1
|
Zhang W, Zhang C, Luo J, Xu H, Liu J, Loor JJ, Shi H. The LXRB-SREBP1 network regulates lipogenic homeostasis by controlling the synthesis of polyunsaturated fatty acids in goat mammary epithelial cells. J Anim Sci Biotechnol 2022; 13:120. [PMID: 36336695 PMCID: PMC9639257 DOI: 10.1186/s40104-022-00774-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/05/2022] [Indexed: 11/09/2022] Open
Abstract
Background In rodents, research has revealed a role of liver X receptors (LXR) in controlling lipid homeostasis and regulating the synthesis of polyunsaturated fatty acids (PUFA). Recent data suggest that LXRB is the predominant LXR subtype in ruminant mammary cells, but its role in lipid metabolism is unknown. It was hypothesized that LXRB plays a role in lipid homeostasis via altering the synthesis of PUFA in the ruminant mammary gland. We used overexpression and knockdown of LXRB in goat primary mammary epithelial cells (GMEC) to evaluate abundance of lipogenic enzymes, fatty acid profiles, content of lipid stores and activity of the stearoyl-CoA desaturase (SCD1) promoter. Results Overexpression of LXRB markedly upregulated the protein abundance of LXRB while incubation with siRNA targeting LXRB markedly decreased abundance of LXRB protein. Overexpression of LXRB plus T0901317 (T09, a ligand for LXR) dramatically upregulated SCD1 and elongation of very long chain fatty acid-like fatty acid elongases 5–7 (ELOVL 5–7), which are related to PUFA synthesis. Compared with the control, cells overexpressing LXRB and stimulated with T09 had greater concentrations of C16:0, 16:1, 18:1n7,18:1n9 and C18:2 as well as desaturation and elongation indices of C16:0. Furthermore, LXRB-overexpressing cells incubated with T09 had greater levels of triacylglycerol and cholesterol. Knockdown of LXRB in cells incubated with T09 led to downregulation of genes encoding elongases and desaturases. Knockdown of LXRB attenuated the increase in triacylglycerol and cholesterol that was induced by T09. In cells treated with dimethylsulfoxide, knockdown of LXRB increased the concentration of C16:0 at the expense of C18:0, while a significant decrease in C18:2 was observed in cells incubated with both siLXRB and T09. The abundance of sterol regulatory element binding transcription factor 1 precursor (pSREBP1) and its mature fragment (nSREBP1) was upregulated by T09, but not LXRB overexpression. In the cells cultured with T09, knockdown of LXRB downregulated the abundance for pSREBP1 and nSREBP1. Luciferase reporter assays revealed that the activities of wild type SCD1 promoter or fragment with SREBP1 response element (SRE) mutation were decreased markedly when LXRB was knocked down. Activity of the SCD1 promoter that was induced by T09 was blocked when the SRE mutation was introduced. Conclusion The current study provides evidence of a physiological link between the LXRB and SREBP1 in the ruminant mammary cell. An important role was revealed for the LXRB-SREBP1 network in the synthesis of PUFA via the regulation of genes encoding elongases and desaturases. Thus, targeting this network might elicit broad effects on lipid homeostasis in ruminant mammary gland. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-022-00774-4.
Collapse
Affiliation(s)
- Wenying Zhang
- grid.13402.340000 0004 1759 700XInstitute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Changhui Zhang
- grid.144022.10000 0004 1760 4150College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
| | - Jun Luo
- grid.144022.10000 0004 1760 4150College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
| | - Huifen Xu
- grid.108266.b0000 0004 1803 0494College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046 China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, 310058, China
| | - Jianxin Liu
- grid.13402.340000 0004 1759 700XInstitute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Juan J. Loor
- grid.35403.310000 0004 1936 9991Mammalian Nutrition Physiology Genomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801 USA
| | - Hengbo Shi
- grid.13402.340000 0004 1759 700XInstitute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, 310058, China
| |
Collapse
|
2
|
Abdelrahman M, Wang W, Shaukat A, Kulyar MFEA, Lv H, Abulaiti A, Yao Z, Ahmad MJ, Liang A, Yang L. Nutritional Modulation, Gut, and Omics Crosstalk in Ruminants. Animals (Basel) 2022; 12:ani12080997. [PMID: 35454245 PMCID: PMC9029867 DOI: 10.3390/ani12080997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Over the last decade, animal nutrition science has been significantly developed, supported by the great advancements in molecular technologies. For scientists, the present "feedomics and nutrigenomics" era continues to evolve and shape how research is designed, performed, and understood. The new omics interpretations have established a new point of view for the nutrition–gene interaction, integrating more comprehensive findings from animal physiology, molecular genetics, and biochemistry. In the ruminant model, this modern approach addresses rumen microbes as a critical intermediate that can deepen the studies of diet–gut interaction with host genomics. The present review discusses nutrigenomics’ and feedomics’ potential contribution to diminishing the knowledge gap about the DNA cellular activities of different nutrients. It also presents how nutritional management can influence the epigenetic pathway, considering the production type, life stage, and species for more sustainable ruminant nutrition strategies. Abstract Ruminant nutrition has significantly revolutionized a new and prodigious molecular approach in livestock sciences over the last decade. Wide-spectrum advances in DNA and RNA technologies and analysis have produced a wealth of data that have shifted the research threshold scheme to a more affluent level. Recently, the published literature has pointed out the nutrient roles in different cellular genomic alterations among different ruminant species, besides the interactions with other factors, such as age, type, and breed. Additionally, it has addressed rumen microbes within the gut health and productivity context, which has made interpreting homogenous evidence more complicated. As a more systematic approach, nutrigenomics can identify how genomics interacts with nutrition and other variables linked to animal performance. Such findings should contribute to crystallizing powerful interpretations correlating feeding management with ruminant production and health through genomics. This review will present a road-mapping discussion of promising trends in ruminant nutrigenomics as a reference for phenotype expression through multi-level omics changes.
Collapse
Affiliation(s)
- Mohamed Abdelrahman
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agriculture University, Wuhan 430070, China; (M.A.); (W.W.); (A.S.); (H.L.); (A.A.); (Z.Y.); (M.J.A.); (A.L.)
- Animal Production Department, Faculty of Agriculture, Assuit University, Asyut 71515, Egypt
| | - Wei Wang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agriculture University, Wuhan 430070, China; (M.A.); (W.W.); (A.S.); (H.L.); (A.A.); (Z.Y.); (M.J.A.); (A.L.)
| | - Aftab Shaukat
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agriculture University, Wuhan 430070, China; (M.A.); (W.W.); (A.S.); (H.L.); (A.A.); (Z.Y.); (M.J.A.); (A.L.)
| | | | - Haimiao Lv
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agriculture University, Wuhan 430070, China; (M.A.); (W.W.); (A.S.); (H.L.); (A.A.); (Z.Y.); (M.J.A.); (A.L.)
| | - Adili Abulaiti
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agriculture University, Wuhan 430070, China; (M.A.); (W.W.); (A.S.); (H.L.); (A.A.); (Z.Y.); (M.J.A.); (A.L.)
| | - Zhiqiu Yao
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agriculture University, Wuhan 430070, China; (M.A.); (W.W.); (A.S.); (H.L.); (A.A.); (Z.Y.); (M.J.A.); (A.L.)
| | - Muhammad Jamil Ahmad
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agriculture University, Wuhan 430070, China; (M.A.); (W.W.); (A.S.); (H.L.); (A.A.); (Z.Y.); (M.J.A.); (A.L.)
| | - Aixin Liang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agriculture University, Wuhan 430070, China; (M.A.); (W.W.); (A.S.); (H.L.); (A.A.); (Z.Y.); (M.J.A.); (A.L.)
