1
|
Zhu S, Chen Z, Liu C, Duong J, Tran T, Liang Z, Fang X, Ouyang K. The essential role of MED27 in stabilizing the mediator complex for cardiac development and function. Life Sci 2024; 356:123020. [PMID: 39209248 DOI: 10.1016/j.lfs.2024.123020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/15/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
AIM Transcriptional regulation of gene expression plays a crucial role in orchestrating complex morphogenetic and molecular events during heart development and function. Mediator complex is an essential multi-subunit protein complex that governs gene expression in eukaryotic cells. Although Mediator subunits (MEDs) work integrally in the complex, individual MED component displays specialized functions. MED27, categorized as an Upper Tail subunit, possesses an as-yet-uncharacterized function. In this study, we aimed to investigate the physiological role of MED27 in cardiomyocytes. MATERIALS AND METHODS we generated a Med27 floxed mouse line, which was further used to generate constitutive (cKO) and inducible (icKO) cardiomyocyte-specific Med27 knockout mouse models. Morphological, histological analysis and cardiac physiological studies were performed in Med27 cKO and icKO mutants. Transcriptional profiles were determined by RNA sequencing (RNAseq) analysis. KEY FUNDINGS Ablation of MED27 in developing mouse cardiomyocytes results in embryonic lethality, while its deletion in adult cardiomyocytes leads to heart failure and mortality. Similar to the ablation of another Upper Tail subunit, MED30 in cardiomyocytes, deletion of MED27 leads to decreased protein levels of most MEDs in cardiomyocytes. Interestingly, overexpression of MED30 fails to restore the protein levels of Mediator subunits in MED27-deficient cardiomyocytes, demonstrating that the role of MED27 in maintaining the integrity and stability of the Mediator complex is independent of MED30. SIGNIFICANCE Our results revealed an essential role of MED27 in cardiac development and function by maintaining the stability of the Mediator core.
Collapse
Affiliation(s)
- Siting Zhu
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, China; Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Ze'e Chen
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, China; Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Canzhao Liu
- Department of Medicine, University of California San Diego, La Jolla, California, USA; Department of Cardiovascular Medicine, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Janelle Duong
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Tiana Tran
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Zhengyu Liang
- Department of Systems Biology, Southern University of Science and Technology, Shenzhen, China
| | - Xi Fang
- Department of Medicine, University of California San Diego, La Jolla, California, USA.
| | - Kunfu Ouyang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, China.
| |
Collapse
|
2
|
Tan C, Zhu S, Chen Z, Liu C, Li YE, Zhu M, Zhang Z, Zhang Z, Zhang L, Gu Y, Liang Z, Boyer TG, Ouyang K, Evans SM, Fang X. Mediator complex proximal Tail subunit MED30 is critical for Mediator core stability and cardiomyocyte transcriptional network. PLoS Genet 2021; 17:e1009785. [PMID: 34506481 PMCID: PMC8432849 DOI: 10.1371/journal.pgen.1009785] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/18/2021] [Indexed: 01/28/2023] Open
Abstract
Dysregulation of cardiac transcription programs has been identified in patients and families with heart failure, as well as those with morphological and functional forms of congenital heart defects. Mediator is a multi-subunit complex that plays a central role in transcription initiation by integrating regulatory signals from gene-specific transcriptional activators to RNA polymerase II (Pol II). Recently, Mediator subunit 30 (MED30), a metazoan specific Mediator subunit, has been associated with Langer-Giedion syndrome (LGS) Type II and Cornelia de Lange syndrome-4 (CDLS4), characterized by several abnormalities including congenital heart defects. A point mutation in MED30 has been identified in mouse and is associated with mitochondrial cardiomyopathy. Very recent structural analyses of Mediator revealed that MED30 localizes to the proximal Tail, anchoring Head and Tail modules, thus potentially influencing stability of the Mediator core. However, in vivo cellular and physiological roles of MED30 in maintaining Mediator core integrity remain to be tested. Here, we report that deletion of MED30 in embryonic or adult cardiomyocytes caused rapid development of cardiac defects and lethality. Importantly, cardiomyocyte specific ablation of MED30 destabilized Mediator core subunits, while the kinase module was preserved, demonstrating an essential role of MED30 in stability of the overall Mediator complex. RNAseq analyses of constitutive cardiomyocyte specific Med30 knockout (cKO) embryonic hearts and inducible cardiomyocyte specific Med30 knockout (icKO) adult cardiomyocytes further revealed critical transcription networks in cardiomyocytes controlled by Mediator. Taken together, our results demonstrated that MED30 is essential for Mediator stability and transcriptional networks in both developing and adult cardiomyocytes. Our results affirm the key role of proximal Tail modular subunits in maintaining core Mediator stability in vivo.
