied and catalogued data in ESCC patients. Thus, the goal of this review is to summarize the studies carried out on ESCC to explore the role of RTKs, tyrosine kinase inhibitors, and their pertinence and consequentiality for the treatment of ESCC patients.
Collapse
Affiliation(s)
- Manoj Kumar Kashyap
- School of Life and Allied Health Sciences, Glocal University, Saharanpur, UP, 247121, India. .,Department of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India.
| | - Omar Abdel-Rahman
- Clinical Oncology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
16
|
Kashyap MK, Abdel-Rahman O. Expression, regulation and targeting of receptor tyrosine kinases in esophageal squamous cell carcinoma. Mol Cancer 2018; 17:54. [PMID: 29455652 PMCID: PMC5817798 DOI: 10.1186/s12943-018-0790-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 02/01/2018] [Indexed: 02/07/2023] Open
Abstract
Esophageal cancer is one of the most common types of cancer, which is a leading cause of cancer-related death worldwide. Based on histological behavior, it is mainly of two types (i) Esophageal squamous cell carcinoma (ESCC), and (ii) esophageal adenocarcinoma (EAD or EAC). In astronomically immense majority of malignancies, receptor tyrosine kinases (RTKs) have been kenned to play a consequential role in cellular proliferation, migration, and metastasis of the cells. The post-translational modifications (PTMs) including phosphorylation of tyrosine (pY) residue of the tyrosine kinase (TK) domain have been exploited for treatment in different malignancies. Lung cancer where pY residues of EGFR have been exploited for treatment purpose in lung adenocarcinoma patients, but we do not have such kind of felicitously studied and catalogued data in ESCC patients. Thus, the goal of this review is to summarize the studies carried out on ESCC to explore the role of RTKs, tyrosine kinase inhibitors, and their pertinence and consequentiality for the treatment of ESCC patients.
Collapse
Affiliation(s)
- Manoj Kumar Kashyap
- grid.449790.7School of Life and Allied Health Sciences, Glocal University, Saharanpur, UP 247121 India
- grid.430140.2Department of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh India
| | - Omar Abdel-Rahman
- 0000 0004 0621 1570grid.7269.aClinical Oncology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
17
|
Yazdian-Robati R, Ahmadi H, Riahi MM, Lari P, Aledavood SA, Rashedinia M, Abnous K, Ramezani M. Comparative proteome analysis of human esophageal cancer and adjacent normal tissues. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2017; 20:265-271. [PMID: 28392898 PMCID: PMC5378963 DOI: 10.22038/ijbms.2017.8354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Objective(s): Ranking as the sixth commonest cancer, esophageal squamous cell carcinoma (ESCC) represents one of the leading causes of cancer death worldwide. One of the main reasons for the low survival of patients with esophageal cancer is its late diagnosis. Materials and Methods: We used proteomics approach to analyze ESCC tissues with the aim of a better understanding of the malignant mechanism and searching candidate protein biomarkers for early diagnosis of esophageal cancer. The differential protein expression between cancerous and normal esophageal tissues was investigated by two-dimensional polyacrylamide gel electrophoresis (2D-PAGE). Then proteins were identified by matrix-assisted laser desorption/ ionization tandem time-of-flight mass spectrometry (MALDI-TOF/TOF-MS) and MASCOT web based search engine. Results: We reported 4 differentially expressed proteins involved in the pathological process of esophageal cancer, such as annexinA1 (ANXA1), peroxiredoxin-2 (PRDX2), transgelin (TAGLN) andactin-aortic smooth muscle (ACTA2). Conclusion: In this report we have introduced new potential biomarker (ACTA2). Moreover, our data confirmed some already known markers for EC in our region.