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan 430070, China
| | - Liguo Yang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agriculture University, Wuhan 430070, China; (M.A.); (W.W.); (A.S.); (H.L.); (A.A.); (Z.Y.); (M.J.A.); (A.L.)
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan 430070, China
- Correspondence: ; Tel.: +86-138-7105-6592
| |
Collapse
|
3
|
Zhang Y, Fan X, Qiu L, Zhu W, Huang L, Miao Y. Liver X receptor α promotes milk fat synthesis in buffalo mammary epithelial cells by regulating the expression of FASN. J Dairy Sci 2021; 104:12980-12993. [PMID: 34593221 DOI: 10.3168/jds.2021-20596] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/16/2021] [Indexed: 01/14/2023]
Abstract
Liver X receptor α (LXRα; NR1H3) is an important transcription factor that can facilitate milk fat synthesis by regulating the transcription of FASN in mice and goats. Nevertheless, the lipid synthesis related to LXRα and its regulation on FASN in the buffalo mammary gland remain elusive. Here, we demonstrated that the mRNA and protein expression of LXRα in buffalo mammary tissue increased in lactation compared with that in the dry-off period. Overexpression of NR1H3 enhanced the lipid droplet formation and triacylglycerol concentration in buffalo mammary epithelial cells (BuMEC), whereas the knockdown of NR1H3 resulted in a decrease in the number of lipid droplets. At the same time, NR1H3 also affected the expression of regulatory factors (INSIG1, INSIG2, SREBF1, and PPARG) related to milk fat synthesis and that of genes involved in de novo synthesis (FASN, ACACA, and SCD), and uptake and transport (LPL, CD36, and FABP3) of fatty acids as well as triacylglycerol synthesis (GPAM, APGAT6, and DGAT1). Luciferase reporter assays indicated that overexpression of NR1H3 resulted in an increase in the activity of FASN promoter, whereas the knockdown of NR1H3 had an opposite effect. When NR1H3 was overexpressed, mutations in LXRE or SRE could decrease the promoter activity of FASN. Furthermore, mutagenesis of both LXRE and SRE within the FASN promoter completely eliminated the induced activity of LXRα. Our results reveal that buffalo LXRα promotes milk fat synthesis through regulating the expression of FASN by directly interacting with FASN promoter and affecting the SREBF1 expression. This study underscores a crucial role of LXRα in regulating lipid synthesis of the buffalo mammary gland.
Collapse
Affiliation(s)
- Yongyun Zhang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China; Teaching Demonstration Center of the Basic Experiments of Agricultural Majors, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Xinyang Fan
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Lihua Qiu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Wei Zhu
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Lige Huang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Yongwang Miao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China.
| |
Collapse
|
4
|
He Q, Luo J, Wu J, Yao W, Li Z, Wang H, Xu H. FoxO1 Knockdown Promotes Fatty Acid Synthesis via Modulating SREBP1 Activities in the Dairy Goat Mammary Epithelial Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12067-12078. [PMID: 33054209 DOI: 10.1021/acs.jafc.0c05237] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
FoxO1 is a crucial transcription factor involved in lipid metabolism in mouse liver through repressing a key regulator of lipogenesis, sterol regulatory element binding protein 1 (SREBP1). However, it remains elusive whether FoxO1 plays roles in the regulation of fatty acid metabolism during lactation in dairy goats. In this study, we aim to investigate the function of FoxO1 in goat mammary epithelial cells (GMECs). We found that the expression of FoxO1 is significantly upregulated during lactation compared with the dry period. FoxO1 knockdown enhanced the expression of genes related to de novo fatty acid synthesis (e.g., FASN, ELOVL6 and SCD1) and triacylglycerol (TAG) synthesis (e.g., DGAT2 and GPAM). Consistently, intracellular TAG was significantly increased in FoxO1 knockdown cells and reduced in FoxO1 overexpression cells. Immunofluorescence staining revealed that insulin suppresses FoxO1 transcription by promoting its nuclear export. Further, we found that FoxO1 inhibits insulin-induced SREBP1 promoter activities in GMECs. Moreover, FoxO1 suppresses SREBP1 transcription via the LXR response element (LXRE) and SREBP response element (SRE) located in the SREBP1 promoter. Our data reveal that FoxO1 plays critical roles in regulating the synthesis of the fatty acid and triacylglycerol (TAG) in GMECs.
Collapse
Affiliation(s)
- Qiuya He
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Jun Luo
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Jiao Wu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Weiwei Yao
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Zhuang Li
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Hui Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, Sichuan 610041, PR China
| | - Huifen Xu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| |
Collapse
|
5
|
Tian H, Luo J, Shi H, Chen X, Wu J, Liang Y, Li C, Loor JJ. Role of peroxisome proliferator-activated receptor-α on the synthesis of monounsaturated fatty acids in goat mammary epithelial cells. J Anim Sci 2020; 98:5739815. [PMID: 32067038 DOI: 10.1093/jas/skaa062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 02/14/2020] [Indexed: 02/07/2023] Open
Abstract
A key member of the nuclear receptor superfamily is the peroxisome proliferator-activated receptor alpha (PPARA) isoform, which in nonruminants is closely associated with fatty acid oxidation. Whether PPARA plays a role in milk fatty acid synthesis in ruminants is unknown. The main objective of the present study was to use primary goat mammary epithelial cells (GMEC) to activate PPARA via the agonist WY-14643 (WY) or to silence it via transfection of small-interfering RNA (siRNA). Three copies of the peroxisome proliferator-activated receptor response element (PPRE) contained in a luciferase reporter vector were transfected into GMEC followed by incubation with WY at 0, 10, 20, 30, 50, or 100 µM. A dose of 50 µM WY was most effective at activating PPRE without influencing PPARA mRNA abundance. Transfecting siRNA targeting PPARA decreased its mRNA abundance to 20% and protein level to 50% of basal levels. Use of WY upregulated FASN, SCD1, ACSL1, DGAT1, FABP4, and CD36 (1.1-, 1.5-, 2-, 1.4-, 1.5-, and 5-fold, respectively), but downregulated DGAT2 and PGC1A (-20% and -40%, respectively) abundance. In contrast, triacylglycerol concentration decreased and the content and desaturation index of C16:1 and C18:1 increased. Thus, activation of PPARA via WY appeared to channel fatty acids away from esterification. Knockdown of PPARA via siRNA downregulated ACACA, SCD1, AGPAT6, CD36, HSL, and SREBF1 (-43%, -67%, -16%, -56%, -26%, and -29%, respectively), but upregulated ACSL1, DGAT2, FABP3, and PGC1A (2-, 1.4-, 1.3-, and 2.5-fold, respectively) mRNA abundance. A decrease in the content and desaturation index of C16:1 and C18:1 coupled with an increase in triacylglycerol content accompanied those effects at the mRNA level. Overall, data suggest that PPARA could promote the synthesis of MUFA in GMEC through its effects on mRNA abundance of genes related to fatty acid synthesis, oxidation, transport, and triacylglycerol synthesis.