Collapse
Affiliation(s)
- Changming Tan
- Department of Medicine, University of California, San Diego, California, United States of America
- Department of Cardiovascular Surgery, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Siting Zhu
- Department of Medicine, University of California, San Diego, California, United States of America
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Zee Chen
- Department of Medicine, University of California, San Diego, California, United States of America
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Canzhao Liu
- Department of Medicine, University of California, San Diego, California, United States of America
| | - Yang E. Li
- Department of Medicine, University of California, San Diego, California, United States of America
| | - Mason Zhu
- Department of Medicine, University of California, San Diego, California, United States of America
| | - Zhiyuan Zhang
- Department of Medicine, University of California, San Diego, California, United States of America
- Department of Cardiovascular Surgery, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhiwei Zhang
- Department of Medicine, University of California, San Diego, California, United States of America
- Department of Cardiovascular Surgery, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lunfeng Zhang
- Department of Medicine, University of California, San Diego, California, United States of America
| | - Yusu Gu
- Department of Medicine, University of California, San Diego, California, United States of America
| | - Zhengyu Liang
- Department of Medicine, University of California, San Diego, California, United States of America
| | - Thomas G. Boyer
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, Texas, United States of America
| | - Kunfu Ouyang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Sylvia M. Evans
- Department of Medicine, University of California, San Diego, California, United States of America
- Department of Pharmacology, University of California, San Diego, California, United States of America
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, California, United States of America
| | - Xi Fang
- Department of Medicine, University of California, San Diego, California, United States of America
| |
Collapse
|
3
|
Cenni C, Andres S, Hempel M, Strom TM, Thomas E, Davies A, Timoney N, Frigiola A, Logan M, Holder-Espinasse M. TBX3 and TBX5 duplication: A family with an atypical overlapping Holt-Oram/ulnar-mammary syndrome phenotype. Eur J Med Genet 2021; 64:104213. [PMID: 33930582 DOI: 10.1016/j.ejmg.2021.104213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 01/15/2021] [Accepted: 03/25/2021] [Indexed: 11/19/2022]
Abstract
Holt-Oram syndrome (HOS) is a rare, autosomal dominant heart-hand syndrome caused by mutations in the TBX5 gene. A wide spectrum of TBX5 mutations have been reported previously, most resulting in a null allele leading to haploinsufficiency. TBX5 gene duplications have been previously reported in association with typical and atypical HOS phenotypes. Ulnar-Mammary syndrome (UMS) is a distinct rare, autosomal dominant condition caused by mutations in the TBX3 gene. TBX5 and TBX3 are physically linked in cis on human chromosome 12 and contiguous chromosome 12q24 deletions comprising both TBX5 and TBX3 genes have been previously reported but to our knowledge, duplications have never been described. We report on a large German family with at least 17 affected individuals over 6 generations bearing a duplication at 12q24.21 identified on array-CGH comprising both TBX5 and TBX3 genes. Affected patients are presenting with HOS and UMS symptoms, consisting of variable limb anomalies involving the radial and the ulnar rays and cardiac findings such as congenital heart defects, persistent arterial duct or aortic stenosis, and non-classical symptoms, such as supernumerary nipples and cardiomyopathy. Fluorescence in situ hybridisation confirmed a tandem duplication at the 12q24.21 locus. This is the first report of a contiguous TBX3/TBX5 duplication associated with HOS/UMS phenotype.