Collapse
Affiliation(s)
- Rezvan Yazdian-Robati
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Homa Ahmadi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Matbou Riahi
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parisa Lari
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Amir Aledavood
- Cancer Research Center, Department of Radiation oncology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marzieh Rashedinia
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Nanotechnology Research Center, Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad Iran
| |
Collapse
|
18
|
Zhang C, Ma Q, Shi Y, Li X, Wang M, Wang J, Ge J, Chen Z, Wang Z, Jiang H. A novel 5-fluorouracil-resistant human esophageal squamous cell carcinoma cell line Eca-109/5-FU with significant drug resistance-related characteristics. Oncol Rep 2017; 37:2942-2954. [DOI: 10.3892/or.2017.5539] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 10/31/2016] [Indexed: 11/05/2022] Open
|
19
|
Yu SB, Gao Q, Lin WW, Kang MQ. Proteomic analysis indicates the importance of TPM3 in esophageal squamous cell carcinoma invasion and metastasis. Mol Med Rep 2017; 15:1236-1242. [PMID: 28138712 PMCID: PMC5367371 DOI: 10.3892/mmr.2017.6145] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 11/17/2016] [Indexed: 01/06/2023] Open
Abstract
Numerous esophageal squamous cell carcinoma (ESCC) patients exhibit tumor recurrence following radical resection. Invasion and metastasis are key factors in poor prognosis following esophagectomy. In the present study, two-dimensional gel electrophoresis (2-DE) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry were used to define patterns of protein expression in ESCC tissues at different pathological stages. The expression levels of identified proteins were determined by immunohistochemistry and western blotting. A total of fifteen protein spots with >2-fold differences were observed when comparing results of 2-DE for stage III and stage I ESCC tissue sample. A total of 12 proteins were identified by mass spectrometry analysis and database searches. The results of immunohistochemistry and western blotting demonstrated expression levels of tropomyosin 3 (TPM3) were higher in stage III ESCC tissue compared with stage I (P<0.05). The findings of the present study identified twelve proteins, which are closely associated with ESCC invasion and metastasis, apoptosis and cell signal transduction. Furthermore, the overexpression of TPM3 may be important in ESCC invasion and metastasis.
Collapse
Affiliation(s)
- Shao-Bin Yu
- Second Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Qin Gao
- Department of General Surgery, Fuzhou General Hospital of Nanjing Military Area Command, Fuzhou, Fujian 350025, P.R. China
| | - Wen-Wei Lin
- Second Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Ming-Qiang Kang
- Second Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| |
Collapse
|
20
|
González-Plaza JJ, Hulak N, García-Fuentes E, Garrido-Sánchez L, Zhumadilov Z, Akilzhanova A. Oesophageal squamous cell carcinoma (ESCC): Advances through omics technologies, towards ESCC salivaomics. Drug Discov Ther 2016; 9:247-57. [PMID: 26370523 DOI: 10.5582/ddt.2015.01042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Oesophageal Squamous Cell Carcinoma (ESCC) is one of the two main subtypes of oesophageal cancer, affecting mainly populations in Asia. Though there have been great efforts to develop methods for a better prognosis, there is still a limitation in the staging of this affection. As a result, ESCC is detected at advances stages, when the interventions on the patient do not have such a positive outcome, leading in many cases to recurrence and to a very low 5-year survival rate, causing high mortality. A way to decrease the number of deaths is the use of biomarkers that can trace the advance of the disease at early stages, when surgical or chemotherapeutic methodologies would have a greater effect on the evolution of the subject. The new high throughput omics technologies offer an unprecedented chance to screen for thousands of molecules at the same time, from which a new set of biomarkers could be developed. One of the most convenient types of samples is saliva, an accessible body fluid that has the advantage of being non-invasive for the patient, being easy to store or to process. This review will focus on the current status of the new omics technologies regarding salivaomics in ESCC, or when not evaluated yet, the achievements in related diseases.