Collapse
Affiliation(s)
- Huibin Tian
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Jun Luo
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Hengbo Shi
- College of Animal Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaoying Chen
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Jiao Wu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yusheng Liang
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL
| | - Cong Li
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Juan J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL
| |
Collapse
|
6
|
Huang L, Tian H, Luo J, Song N, Wu J. CRISPR/Cas9 Based Knockout of miR-145 Affects Intracellular Fatty Acid Metabolism by Targeting INSIG1 in Goat Mammary Epithelial Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:5138-5146. [PMID: 32299216 DOI: 10.1021/acs.jafc.0c00845] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
MiR-145 modulates fatty acid metabolism by regulating the expression of fatty acid metabolism-related genes in goat mammary epithelial cells. Previous studies using RNAi methods have clarified the function of miR-145 in lipogenesis. However, there are limiting factors such as short-term and inconsistent inhibition efficiency in RNAi method. On the basis of previous miR-145 functional studies, this study aims to knock out miR-145 and validate the function using CRISPR/Cas9 technology. We successfully obtained the single cell clone which had single nucleotide deletion around the Drosha processing site. The expression of miR-145 was significantly decreased, and the mRNA and protein expression of target gene INSIG1 were both increased by RT-qPCR and Western blot. The expression of fatty acid metabolism-associated gene (DGAT1, AGPAT6, TIP47, ADFP, CD36, ACSL1, ATGL, ACOX, CPT1A, FADS2, ELOVL5, PPARA, SCD1, FASN, and ACACA) were decreased. The contents of triacylglycerol and cholesterol were significantly inhibited. The percentage of C17:0 and C18:0 saturated fatty acid increased. Taken together, these data suggested that knockout of miR-145 could inhibit TAG and cholesterol contents and affect fatty acid composition through regulating the expression of fatty acid metabolism-related genes. These findings provide a sufficient theoretical basis for improving goat milk quality by miR-145.
Collapse
Affiliation(s)
- Lian Huang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, P. R. China
| | - Huibin Tian
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, P. R. China
| | - Jun Luo
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, P. R. China
| | - Ning Song
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, P. R. China
| | - Jiao Wu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, P. R. China
| |
Collapse
|
7
|
Metin Kiyici J, Akyüz B, Kaliber M, Arslan K, Aksel EG, Çinar MU. LEP and SCD polymorphisms are associated with milk somatic cell count, electrical conductivity and pH values in Holstein cows. Anim Biotechnol 2019; 31:498-503. [PMID: 31230519 DOI: 10.1080/10495398.2019.1628767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
This study was conducted to determine LEP-Sau3AI, SCD-Fnu4HI, NR1H3-HpyCH4IV and FABP4-HinII gene polymorphisms and to investigate the association between these SNPs and somatic cell count (SCC), electrical conductivity (EC) and pH in Holstein cow milk. LEP-Sau3AI polymorphism found associated with SCC (p < 0.01), EC (p < 0.01) and pH (p < 0.05). LEP-Sau3AI-BB genotype resulted with higher SCC, EC and pH compared to other genotypes. SCD-Fnu4HI polymorphism showed differences in genotypes for EC (p < 0.05) and pH (p ≤ 0.05) traits. While the highest EC value was found in SCD-Fnu4HI-CT genotype, the highest milk pH was found in genotype TT. In addition, NR1H3-HpyCH4IV genotypes was found the only associated with pH (p < 0.05) among all studied phenotypes. Based on the present findings, it was concluded that LEP and SCD genes could be used in breeding programs for improved SCC, EC and pH values in Holstein dairy cows.
Collapse
Affiliation(s)
- Jale Metin Kiyici
- Department of Animal Science, Faculty of Agriculture, Erciyes University, Kayseri, Turkey
| | - Bilal Akyüz
- Department of Genetics, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - Mahmut Kaliber
- Department of Animal Science, Faculty of Agriculture, Erciyes University, Kayseri, Turkey
| | - Korhan Arslan
- Department of Genetics, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - Esma Gamze Aksel
- Department of Genetics, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - Mehmet Ulaş Çinar
- Department of Animal Science, Faculty of Agriculture, Erciyes University, Kayseri, Turkey
| |
Collapse
|
8
|
Grinman DY, Careaga VP, Wellberg EA, Dansey MV, Kordon EC, Anderson SM, Maier MS, Burton G, MacLean PS, Rudolph MC, Pecci A. Liver X receptor-α activation enhances cholesterol secretion in lactating mammary epithelium. Am J Physiol Endocrinol Metab 2019; 316:E1136-E1145. [PMID: 30964702 PMCID: PMC6620573 DOI: 10.1152/ajpendo.00548.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/01/2019] [Accepted: 04/04/2019] [Indexed: 11/22/2022]
Abstract
Liver X receptors (LXRs) are ligand-dependent transcription factors activated by cholesterol metabolites. These receptors induce a suite of target genes required for de novo synthesis of triglycerides and cholesterol transport in many tissues. Two different isoforms, LXRα and LXRβ, have been well characterized in liver, adipocytes, macrophages, and intestinal epithelium among others, but their contribution to cholesterol and fatty acid efflux in the lactating mammary epithelium is poorly understood. We hypothesize that LXR regulates lipogenesis during milk fat production in lactation. Global mRNA analysis of mouse mammary epithelial cells (MECs) revealed multiple LXR/RXR targets upregulated sharply early in lactation compared with midpregnancy. LXRα is the primary isoform, and its protein levels increase throughout lactation in MECs. The LXR agonist GW3965 markedly induced several genes involved in cholesterol transport and lipogenesis and enhanced cytoplasmic lipid droplet accumulation in the HC11 MEC cell line. Importantly, in vivo pharmacological activation of LXR increased the milk cholesterol percentage and induced sterol regulatory element-binding protein 1c (Srebp1c) and ATP-binding cassette transporter a7 (Abca7) expression in MECs. Cumulatively, our findings identify LXRα as an important regulator of cholesterol incorporation into the milk through key nodes of de novo lipogenesis, suggesting a potential therapeutic target in women with difficulty initiating lactation.
Collapse
Affiliation(s)
- Diego Y Grinman
- Instituto de Fisiología, Biología Molecular y Neurociencias, CONICET, Universidad de Buenos Aires , Buenos Aires , Argentina
| | - Valeria P Careaga
- Unidad De Microanálisis Y Métodos Físicos Aplicados a la Química Orgánica, CONICET, Universidad de Buenos Aires , Buenos Aires , Argentina
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires, Buenos Aires , Argentina
| | - Elizabeth A Wellberg
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Denver, Colorado
| | - María V Dansey
- Unidad De Microanálisis Y Métodos Físicos Aplicados a la Química Orgánica, CONICET, Universidad de Buenos Aires , Buenos Aires , Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires , Buenos Aires , Argentina
| | - Edith C Kordon
- Instituto de Fisiología, Biología Molecular y Neurociencias, CONICET, Universidad de Buenos Aires , Buenos Aires , Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires , Buenos Aires , Argentina
| | - Steven M Anderson
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Denver, Colorado
| | - Marta S Maier
- Unidad De Microanálisis Y Métodos Físicos Aplicados a la Química Orgánica, CONICET, Universidad de Buenos Aires , Buenos Aires , Argentina
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires, Buenos Aires , Argentina
| | - Gerardo Burton
- Unidad De Microanálisis Y Métodos Físicos Aplicados a la Química Orgánica, CONICET, Universidad de Buenos Aires , Buenos Aires , Argentina
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires, Buenos Aires , Argentina
| | - Paul S MacLean
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado, Anschutz Medical Campus, Denver, Colorado
| | - Michael C Rudolph
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado, Anschutz Medical Campus, Denver, Colorado
| | - Adali Pecci
- Instituto de Fisiología, Biología Molecular y Neurociencias, CONICET, Universidad de Buenos Aires , Buenos Aires , Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires , Buenos Aires , Argentina
| |
Collapse
|
9
|
Chikusetsusaponin V attenuates lipopolysaccharide-induced acute lung injury in mice by modulation of the NF-κB and LXRα. Int Immunopharmacol 2019; 70:174-179. [DOI: 10.1016/j.intimp.2019.02.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/10/2019] [Accepted: 02/13/2019] [Indexed: 12/14/2022]
|
10
|
Khieokhajonkhet A, Aeksiri N, Kaneko G. Molecular characterization and homology modeling of liver X receptor in Asian seabass, Lates calcarifer: predicted functions in reproduction and lipid metabolism. FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:523-538. [PMID: 30806874 DOI: 10.1007/s10695-019-00617-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 02/06/2019] [Indexed: 06/09/2023]
Abstract
Liver X receptor (LXR) is a ligand-activated transcription factor that plays vital roles in maintaining cholesterol and lipid homeostasis. Much work has been done on mammalian LXRs, but the role of LXR in fish remains unclear. In the present study, LXR gene was identified from adult Asian seabass, Lates calcarifer, and its predicted protein structure was docked with several cholesterol derivatives at the binding site. The LXR cDNA consisted of 1495 bp encoding a putative LXR protein of 494 amino acids. The Asian seabass LXR retained many important structural features found in LXRs of other fishes and mammals, such as putative signal peptide, activation function-1 (AF-1) domain, DNA-binding domain (DBD), ligand-binding domain (LBD), activation function-2 (AF-2) domain, and eight conserved cysteine residues. The deduced amino acid sequence of LXR shared significant identity with those of other species ranging from 65.7 to 95.8%. The homology modeling and in silico molecular docking demonstrated that Asian seabass LXR could interact with cholesterol derivatives at amino acid residues Phe274 and Ile312. Real-time PCR further revealed that LXR transcripts are ubiquitously expressed in all tissues examined, with the highest levels detected in the gonad followed by the liver. Given the well-known importance of cholesterol-mediated signaling in these tissues, Asian seabass LXR may reasonably be involved in reproduction and lipid metabolism.