Collapse
MESH Headings
- Abnormalities, Multiple/genetics
- Abnormalities, Multiple/pathology
- Breast Diseases/complications
- Breast Diseases/genetics
- Breast Diseases/pathology
- Female
- Gene Duplication
- Heart Defects, Congenital/complications
- Heart Defects, Congenital/genetics
- Heart Defects, Congenital/pathology
- Heart Septal Defects, Atrial/complications
- Heart Septal Defects, Atrial/genetics
- Heart Septal Defects, Atrial/pathology
- Humans
- Lower Extremity Deformities, Congenital/complications
- Lower Extremity Deformities, Congenital/genetics
- Lower Extremity Deformities, Congenital/pathology
- Male
- Pedigree
- Phenotype
- T-Box Domain Proteins/genetics
- Ulna/abnormalities
- Ulna/pathology
- Upper Extremity Deformities, Congenital/complications
- Upper Extremity Deformities, Congenital/genetics
- Upper Extremity Deformities, Congenital/pathology
Collapse
Affiliation(s)
- Camille Cenni
- Department of Clinical Genetics, Guy's Hospital, London, UK
| | - Stephanie Andres
- Institute of Human Genetics, Technische Universitat Munchen, Munich, Germany
| | - Maja Hempel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tim M Strom
- Institute of Human Genetics, Technische Universitat Munchen, Munich, Germany
| | - Ellen Thomas
- Genomics England, Queen Mary University of London, London, UK; Genomic Medicine, Imperial College Healthcare NHS Trust, London, UK
| | | | - Norma Timoney
- Department of Plastic Surgery, St Thomas Hospital, London, UK
| | | | - Malcolm Logan
- Randall Centre for Cell and Molecular Biophysics, King's College London, Guy's Campus, London, UK
| | | |
Collapse
|
4
|
Zhou W, Cai H, Li J, Xu H, Wang X, Men H, Zheng Y, Cai L. Potential roles of mediator Complex Subunit 13 in Cardiac Diseases. Int J Biol Sci 2021; 17:328-338. [PMID: 33390853 PMCID: PMC7757031 DOI: 10.7150/ijbs.52290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 11/25/2020] [Indexed: 12/16/2022] Open
Abstract
Mediator complex subunit 13 (MED13, previously known as THRAP1 and TRAP240) is a subunit of the cyclin-dependent kinase 8 (CDK8) kinase module in the eukaryotic mediator complex. MED13 has been known to play critical roles in cell cycle, development, and growth. The purpose of this review is to comprehensively discuss its newly identified potential roles in myocardial energy metabolism and non-metabolic cardiovascular diseases. Evidence indicates that cardiac MED13 mainly participates in the regulation of nuclear receptor signaling, which drives the transcription of genes involved in modulating cardiac and systemic energy homeostasis. MED13 is also associated with several pathological conditions, such as metabolic syndrome and thyroid disease-associated heart failure. Therefore, MED13 constitutes a potential therapeutic target for the regulation of metabolic disorders and other cardiovascular diseases.