Collapse
Affiliation(s)
- Juan José González-Plaza
- Laboratory of Genomic and Personalized Medicine, Center for Life Sciences, PI "National Laboratory Astana", AOE "NazarbayevUniversity"
| | | | | | | | | | | |
Collapse
|
21
|
Brücher BLDM, Li Y, Schnabel P, Daumer M, Wallace TJ, Kube R, Zilberstein B, Steele S, Voskuil JLA, Jamall IS. Genomics, microRNA, epigenetics, and proteomics for future diagnosis, treatment and monitoring response in upper GI cancers. Clin Transl Med 2016; 5:13. [PMID: 27053248 PMCID: PMC4823224 DOI: 10.1186/s40169-016-0093-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 03/29/2016] [Indexed: 12/15/2022] Open
Abstract
One major objective for our evolving understanding in the treatment of cancers will be to address how a combination of diagnosis and treatment strategies can be used to integrate patient and tumor variables with an outcome-oriented approach. Such an approach, in a multimodal therapy setting, could identify those patients (1) who should undergo a defined treatment (personalized therapy) (2) in whom modifications of the multimodal therapy due to observed responses might lead to an improvement of the response and/or prognosis (individualized therapy), (3) who might not benefit from a particular toxic treatment regimen, and (4) who could be identified early on and thereby be spared the morbidity associated with such treatments. These strategies could lead in the direction of precision medicine and there is hope of integrating translational molecular data to improve cancer classifications. In order to achieve these goals, it is necessary to understand the key issues in different aspects of biotechnology to anticipate future directions of personalized and individualized diagnosis and multimodal treatment strategies. Providing an overview of translational data in cancers proved to be a challenge as different methods and techniques used to obtain molecular data are used and studies are based on different tumor entities with different tumor biology and prognoses as well as vastly different therapeutic approaches. The pros and cons of the available methodologies and the potential response data in genomics, microRNA, epigenetics and proteomics with a focus on upper gastrointestinal cancers are considered herein to allow for an understanding of where these technologies stand with respect to cancer diagnosis, prognosis and treatment.
Collapse
Affiliation(s)
- Björn L. D. M. Brücher
- />Theodor-Billroth-Academy®, Munich, Germany
- />Theodor-Billroth-Academy®, Sacramento, CA USA
- />INCORE, International Consortium of Research Excellence of the Theodor-Billroth-Academy®, Munich, Germany
- />INCORE, International Consortium of Research Excellence of the Theodor-Billroth-Academy®, Sacramento, CA USA
- />Bon Secours Cancer Institute, Richmond, VA USA
- />Department of Surgery, Carl-Thiem-Klinikum, Cottbus, Germany
| | - Yan Li
- />Proteogenomics Research Institute for Systems Medicine, San Diego, CA USA
| | - Philipp Schnabel
- />Institute of Pathology, University of Homburg Saar, Homburg, Germany
| | - Martin Daumer
- />Theodor-Billroth-Academy®, Munich, Germany
- />Theodor-Billroth-Academy®, Sacramento, CA USA
- />INCORE, International Consortium of Research Excellence of the Theodor-Billroth-Academy®, Munich, Germany
- />INCORE, International Consortium of Research Excellence of the Theodor-Billroth-Academy®, Sacramento, CA USA
- />Sylvia Lawry Center for MS Research, Munich, Germany
| | | | - Rainer Kube
- />Department of Surgery, Carl-Thiem-Klinikum, Cottbus, Germany
| | | | - Scott Steele
- />Case Western Reserve University, Cleveland, OH USA
- />Department of Surgery, Madigan Army Medical Center, Tacoma, WA USA
| | | | - Ijaz S. Jamall
- />Theodor-Billroth-Academy®, Munich, Germany
- />Theodor-Billroth-Academy®, Sacramento, CA USA
- />INCORE, International Consortium of Research Excellence of the Theodor-Billroth-Academy®, Munich, Germany
- />INCORE, International Consortium of Research Excellence of the Theodor-Billroth-Academy®, Sacramento, CA USA
- />Risk-Based Decisions, Inc., Sacramento, CA USA
| |
Collapse
|
22
|
Berglund E, Daré E, Branca RM, Akcakaya P, Fröbom R, Berggren PO, Lui WO, Larsson C, Zedenius J, Orre L, Lehtiö J, Kim J, Bränström R. Secretome protein signature of human gastrointestinal stromal tumor cells. Exp Cell Res 2015; 336:158-70. [DOI: 10.1016/j.yexcr.2015.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 05/04/2015] [Accepted: 05/05/2015] [Indexed: 01/03/2023]
|
23
|
Wei B, Guo C, Liu S, Sun MZ. Annexin A4 and cancer. Clin Chim Acta 2015; 447:72-8. [PMID: 26048190 DOI: 10.1016/j.cca.2015.05.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 05/26/2015] [Accepted: 05/27/2015] [Indexed: 01/30/2023]
Abstract
Annexin A4 (Anxa4) is one of the Ca(2+)-regulated and phospholipid-binding annexin superfamily proteins. Anxa4 has a potential role in diagnosis, prognosis, and treatment of certain cancers. Studies indicate that Anxa4 up-regulation promotes the progression of tumor and chemoresistance of colorectal cancer (CRC), esophageal squamous cell carcinoma (ESCC), endometrial carcinoma (EC), gastric cancer (GC), chemoresistant lung cancer (LC), malignant mesothelioma (MM), renal cell carcinoma (RCC), ovarian clear cell carcinoma (OCCC), cholangiocarcinoma, hepatocellular carcinoma (HCC), breast cancer (BC), and laryngeal cancer. Interestingly, Anxa4 also might specifically function as a tumor suppressor for prostate cancer (PCa) and have a paradoxical role for pancreatic cancer (PCC). Differential expression of Anxa4 may distinguish major salivary gland tumor (MSGT) from thyroid cancer. In addition, its differential expression was linked to Sirt1-induced cisplatin resistance of oral squamous cell carcinoma (OSCC) and miR-7-induced migration and invasion inhibition of glioma. This current review summarizes and discusses the clinical significance of Anxa4 in cancer as well as its potential mechanisms of action. It may provide new integrative understanding for future studies on the exact role of Anxa4 in cancer.