Collapse
Affiliation(s)
- Anurak Khieokhajonkhet
- Center for Agriculture Biotechnology, Faculty of Agriculture, Natural Resources, and Environment, Naresuan University, Phitsanulok, 65000, Thailand.
- Department of Agricultural Sciences, Faculty of Agriculture, Natural Resources, and Environment, Naresuan University, 99 M. 1, T. Thapo, A. Muang, Phitsanulok, 65000, Thailand.
| | - Niran Aeksiri
- Center for Agriculture Biotechnology, Faculty of Agriculture, Natural Resources, and Environment, Naresuan University, Phitsanulok, 65000, Thailand
- Department of Agricultural Sciences, Faculty of Agriculture, Natural Resources, and Environment, Naresuan University, 99 M. 1, T. Thapo, A. Muang, Phitsanulok, 65000, Thailand
| | - Gen Kaneko
- School of Arts and Sciences, University of Houston-Victoria, 3007 N. Ben Wilson, Victoria, TX, 77901, USA
| |
Collapse
|
11
|
Hu X, Zhang N, Fu Y. Role of Liver X Receptor in Mastitis Therapy and Regulation of Milk Fat Synthesis. J Mammary Gland Biol Neoplasia 2019; 24:73-83. [PMID: 30066175 DOI: 10.1007/s10911-018-9403-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 07/04/2018] [Indexed: 02/03/2023] Open
Abstract
Mastitis is important disease that causes huge economic losses in the dairy industry. In recent years, antibiotic therapy has become the primary treatment for mastitis, however, due to drug residue in milk and food safety factors, we lack safe and effective drugs for treating mastitis. Therefore, new targets and drugs are urgently needed to control mastitis. LXRα, one of the main members of the nuclear receptor superfamily, is reported to play important roles in metabolism, infection and immunity. Activation of LXRα could inhibit LPS-induced mastitis. Furthermore, LXRα is reported to enhance milk fat production, thus, LXRα may serve as a new target for mastitis therapy and regulation of milk fat synthesis. This review summarizes the effects of LXRα in regulating milk fat synthesis and treatment of mastitis and highlights the potential agonists involved in both issues.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents/pharmacology
- Anti-Inflammatory Agents/therapeutic use
- Cattle
- Dairying
- Escherichia coli/isolation & purification
- Escherichia coli/pathogenicity
- Female
- Global Burden of Disease
- Humans
- Immunity, Innate
- Lactation/metabolism
- Lipid Metabolism
- Liver X Receptors/agonists
- Liver X Receptors/metabolism
- Mammary Glands, Animal/cytology
- Mammary Glands, Animal/metabolism
- Mammary Glands, Animal/microbiology
- Mammary Glands, Animal/pathology
- Mammary Glands, Human/cytology
- Mammary Glands, Human/immunology
- Mammary Glands, Human/microbiology
- Mammary Glands, Human/pathology
- Mastitis/drug therapy
- Mastitis/immunology
- Mastitis/microbiology
- Mastitis, Bovine/drug therapy
- Mastitis, Bovine/epidemiology
- Mastitis, Bovine/immunology
- Mastitis, Bovine/microbiology
- Membrane Microdomains/metabolism
- Milk/metabolism
- Prevalence
- Receptors, Pattern Recognition/metabolism
Collapse
Affiliation(s)
- Xiaoyu Hu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, People's Republic of China
| | - Naisheng Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, People's Republic of China.
| | - Yunhe Fu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, People's Republic of China.
| |
Collapse
|
12
|
Xu HF, Luo J, Zhang XY, Li J, Bionaz M. Activation of liver X receptor promotes fatty acid synthesis in goat mammary epithelial cells via modulation of SREBP1 expression. J Dairy Sci 2019; 102:3544-3555. [PMID: 30738675 DOI: 10.3168/jds.2018-15538] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 12/12/2018] [Indexed: 01/04/2023]
Abstract
In bovine mammary tissue and cells, liver X receptor (LXR) regulates lipid synthesis mainly via transactivation of the transcription factor sterol regulatory element binding protein 1 (SREBP1). In the present work, we investigated the role of LXR in controlling lipid synthesis via transactivation of SREBP1 in goat primary mammary cells (GMEC). The GMEC were treated with a synthetic agonist of LXR, T0901317, and transactivation and transcription of SREBP1, expression of lipogenic genes, and fatty acid profiling and triacylglycerol (TAG) content of the cells were measured. A mild increase in the mRNA expression level of LXRα (NR1H3) was observed following treatment with different concentrations of T0901317, and a dose-dependent increase in mRNA and transactivation of SREBP1 was detected. Activation of LXR resulted in a significant increase in the mRNA expression of most of the measured genes related to de novo synthesis, desaturation, and transport of fatty acids; TAG synthesis; and transcription regulators. Compared with the control, total content of cellular TAG increased by more than 20% with T0901317 treatment. Furthermore, addition of T0901317 increased the proportion of unsaturated fatty acids (e.g., C16:1, C18:1, C20:1, and C22:1), and decreased the proportion of saturated fatty acids (e.g., C16:0, C18:0, C20:0, and C22:0). These results provide evidence that LXR regulates the expression and activity of SREBP1. Our results indicated that LXR participate in regulating the transcription of genes involved in milk fat synthesis in GMEC in an SREBP1-dependent fashion.