Collapse
Affiliation(s)
- Wenqian Zhou
- The Center of Cardiovascular Diseases, the First Hospital of Jilin University, Changchun 130021, China.,Pediatric Research Institute, the Department of Pediatrics of University of Louisville, Louisville, KY 40202, USA
| | - He Cai
- The Center of Cardiovascular Diseases, the First Hospital of Jilin University, Changchun 130021, China
| | - Jia Li
- Pediatric Research Institute, the Department of Pediatrics of University of Louisville, Louisville, KY 40202, USA.,Department of Nephrology, the First Hospital of Jilin University, Changchun 130021, China
| | - He Xu
- Department of Respiratory Medicine, the First Hospital of Jilin University (Eastern Division), Changchun 130031, China
| | - Xiang Wang
- The Center of Cardiovascular Diseases, the First Hospital of Jilin University, Changchun 130021, China.,Pediatric Research Institute, the Department of Pediatrics of University of Louisville, Louisville, KY 40202, USA
| | - Hongbo Men
- The Center of Cardiovascular Diseases, the First Hospital of Jilin University, Changchun 130021, China.,Pediatric Research Institute, the Department of Pediatrics of University of Louisville, Louisville, KY 40202, USA
| | - Yang Zheng
- The Center of Cardiovascular Diseases, the First Hospital of Jilin University, Changchun 130021, China
| | - Lu Cai
- Pediatric Research Institute, the Department of Pediatrics of University of Louisville, Louisville, KY 40202, USA.,Department of Pharmacology and Toxicology, the University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
5
|
Abstract
Pathological cardiac remodeling is induced through multiple mechanisms that include neurohumoral and biomechanical stress resulting in transcriptional alterations that ultimately become maladaptive and lead to the development of heart failure (HF). Although cardiac transcriptional remodeling is mediated by the activation of numerous signaling pathways that converge on a limited number of transcription factors (TFs) that promote hypertrophy (pro-hypertrophic TFs), the current therapeutic approach to prevent HF utilizes pharmacological inhibitors that largely target specific receptors that are activated in response to pathological stimuli. Thus, there is limited efficacy with the current pharmacological approaches to inhibit transcriptional remodeling associated with the development of HF. Recent evidence suggests that these pro-hypertrophic TFs co-localize at enhancers to cooperatively activate transcription associated with pathological cardiac remodeling. In disease states, including cancer and HF, evidence suggests that the general transcriptional machinery is disproportionately bound at enhancers. Therefore, pharmacological inhibition of transcriptional machinery that integrates pro-hypertrophic TFs may represent a promising alternative therapeutic approach to limit pathological remodeling associated with the development of HF.
Collapse
|
6
|
Schiano C, Casamassimi A, Vietri MT, Rienzo M, Napoli C. The roles of mediator complex in cardiovascular diseases. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1839:444-51. [PMID: 24751643 DOI: 10.1016/j.bbagrm.2014.04.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 03/19/2014] [Accepted: 04/11/2014] [Indexed: 02/08/2023]
Abstract
Despite recent treatment advances, an increase in cardiovascular diseases (CVD) mortality is expected for the next years. Mediator (MED) complex plays key roles in eukaryotic gene transcription. Currently, while numerous studies have correlated MED alterations with several diseases, like cancer or neurological disorders, fewer studies have investigated MED role in CVD initiation and progression. The first finding of MED involvement in these pathologies was the correlation of missense mutations in MED13L gene with transposition of the great arteries. Nowadays, also MED13 and MED15 have been associated with human congenital heart diseases and others could be added, like MED12 that is involved in early mouse development and heart formation. Interestingly, a missense mutation in MED30 gene causes a progressive cardiomyopathy in homozygous mice suggesting a potential role for this subunit also in human CVDs. Moreover, several subunits like MED1, MED13, MED14, MED15, MED23, MED25 and CDK8 exert important roles in glucose and lipid metabolism. Although these evidences derive from in vitro and animal model studies, they indicate that their deregulation may have a significant role in human CVD-related metabolic disorders. Finally, alternative transcripts of MED12, MED19 and MED30 are differently expressed in circulating endothelial progenitor cells thus suggesting they can play a role in the field of regenerative medicine. Overall, further functional studies exploring MED role in human CVD are warranted. The results could allow identifying novel biomarkers to use in combination with imaging techniques for early diagnosis; otherwise, they could be useful to develop targets for novel therapeutic approaches.