Collapse
Affiliation(s)
- Bin Wei
- Department of Biotechnology, Dalian Medical University, Dalian 116044, China
| | - Chunmei Guo
- Department of Biotechnology, Dalian Medical University, Dalian 116044, China
| | - Shuqing Liu
- Department of Biochemistry, Dalian Medical University, Dalian 116044, China
| | - Ming-Zhong Sun
- Department of Biotechnology, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
24
|
Karimi P, Shahrokni A, Ranjbar MRN. Implementation of proteomics for cancer research: past, present, and future. Asian Pac J Cancer Prev 2015; 15:2433-8. [PMID: 24761843 DOI: 10.7314/apjcp.2014.15.6.2433] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Cancer is the leading cause of the death, accounts for about 13% of all annual deaths worldwide. Many different fields of science are collaborating together studying cancer to improve our knowledge of this lethal disease, and find better solutions for diagnosis and treatment. Proteomics is one of the most recent and rapidly growing areas in molecular biology that helps understanding cancer from an omics data analysis point of view. The human proteome project was officially initiated in 2008. Proteomics enables the scientists to interrogate a variety of biospecimens for their protein contents and measure the concentrations of these proteins. Current necessary equipment and technologies for cancer proteomics are mass spectrometry, protein microarrays, nanotechnology and bioinformatics. In this paper, we provide a brief review on proteomics and its application in cancer research. After a brief introduction including its definition, we summarize the history of major previous work conducted by researchers, followed by an overview on the role of proteomics in cancer studies. We also provide a list of different utilities in cancer proteomics and investigate their advantages and shortcomings from theoretical and practical angles. Finally, we explore some of the main challenges and conclude the paper with future directions in this field.
Collapse
Affiliation(s)
- Parisa Karimi
- Johns Hopkins Bloomberg School of Public Health, Baltimore, USA E-mail :
| | | | | |
Collapse
|
25
|
Li C, Xia G, Jianqing Z, Mei Y, Ge B, Li Z. Serum differential protein identification of Xinjiang Kazakh esophageal cancer patients based on the two-dimensional liquid-phase chromatography and LTQ MS. Mol Biol Rep 2014; 41:2893-905. [PMID: 24469726 DOI: 10.1007/s11033-014-3145-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 01/13/2014] [Indexed: 01/30/2023]
Abstract
The aim of this study was to investigate the impact of chemo-radiotherapy on serum protein expression of the esophageal cancer patients and discover potential biomarkers by detecting serum proteins mass spectrometry of the healthy Kazakh people in Xinjiang as well as the patients before and after their chemo-radiotherapy. In order to separate and compare the three serum samples (the healthy group's, the patients' before and after chemo-radiotherapy) with two-dimensional protein liquid chromatography system (Proteome LabTM PF-2D), then detect the differential protein spots with linear trap quadruple mass spectrometer (LTQ MS/MS). (1) The Kazakh esophageal cancer patients got 21 expressed protein spots peaks with significant difference after chemo-radiotherapy compared with before; before the treatment there were 10 different expressed protein spots compared with the healthy group, and after it there were four peaks in the expression of protein spots compared with the healthy group. (2) After LTQ mass spectrometric detection, 22 proteins were up-regulated in serum samples of the healthy group, 22 were up-regulated of the patients before medical treatment and 5 were up-regulated after chemo-radiotherapy. (3) 8 proteins including APOA1 can be served as serum markers in Kazakh esophageal cancer diagnosis, and proteins like CLU can be served as serum markers in judging the resistance and sensitivity towards chemo-radiotherapy. (4) The abnormal expressions of APOC2, APOC3, Antithrombin-III in esophageal cancer were discovered for the first time. Specific protein spots related to Xinjiang Kazakh esophageal cancer diagnosis and chemo-radiotherapy can be identified in the serum, which will probably become a maker in Kazakh esophageal cancer diagnosis and therapeutic evaluation.