Collapse
Affiliation(s)
- H F Xu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, 450046, P. R. China
| | - J Luo
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China.
| | - X Y Zhang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - J Li
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, 450046, P. R. China
| | - M Bionaz
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis 97331.
| |
Collapse
|
13
|
Zhang T, Li C, Huang L, Song N, Cao Y, Loor JJ, Luo J, Shi H. Regulation of Stearoyl-Coenzyme A Desaturase 1 by trans-10, cis-12 Conjugated Linoleic Acid via SREBP1 in Primary Goat Mammary Epithelial Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:1463-1469. [PMID: 30644742 DOI: 10.1021/acs.jafc.8b06358] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
trans-10, cis-12 Conjugated linoleic acid (t10c12-CLA) is a biohydrogenation intermediate in the rumen that inhibits mammary fatty acid de novo synthesis in lactating dairy goats. However, the underlying molecular pathways in milk-lipid metabolism affected by t10c12-CLA are not completely understood. The present study investigated the lipid-regulation mechanisms in goat mammary epithelial cells (GMECs) in response to t10c12-CLA. Gene-expression analysis indicated sterol-regulatory-element-binding transcription factor1 ( SREBF1) and its putative target gene stearoyl-CoA desaturase ( SCD1) were down-regulated (fold changes of 0.33 ± 0.04, P < 0.05, and 0.19 ± 0.01, P < 0.01, respectively). Concentrations of cellular palmitoleic acid (C16:1) and oleic acid (C18:1) were decreased (1.12 ± 0.05 vs 1.69 ± 0.11% and 15.70 ± 0.44 vs 24.97 ± 0.82%, respectively, P < 0.01), whereas those of linoleic acid (C18:2) were increased (5.00 ± 0.14 vs 3.81 ± 0.25%, P < 0.05); the desaturation indices of C16 and C18 were decreased in response to t10c12-CLA treatment (6.90 ± 0.05 vs 8.00 ± 0.30% and 61.41 ± 0.65 vs 67.73 ± 1.33%, respectively, P < 0.05). A luciferase-activity assay indicated that deletion of the sterol-response-element (SRE) site and the nuclear-factor (NF-Y) site in the SCD1-promoter region (-511/+65 bp) suppressed the regulatory effect of t10c12-CLA. Overexpression of SREBF1 partly counteracted the inhibitory effect of t10c12-CLA on de novo fatty acid synthesis. Overall, t10c12-CLA causes an inhibition of fatty acid synthesis and desaturation and regulates SCD1 expression by affecting the binding of SREBP1 protein to the SRE and NF-Y sites.
Collapse
Affiliation(s)
- Tianying Zhang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology , Northwest A&F University , Yangling , Shaanxi 712100 , PR China
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine , Xi'an Medical University , Xi'an , Shannxi 710000 , PR China
| | - Cong Li
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology , Northwest A&F University , Yangling , Shaanxi 712100 , PR China
| | - Lian Huang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology , Northwest A&F University , Yangling , Shaanxi 712100 , PR China
| | - Ning Song
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology , Northwest A&F University , Yangling , Shaanxi 712100 , PR China
| | - Yanhong Cao
- Guangxi Institute of Animal Science , Nanning , Guangxi 535001 , PR China
| | - Juan J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences , University of Illinois , Urbana , Illinois 61801 , United States
| | - Jun Luo
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology , Northwest A&F University , Yangling , Shaanxi 712100 , PR China
| | - Huaiping Shi
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology , Northwest A&F University , Yangling , Shaanxi 712100 , PR China
| |
Collapse
|
14
|
Tian H, Luo J, Zhang Z, Wu J, Zhang T, Busato S, Huang L, Song N, Bionaz M. CRISPR/Cas9-mediated Stearoyl-CoA Desaturase 1 (SCD1) Deficiency Affects Fatty Acid Metabolism in Goat Mammary Epithelial Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:10041-10052. [PMID: 30180552 DOI: 10.1021/acs.jafc.8b03545] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Stearoyl-CoA desaturase 1 (SCD1) is a fatty acid desaturase catalyzing cis-double-bond formation in the Δ9 position to produce monounsaturated fatty acids essential for the synthesis of milk fat. Previous studies using RNAi methods have provided support for a role of SCD1 in goat mammary epithelial cells (GMEC); however, RNAi presents several limitations that might preclude a truthful understanding of the biological function of SCD1. To explore the function of SCD1 on fatty acid metabolism in GMEC, we used CRISPR-Cas9-mediated SCD1 knockout through non-homologous end-joining (NHEJ) and homology-directed repair (HDR) pathways in GMEC. We successfully introduced nucleotide deletions and mutations in the SCD1 gene locus through the NHEJ pathway and disrupted its second exon via insertion of an EGFP-PuroR segment using the HDR pathway. In clones derived from the latter, gene- and protein-expression data indicated that we obtained a monoallelic SCD1 knockout. A T7EN1-mediated assay revealed no off-targets in the surveyed sites. The contents of triacylglycerol and cholesterol and the desaturase index were significantly decreased as a consequence of SCD1 knockout. The deletion of SCD1 decreased the expression of other genes involved in de novo fatty acid synthesis, including SREBF1 and FASN, as well the fatty acid transporters FABP3 and FABP4. The downregulation of these genes partly explains the decrease of intracellular triacylglycerols. Our results indicate a successful SCD1 knockout in goat mammary cells using CRISPR-Cas9. The demonstration of the successful use of CRISPR-Cas9 in GMEC is an important step to producing transgenic goats to study mammary biology in vivo.
Collapse
Affiliation(s)
- Huibin Tian
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology , Northwest A&F University , Yangling 712100 , China
| | - Jun Luo
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology , Northwest A&F University , Yangling 712100 , China
| | - Zhifei Zhang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology , Northwest A&F University , Yangling 712100 , China
| | - Jiao Wu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology , Northwest A&F University , Yangling 712100 , China
| | - Tianying Zhang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology , Northwest A&F University , Yangling 712100 , China
| | - Sebastiano Busato
- Department of Animal and Rangeland Sciences , Oregon State University , Corvallis , Oregon 97331 , United States
| | - Lian Huang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology , Northwest A&F University , Yangling 712100 , China
| | - Ning Song
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology , Northwest A&F University , Yangling 712100 , China
| | - Massimo Bionaz
- Department of Animal and Rangeland Sciences , Oregon State University , Corvallis , Oregon 97331 , United States
| |
Collapse
|
15
|
Osorio JS, Vailati-Riboni M, Palladino A, Luo J, Loor JJ. Application of nutrigenomics in small ruminants: Lactation, growth, and beyond. Small Rumin Res 2017. [DOI: 10.1016/j.smallrumres.2017.06.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Shi H, Zhang C, Xu Z, Xu X, Lv Z, Luo J, Loor J. Nuclear receptor subfamily 1 group H member 2 (LXRB) is the predominant liver X receptor subtype regulating transcription of 2 major lipogenic genes in goat primary mammary epithelial cells. J Dairy Sci 2017. [DOI: 10.3168/jds.2016-12510] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
17
|
Wang H, Luo J, He Q, Yao D, Wu J, Loor JJ. miR-26b promoter analysis reveals regulatory mechanisms by lipid-related transcription factors in goat mammary epithelial cells. J Dairy Sci 2017; 100:5837-5849. [DOI: 10.3168/jds.2016-12440] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 03/29/2017] [Indexed: 11/19/2022]
|
18
|
Yao DW, Luo J, He QY, Li J, Wang H, Shi HB, Xu HF, Wang M, Loor JJ. Characterization of the liver X receptor-dependent regulatory mechanism of goat stearoyl-coenzyme A desaturase 1 gene by linoleic acid. J Dairy Sci 2017; 99:3945-3957. [PMID: 26947306 DOI: 10.3168/jds.2015-10601] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 01/13/2016] [Indexed: 01/05/2023]
Abstract
Stearoyl-coenzyme A desaturase 1 (SCD1) is a key enzyme in the biosynthesis of palmitoleic and oleic acid. Although the transcriptional regulatory mechanism of SCD1 via polyunsaturated fatty acids (PUFA) has been extensively explored in nonruminants, the existence of such mechanism in ruminant mammary gland remains unknown. In this study, we used goat genomic DNA to clone and sequence a 1,713-bp fragment of the SCD1 5' flanking region. Deletion assays revealed a core region of the promoter located between -415 and -109 bp upstream of the transcription start site, and contained the highly conserved PUFA response region. An intact PUFA response region was required for the basal transcriptional activity of SCD1. Linoleic acid reduced endogenous expression of SCD1 and sterol regulatory element binding factor-1 (SREBF1) in goat mammary epithelial cells. Further analysis indicated that both the sterol response element (SRE) and the nuclear factor Y (NF-Y) binding site in the SCD1 promoter were responsible for the inhibition effect by linoleic acid, whereas the effect was abrogated once NF-Y was deleted. In addition, SRE and NF-Y were partly responsible for the transcriptional activation induced via the liver X receptor agonist T 4506585 (Sigma-Aldrich, St. Louis, MO). When goat mammary epithelial cells were cultured with linoleic acid, addition of T 4506585 markedly increased SCD1 transcription in controls, but had no effect on cells with a deleted SRE promoter. These results demonstrated that linoleic acid can regulate SCD1 expression at the transcriptional level through SRE and NF-Y in a liver X receptor-dependent fashion in the goat mammary gland.
