Liao HM, Gau SSF, Tsai WC, Fang JS, Su YC, Chou MC, Liu SK, Chou WJ, Wu YY, Chen CH. Chromosomal abnormalities in patients with autism spectrum disorders from Taiwan.
Am J Med Genet B Neuropsychiatr Genet 2013;
162B:734-41. [PMID:
24132905 DOI:
10.1002/ajmg.b.32153]
[Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 03/05/2013] [Indexed: 12/12/2022]
Abstract
Autism spectrum disorders (ASD) are childhood-onset neurodevelopmental disorders characterized by verbal communication impairments, social reciprocity deficits, and the presence of restricted interests and stereotyped behaviors. Genetic factors contribute to the incidence of ASD evidently. However, the genetic spectrum of ASD is highly heterogeneous. Chromosomal abnormalities contribute significantly to the genetic deficits of syndromic and non-syndromic ASD. In this study, we conducted karyotyping analysis in a sample of 500 patients (447 males, 53 females) with ASD from Taiwan, the largest cohort in Asia, to the best of our knowledge. We found three patients having sex chromosome aneuploidy, including two cases of 47, XXY and one case of 47, XYY. In addition, we detected a novel reciprocal chromosomal translocation between long arms of chromosomes 4 and 14, designated t(4;14)(q31.3;q24.1), in a patient with Asperger's disorder. This translocation was inherited from his unaffected father, suggesting it might not be pathogenic or it needs further hits to become pathogenic. In line with other studies, our study revealed that subjects with sex chromosomal aneuploidy are liable to neurodevelopmental disorders, including ASD, and conventional karyotyping analysis is still a useful tool in detecting chromosomal translocation in patients with ASD, given that array-based comparative genomic hybridization technology can provide better resolution in detecting copy number variations of genomic DNA.
Collapse