Collapse
Affiliation(s)
- Cui Li
- Internal Medicine VIP of the First Affiliated Hospital of Xinjiang Medical University, No. 137, Liyushan Road, Xinshi District, Urumqi, 830011, Xinjiang, China
| | | | | | | | | | | |
Collapse
|
26
|
Zhang ZQ, Li XJ, Liu GT, Xia Y, Zhang XY, Wen H. Identification of Annexin A1 protein expression in human gastric adenocarcinoma using proteomics and tissue microarray. World J Gastroenterol 2013; 19:7795-7803. [PMID: 24282368 PMCID: PMC3837281 DOI: 10.3748/wjg.v19.i43.7795] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 09/17/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To study the differential expression of Annexin A1 (ANXA1) protein in human gastric adenocarcinoma. This study was also designed to analyze the relationship between ANXA1 expression and the clinicopathological parameters of gastric carcinoma.
METHODS: Purified gastric adenocarcinoma cells (GAC) and normal gastric epithelial cells (NGEC) were obtained from 15 patients with gastric cancer by laser capture microdissection. All of the peptide specimens were labeled as 18O/16O after trypsin digestion. Differential protein expressions were quantitatively identified between GAC and NGEC by nanoliter-reverse-phase liquid chromatography-mass/mass spectrometry (nano-RPLC-MS/MS). The expressions of ANXA1 in GAC and NGEC were verified by western blot analysis. The tissue microarray containing the expressed ANXA1 in 75 pairs of gastric carcinoma and paracarcinoma specimens was detected by immunohistochemistry (IHC). The relationship between ANXA1 expression and clinicopathological parametes of gastric carcinoma was analyzed.
RESULTS: A total of 78 differential proteins were identified. Western blotting revealed that ANXA1 expression was significantly upregulated in GAC (2.17/1, P < 0.01). IHC results showed the correlations between ANXA1 protein expression and the clinicopathological parameters, including invasive depth (T stage), lymph node metastasis (N stage), distant metastasis (M stage) and tumour-lymph node metastasis stage (P < 0.01). However, the correlations between ANXA1 protein expression and the remaining clinicopathological parameters, including sex, age, histological differentiation and the size of tumour were not found (P > 0.05).
CONCLUSION: The upregulated ANXA1 expression may be associated with carcinogenesis, progression, invasion and metastasis of GAC. This protein could be considered as a biomarker of clinical prognostic prediction and targeted therapy of GAC.
Collapse
|
27
|
Abstract
The annexins are a well-known, closely related, multigene superfamily of Ca2+-regulated, phospholipid-dependent, membrane-binding proteins. As a member of the annexins, Anxa1 participates in a variety of important biological processes, such as cellular transduction, membrane aggregation, inflammation, phagocytosis, proliferation, differentiation and apoptosis. Accumulated evidence has indicated that Anxa1 deregulations are associated with the development, invasion, metastasis, occurrence and drug resistance of cancers. The research evidence in recent years indicates that Anxa1 might specifically function either as a tumor suppressor or a tumor promoter candidate for certain cancers depending on the particular type of tumor cells/tissues. This article summarizes the associations between Anxa1 and malignant tumors, as well as potential action mechanisms. Anxa1 has the potential to be used in the future as a biomarker for the diagnosis, treatment and prognosis of certain tumors.