Collapse
Affiliation(s)
- D W Yao
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China 712100
| | - J Luo
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China 712100.
| | - Q Y He
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China 712100
| | - J Li
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, P. R. China 450046
| | - H Wang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China 712100
| | - H B Shi
- College of Animal Sciences, Zhejiang Sci-Tech University, Hangzhou, P. R. China 310058
| | - H F Xu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China 712100
| | - M Wang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China 712100
| | - J J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801.
| |
Collapse
|
19
|
Luo J, Zhu JJ, Sun YT, Shi HB, Li J. Inhibitions of FASN suppress triglyceride synthesis via the control of malonyl-CoA in goat mammary epithelial cells. ANIMAL PRODUCTION SCIENCE 2017. [DOI: 10.1071/an15708] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Fatty acid synthase (FASN) is the key enzyme for de novo fatty acid synthesis from acetyl-CoA and malonyl-CoA. All the steps involved in fatty acid synthesis by FASN have been clearly defined in monogastrics and ruminants. However, there are no data on the mechanism of how FASN affects triglyceride synthesis. Inhibition of FASN in goat mammary epithelial cells by C75, a synthetic inhibitor of FASN activity, and shRNA markedly suppressed the accumulation of triglyceride in goat mammary epithelial cells. Meanwhile, C75 treatment significantly reduced the relative content of monounsaturated fatty acids (C16:1 and C18:1). Corresponding to the suppression of lipid accumulation, both of C75 and shRNA also decreased the mRNA expression of GPAM, AGPAT6 and DGAT2, all of which are related to triglyceride synthesis. The fact that treatment of malonyl-CoA decreased the expression of these genes is consistent with the results of shRNA treatment. Furthermore, the supplement of malonyl-CoA enhanced the suppression on GPAM, AGPAT6, LPIN1, DGAT1 and DGAT2. The results underscore the role of malonyl-CoA in inhibition of FASN in regulating triglyceride synthesis in goat mammary epithelial cells.
Collapse
|
20
|
Wang H, Shi H, Luo J, Yi Y, Yao D, Zhang X, Ma G, Loor JJ. MiR-145 Regulates Lipogenesis in Goat Mammary Cells Via Targeting INSIG1 and Epigenetic Regulation of Lipid-Related Genes. J Cell Physiol 2016; 232:1030-1040. [PMID: 27448180 DOI: 10.1002/jcp.25499] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 07/21/2016] [Indexed: 01/17/2023]
Abstract
MicroRNAs (miRNAs) are noncoding RNA molecules that regulate gene expression at the post-transcriptional level to cause translational repression or degradation of targets. The profiles of miRNAs across stages of lactation in small ruminant species such as dairy goats is unknown. A small RNA library was constructed using tissue samples from mammary gland of Saanen dairy goats harvested at mid-lactation followed by sequencing via Solexa technology. A total of 796 conserved miRNAs, 263 new miRNAs, and 821 pre-miRNAs were uncovered. After comparative analyses of our sequence data with published mammary gland transcriptome data across different stages of lactation, a total of 37 miRNAs (including miR-145) had significant differences in expression over the lactation cycle. Further studies revealed that miR-145 regulates metabolism of fatty acids in goat mammary gland epithelial cells (GMEC). Compared with nonlactating mammary tissue, lactating mammary gland had a marked increase in expression of miR-145. Overexpression of miR-145 increased transcription of genes associated with milk fat synthesis resulting in greater fat droplet formation, triacylglycerol accumulation, and proportion of unsaturated fatty acids. In contrast, silencing of miR-145 impaired fatty acid synthesis. Inhibition of miR-145 increased methylation levels of fatty acid synthase (FASN), stearoyl-CoA desaturase 1 (SCD1), peroxisome proliferator-activated receptor gamma (PPARG), and sterol regulatory element binding transcription factor 1 (SREBF1). Luciferase reporter assays confirmed that insulin induced gene 1 (INSIG1) is a direct target of miR-145. These findings underscore the need for further studies to evaluate the potential for targeting miR-145 for improving beneficial milk components in ruminant milk. J. Cell. Physiol. 232: 1030-1040, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hui Wang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Huaiping Shi
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Jun Luo
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Yongqing Yi
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Dawei Yao
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Xueying Zhang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Gongzhen Ma
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Juan J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, Illinois
| |
Collapse
|
21
|
Yao D, Luo J, He Q, Shi H, Li J, Wang H, Xu H, Chen Z, Yi Y, Loor JJ. SCD1 Alters Long-Chain Fatty Acid (LCFA) Composition and Its Expression Is Directly Regulated by SREBP-1 and PPARγ 1 in Dairy Goat Mammary Cells. J Cell Physiol 2016; 232:635-649. [DOI: 10.1002/jcp.25469] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 06/23/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Dawei Yao
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology; Northwest A&F University; Yangling Shaanxi P. R. China
| | - Jun Luo
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology; Northwest A&F University; Yangling Shaanxi P. R. China
| | - Qiuya He
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology; Northwest A&F University; Yangling Shaanxi P. R. China
| | - Hengbo Shi
- College of Life Sciences; Zhejiang Sci-Tech University; Hangzhou P. R. China
| | - Jun Li
- College of Animal Science and Technology; Henan University of Animal Husbandry and Economy; Zhengzhou Henan P. R. China
| | - Hui Wang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology; Northwest A&F University; Yangling Shaanxi P. R. China
| | - Huifen Xu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology; Northwest A&F University; Yangling Shaanxi P. R. China
| | - Zhi Chen
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology; Northwest A&F University; Yangling Shaanxi P. R. China
| | - Yongqing Yi
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology; Northwest A&F University; Yangling Shaanxi P. R. China
| | - Juan J. Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences; University of IIlinois; Urbana Illinois
| |
Collapse
|
22
|
Yao DW, Luo J, He QY, Xu HF, Li J, Shi HB, Wang H, Chen Z, Loor JJ. Liver X receptor α promotes the synthesis of monounsaturated fatty acids in goat mammary epithelial cells via the control of stearoyl-coenzyme A desaturase 1 in an SREBP-1-dependent manner. J Dairy Sci 2016; 99:6391-6402. [PMID: 27209141 DOI: 10.3168/jds.2016-10990] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 03/31/2016] [Indexed: 12/30/2022]
Abstract
Stearoyl-coenzyme A desaturase 1 (SCD1) is a pivotal enzyme in the biosynthesis of monounsaturated fatty acids (MUFA). It is tightly regulated by transcription factors that control lipogenesis. In nonruminants, liver X receptor α (LXRα) is a nuclear receptor and transcription factor that acts as a key sensor of cholesterol and lipid homeostasis. However, the mechanism whereby LXRα regulates the expression and transcriptional activity of SCD1 in ruminant mammary cells remains unknown. In this study with goat mammary epithelial cells (GMEC), the LXRα agonist T 4506585 (T09) markedly enhanced the mRNA expression of SCD1 and sterol regulatory element binding factor 1 (SREBF1). The concentrations of C16:1 and C18:1 and their desaturation indices also were increased by LXRα activation. However, knockdown of LXRα did not alter the mRNA expression of SCD1. Although SCD1 was repressed by SREBF1 knockdown, T09 significantly increased SCD1 expression. Further analysis revealed that the SCD1 promoter activity was activated by LXRα overexpression. The goat SCD1 promoter contains 2 LXR response elements (LXRE), 1 sterol response element (SRE), and 1 nuclear factor Y (NF-Y) binding site. Site-directed mutagenesis of LXRE1, LXRE2, or SRE alone did not eliminate the upregulation of SCD1 when LXRα was overexpressed. In contrast, when NF-Y alone or in combination with SRE was mutated simultaneously, the basal transcriptional activity of the SCD1 promoter was markedly decreased and did not respond to LXRα overexpression. Furthermore, when SREBF1 was knocked down, overexpression of LXRα did not affect the promoter activity of SCD1. Together, these data suggest that LXRα regulates the expression of SCD1 through increasing SREBP-1 abundance to promote interaction with SRE and NF-Y binding sites. The present study provides evidence that LXRα is involved in the synthesis of MUFA in the goat mammary gland through an indirect mechanism.
Collapse
Affiliation(s)
- D W Yao
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - J Luo
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China.
| | - Q Y He
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - H F Xu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - J Li
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, P. R. China 450046
| | - H B Shi
- College of Animal Sciences, Zhejiang Sci-Tech University, Hangzhou, P. R. China 310058
| | - H Wang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Z Chen
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - J J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801.
| |
Collapse
|
23
|
Wang H, Luo J, Zhang T, Tian H, Ma Y, Xu H, Yao D, Loor JJ. MicroRNA-26a/b and their host genes synergistically regulate triacylglycerol synthesis by targeting the INSIG1 gene. RNA Biol 2016; 13:500-10. [PMID: 27002347 DOI: 10.1080/15476286.2016.1164365] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The microRNA-26 (miR-26) family is known to control adipogenesis in non-ruminants. The genomic loci of miR-26a and miR-26b have been localized in the introns of genes encoding for the proteins of the C-terminal domain RNA polymerase II polypeptide A small phosphatase (CTDSP) family. Insulin-induced gene 1 (INSIG1) encodes a protein with a key role in the regulation of lipogenesis in rodent liver. In the present study, we investigated the synergistic function of the miR-26 family and their host genes in goat mammary epithelial cells (GMEC). Downregulation of miR-26a/b and their host genes in GMEC decreased the expression of genes relate to fatty acid synthesis (PPARG, LXRA, SREBF1, FASN, ACACA, GPAM, LPIN1, DGAT1 and SCD1), triacylglycerol accumulation and unsaturated fatty acid synthesis. Luciferase reporter assays confirmed INSIG1 as a direct target of miR-26a/b. Furthermore, inhibition of the CTDSP family also downregulated the expression of INSIG1. Taken together, our findings highlight a functional association of miR-26a/b, their host genes and INSIG1, and provide new insights into the regulatory network controlling milk fat synthesis in GMEC. The data indicate that targeting this network via nutrition might be important for regulating milk fat synthesis in ruminants.
Collapse
Affiliation(s)
- Hui Wang
- a Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University , Yangling , Shaanxi , PR China
| | - Jun Luo
- a Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University , Yangling , Shaanxi , PR China
| | - Tianying Zhang
- a Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University , Yangling , Shaanxi , PR China
| | - Huibin Tian
- a Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University , Yangling , Shaanxi , PR China
| | - Yue Ma
- a Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University , Yangling , Shaanxi , PR China
| | - Huifen Xu
- a Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University , Yangling , Shaanxi , PR China
| | - Dawei Yao
- a Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University , Yangling , Shaanxi , PR China
| | - Juan J Loor
- b Mammalian NutriPhysioGenomics , Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois , Urbana , USA
| |
Collapse
|
24
|
Yao DW, Luo J, He QY, Wu M, Shi HB, Wang H, Wang M, Xu HF, Loor JJ. Thyroid hormone responsive (THRSP) promotes the synthesis of medium-chain fatty acids in goat mammary epithelial cells. J Dairy Sci 2016; 99:3124-3133. [PMID: 26851858 DOI: 10.3168/jds.2015-10632] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 12/14/2015] [Indexed: 12/22/2022]
Abstract
In nonruminants, thyroid hormone responsive (THRSP) is a crucial protein for cellular de novo lipogenesis. However, the role of THRSP in regulating the synthesis of milk fatty acid composition in goat mammary gland remains unknown. In the present study, we compared gene expression of THRSP among different goat tissues. Results revealed that THRSP had the highest expression in subcutaneous fat, and expression was higher during lactation compared with the dry period. Overexpression of THRSP upregulated the expression of fatty acid synthase (FASN), stearoyl-coenzyme A desaturase 1 (SCD1), diacylglycerol acyltransferase 2 (DGAT2), and glycerol-3-phosphate acyltransferase (GPAM) in goat mammary epithelial cells. In contrast, overexpression of THRSP led to downregulation of thrombospondin receptor (CD36) and had no effect on the expression of acetyl-coenzyme A carboxylase α (ACACA) and sterol regulatory element binding transcription factor1 (SREBF1). In addition, overexpressing THRSP in vitro resulted in a significant increase in triacylglycerol (TAG) concentration and the concentrations of C12:0 and C14:0. Taken together, these results highlight an important role of THRSP in regulating lipogenesis in goat mammary epithelial cells.
Collapse
Affiliation(s)
- D W Yao
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China 712100
| | - J Luo
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China 712100.
| | - Q Y He
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China 712100
| | - M Wu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China 712100
| | - H B Shi
- College of Animal Sciences, Zhejiang Sci-Tech University, Hangzhou, P. R. China 310058
| | - H Wang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China 712100
| | - M Wang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China 712100
| | - H F Xu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China 712100
| | - J J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801.