Collapse
Affiliation(s)
- Chunmei Guo
- Department of Biotechnology, Dalian Medical University, Dalian 116044, China
| | - Shuqing Liu
- Department of Biochemistry, Dalian Medical University, Dalian 116044, China
| | - Ming-Zhong Sun
- Department of Biotechnology, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
28
|
Moghanibashi M, Rastgar Jazii F, Soheili ZS, Zare M, Karkhane A, Parivar K, Mohamadynejad P. Esophageal cancer alters the expression of nuclear pore complex binding protein Hsc70 and eIF5A-1. Funct Integr Genomics 2013; 13:253-60. [PMID: 23539416 DOI: 10.1007/s10142-013-0320-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 02/26/2013] [Accepted: 03/14/2013] [Indexed: 12/13/2022]
Abstract
Nuclear pore complex (NPC) is the only corridor for macromolecules exchange between nucleus and cytoplasm. NPC and its components, nucleoporins, play important role in the diverse physiological processes including macromolecule exchange, chromosome segregation, apoptosis and gene expression. Recent reports also suggest involvement of nucleoporins in carcinogenesis. Applying proteomics, we analyzed expression pattern of the NPC components in a newly established esophageal cancer cell line from Persia (Iran), the high-risk region for esophageal cancer. Our results indicate overexpression of Hsc70 and downregulation of subunit alpha type-3 of proteasome, calpain small subunit 1, and eIF5A-1. Among these proteins, Hsc70 and eIF5A-1 are in direct interaction with NPC and involved in the nucleocytoplasmic exchange. Hsc70 plays a critical role as a chaperone in the formation of a cargo-receptor complex in nucleocytoplasmic transport. On the other hand, it is an NPC-associated protein that binds to nucleoporins and contributes in recycling of the nucleocytoplasmic transport receptors in mammals and affects transport of proteins between nucleus and cytoplasm. The other nuclear pore interacting protein: eIF5A-1 binds to the several nucleoporins and participates in nucleocytoplasmic transport. Altered expression of Hsc70 and eIF5A-1 may cause defects in nucleocytoplasmic transport and play a role in esophageal carcinogenesis.
Collapse
Affiliation(s)
- Mehdi Moghanibashi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | | | | | | | | | | | | |
Collapse
|
29
|
Expression of annexin-A1 and galectin-1 anti-inflammatory proteins and mRNA in chronic gastritis and gastric cancer. Mediators Inflamm 2013; 2013:152860. [PMID: 23431236 PMCID: PMC3574744 DOI: 10.1155/2013/152860] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 12/28/2012] [Indexed: 12/24/2022] Open
Abstract
Objective. The anti-inflammatory proteins annexin-A1 and galectin-1 have been associated with tumor progression. This scenario prompted us to investigate the relationship between the gene and protein expression of annexin-A1 (ANXA1/AnxA1) and galectin-1 (LGALS1/Gal-1) in an inflammatory gastric lesion as chronic gastritis (CG) and gastric adenocarcinoma (GA) and its association with H. pylori infection. Methods. We analyzed 40 samples of CG, 20 of GA, and 10 of normal mucosa (C) by the quantitative real-time PCR (qPCR) technique and the immunohistochemistry assay. Results. High ANXA1 mRNA expression levels were observed in 90% (36/40) of CG cases (mean relative quantification RQ = 4.26 ± 2.03) and in 80% (16/20) of GA cases (mean RQ = 4.38 ± 4.77). However, LGALS1 mRNA levels were high (mean RQ = 2.44 ± 3.26) in 60% (12/20) of the GA cases, while low expression was found in CG (mean RQ = 0.43 ± 3.13; P < 0.01). Normal mucosa showed modest immunoreactivity in stroma but not in epithelium, while stroma and epithelium displayed an intense immunostaining in CG and GA for both proteins. Conclusion. These results have provided evidence that galectin-1 and mainly annexin-A1 are overexpressed in both gastritis and gastric cancer, suggesting a strong association of these proteins with chronic gastric inflammation and carcinogenesis.
Collapse
|
30
|
An iTRAQ-based mitoproteomics approach for profiling the nephrotoxicity mechanisms of ochratoxin A in HEK 293 cells. J Proteomics 2013; 78:398-415. [DOI: 10.1016/j.jprot.2012.10.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 09/28/2012] [Accepted: 10/11/2012] [Indexed: 01/05/2023]
|