| |
Collapse
|
25
|
Xu H, Luo J, Zhao W, Yang Y, Tian H, Shi H, Bionaz M. Overexpression of SREBP1 (sterol regulatory element binding protein 1) promotes de novo fatty acid synthesis and triacylglycerol accumulation in goat mammary epithelial cells. J Dairy Sci 2016; 99:783-95. [DOI: 10.3168/jds.2015-9736] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 09/22/2015] [Indexed: 01/13/2023]
|
26
|
Pan YX, Luo Z, Zhuo MQ, Hu W, Wu K, Shi X, Xu YH. Liver X Receptor (LXR) in yellow catfish Pelteobagrus fulvidraco: Molecular characterization, mRNA tissue expression and transcriptional regulation by insulin in vivo and in vitro. Comp Biochem Physiol B Biochem Mol Biol 2016; 191:13-9. [DOI: 10.1016/j.cbpb.2015.08.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Revised: 08/08/2015] [Accepted: 08/26/2015] [Indexed: 01/08/2023]
|
27
|
Bionaz M, Osorio J, Loor JJ. TRIENNIAL LACTATION SYMPOSIUM: Nutrigenomics in dairy cows: Nutrients, transcription factors, and techniques1,2. J Anim Sci 2015; 93:5531-53. [DOI: 10.2527/jas.2015-9192] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- M. Bionaz
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis 97333
| | - J. Osorio
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis 97333
| | - J. J. Loor
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| |
Collapse
|
28
|
Regulation of the fatty acid synthase promoter by liver X receptor α through direct and indirect mechanisms in goat mammary epithelial cells. Comp Biochem Physiol B Biochem Mol Biol 2015; 184:44-51. [DOI: 10.1016/j.cbpb.2015.02.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 02/20/2015] [Accepted: 02/23/2015] [Indexed: 11/20/2022]
|
29
|
Li J, Luo J, Xu H, Wang M, Zhu J, Shi H, Haile AB, Wang H, Sun Y. Fatty acid synthase promoter: Characterization, and transcriptional regulation by sterol regulatory element binding protein-1 in goat mammary epithelial cells. Gene 2015; 561:157-64. [DOI: 10.1016/j.gene.2015.02.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 01/22/2015] [Accepted: 02/12/2015] [Indexed: 12/18/2022]
|
30
|
Specificity protein 1 regulates gene expression related to fatty acid metabolism in goat mammary epithelial cells. Int J Mol Sci 2015; 16:1806-20. [PMID: 25594872 PMCID: PMC4307335 DOI: 10.3390/ijms16011806] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 01/06/2015] [Indexed: 12/28/2022] Open
Abstract
Specificity protein 1 (SP1) is a ubiquitous transcription factor that plays an important role in controlling gene expression. Although important in mediating the function of various hormones, the role of SP1 in regulating milk fat formation remains unknown. To investigate the sequence and expression information, as well as its role in modulating lipid metabolism, we cloned SP1 gene from mammary gland of Xinong Saanen dairy goat. The full-length cDNA of the SP1 gene is 4376 bp including 103 bp of 5'UTR, 2358 bp of ORF (HM_236311) and 1915 bp of 3'UTR, which is predicted to encode a 786 amino acids polypeptide. Phylogenetic tree analysis showed that goat SP1 has the closest relationship with sheep, followed by bovines (bos taurus, odobenus and ceratotherium), pig, primates (pongo, gorilla, macaca and papio) and murine (rattus and mus), while the furthest relationship was with canis and otolemur. Expression was predominant in the lungs, small intestine, muscle, spleen, mammary gland and subcutaneous fat. There were no significant expression level differences between the mammary gland tissues collected at lactation and dry-off period. Overexpression of SP1 in goat mammary epithelial cells (GMECs) led to higher mRNA expression level of peroxisome proliferator-activated receptor-γ (PPARγ) and lower liver X receptor α (LXRα) mRNA level, both of which were crucial in regulating fatty acid metabolism, and correspondingly altered the expression of their downstream genes in GMECs. These results were further enhanced by the silencing of SP1. These findings suggest that SP1 may play an important role in fatty acid metabolism.
Collapse
|
31
|
Shi H, Zhao W, Luo J, Yao D, Sun Y, Li J, Shi H, Loor J. Peroxisome proliferator-activated receptor γ1 and γ2 isoforms alter lipogenic gene networks in goat mammary epithelial cells to different extents. J Dairy Sci 2014; 97:5437-47. [DOI: 10.3168/jds.2013-7863] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 06/03/2014] [Indexed: 11/19/2022]
|
32
|
Inhibition of FASN reduces the synthesis of medium-chain fatty acids in goat mammary gland. Animal 2014; 8:1469-78. [PMID: 24909980 DOI: 10.1017/s1751731114001323] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Fatty acid synthase (FASN) is known as a crucial enzyme of cellular de novo fatty acid synthesis in mammary gland which has been proved as the main source of short and medium-chain fatty acids of milk. However, the regulatory role of FASN in goat-specific milk fatty acids composition remains unclear. We cloned and analyzed the full-length of FASN gene from the mammary gland of Capra hircus (Xinong Saanen dairy goat) (DQ 915966). Comparative gene expression analysis suggested that FASN is predominantly expressed in fat, small intestine and mammary gland tissues, and expresses higher level at lactation period. Inhibition of FASN activity by different concentrations (0, 5, 15, 25 and 35 μM) of orlistat, a natural inhibitor of FASN, resulted in decreased expression of acetyl-CoA carboxylase α (ACCα), lipoprotein lipase and heart-type fatty acid binding protein (H-FABP) in a concentration-dependent manner in goat mammary gland epithelial cells (GMEC). Similar results were also obtained by silencing of FASN. Additionally, reduction of FASN expression also led to apparent decline of the relative content of decanoic acid (C10:0) and lauric acid (C12:0) in GMEC. Our study provides a direct evidence for inhibition of FASN reduces cellular medium-chain fatty acids synthesis in GMEC.
Collapse
|
33
|
Shi H, Luo J, Yao D, Zhu J, Xu H, Shi H, Loor J. Peroxisome proliferator-activated receptor-γ stimulates the synthesis of monounsaturated fatty acids in dairy goat mammary epithelial cells via the control of stearoyl-coenzyme A desaturase. J Dairy Sci 2013; 96:7844-53. [DOI: 10.3168/jds.2013-7105] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 08/13/2013] [Indexed: 12/28/2022]
|
34
|
Wang L, Lin J, Zhang T, Xu K, Ren C, Zhang Z. Simultaneous screening and validation of effective zinc finger nucleases in yeast. PLoS One 2013; 8:e64687. [PMID: 23741369 PMCID: PMC3669427 DOI: 10.1371/journal.pone.0064687] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Accepted: 04/17/2013] [Indexed: 01/29/2023] Open
Abstract
Zinc finger nucleases (ZFNs) have been successfully used for genome modification in various cell types and species. However, construction of an effective ZFN remained challenging. Previous studies all focused on obtaining specific zinc finger proteins (ZFPs) first via bacterial 2-hybrid approach, and then fusing selected ZFPs to FokI nuclease domain. These assembled ZFNs have high rate of failing to cleave target sites in vivo. In this study, we developed a simultaneous screening and validation system to obtain effective ZFNs directly in yeast AH109. This system is based on Gal4 reporter system carrying a unique intermediate reporter plasmid with two 30-bp Gal4 homology arms and a ZFN target site. DNA double strand breaks introduced on target sequence by ZFNs were repaired by single strand annealing (SSA) mechanism, and the restored Gal4 drove reporter genes expression. Taking the advantage of OPEN (Oligomerized Pool ENgineering) selection, we constructed 3 randomized ZFNs libraries and 9 reporter strains for each target gene. We tested this system by taking goat α s1-casein as target gene following three-step selection. Consequently, 3 efficient pairs of ZFNs were obtained from positive colonies on selective medium. The ZFNs achieved a 15.9% disruption frequency in goat mammary epithelial cells. In conclusion, we created a novel system to obtain effective ZFNs directly with simultaneous screening and validation.
Collapse
Affiliation(s)
- Ling Wang
- College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi, China
| | - Juan Lin
- College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi, China
| | - Tingting Zhang
- College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi, China
| | - Kun Xu
- College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi, China
| | - Chonghua Ren
- College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi, China
| | - Zhiying Zhang
- College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi, China
| |
Collapse
|