Collapse
Affiliation(s)
- Concetta Schiano
- Institute of Diagnostic and Nuclear Development (SDN), IRCCS, Via E. Gianturco 113, 80143 Naples, Italy
| | - Amelia Casamassimi
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Via L. De Crecchio 7, 80138 Naples, Italy.
| | - Maria Teresa Vietri
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Via L. De Crecchio 7, 80138 Naples, Italy
| | - Monica Rienzo
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Via L. De Crecchio 7, 80138 Naples, Italy
| | - Claudio Napoli
- Institute of Diagnostic and Nuclear Development (SDN), IRCCS, Via E. Gianturco 113, 80143 Naples, Italy; Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Via L. De Crecchio 7, 80138 Naples, Italy; U.O.C. Immunohematology, Transfusion Medicine and Transplant Immunology [SIMT], Regional Reference Laboratory of Transplant Immunology [LIT], Azienda Universitaria Policlinico (AOU), 1st School of Medicine, Second University of Naples, Piazza Miraglia 2, 80138 Naples, Italy
| |
Collapse
|
7
|
Chen CP, Huang JP, Chen YY, Chern SR, Wu PS, Su JW, Chen YT, Chen WL, Wang W. Chromosome 22q11.2 deletion syndrome: prenatal diagnosis, array comparative genomic hybridization characterization using uncultured amniocytes and literature review. Gene 2013; 527:405-9. [DOI: 10.1016/j.gene.2013.06.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 06/03/2013] [Accepted: 06/04/2013] [Indexed: 12/31/2022]
|
8
|
Chen CP, Lee MJ, Chern SR, Wu PS, Su JW, Chen YT, Lee MS, Wang W. Prenatal diagnosis and molecular cytogenetic characterization of a de novo proximal interstitial deletion of chromosome 4p (4p15.2→p14). Gene 2013; 529:351-6. [PMID: 23948085 DOI: 10.1016/j.gene.2013.07.063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 07/13/2013] [Accepted: 07/16/2013] [Indexed: 02/03/2023]
Abstract
We present prenatal diagnosis of de novo proximal interstitial deletion of chromosome 4p (4p15.2→p14) and molecular cytogenetic characterization of the deletion using uncultured amniocytes. We review the phenotypic abnormalities of previously reported patients with similar proximal interstitial 4p deletions, and we discuss the functions of the genes of RBPJ, CCKAR, STIM2, PCDH7 and ARAP2 that are deleted within this region.
Collapse
Affiliation(s)
- Chih-Ping Chen
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei, Taiwan; Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan; Department of Biotechnology, Asia University, Taichung, Taiwan; School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan; Institute of Clinical and Community Health Nursing, National Yang-Ming University, Taipei, Taiwan; Department of Obstetrics and Gynecology, School of Medicine, National Yang-Ming University, Taipei, Taiwan.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Grueter CE. Mediator complex dependent regulation of cardiac development and disease. GENOMICS PROTEOMICS & BIOINFORMATICS 2013; 11:151-7. [PMID: 23727265 PMCID: PMC4357813 DOI: 10.1016/j.gpb.2013.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 05/09/2013] [Accepted: 05/18/2013] [Indexed: 11/22/2022]
Abstract
Cardiovascular disease (CVD) is a leading cause of morbidity and mortality. The risk factors for CVD include environmental and genetic components. Human mutations in genes involved in most aspects of cardiovascular function have been identified, many of which are involved in transcriptional regulation. The Mediator complex serves as a pivotal transcriptional regulator that functions to integrate diverse cellular signals by multiple mechanisms including recruiting RNA polymerase II, chromatin modifying proteins and non-coding RNAs to promoters in a context dependent manner. This review discusses components of the Mediator complex and the contribution of the Mediator complex to normal and pathological cardiac development and function. Enhanced understanding of the role of this core transcriptional regulatory complex in the heart will help us gain further insights into CVD.
Collapse
Affiliation(s)
- Chad E Grueter
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA.
| |
Collapse
|
10
|
Chen CP, Huang MC, Chen YY, Chern SR, Wu PS, Su JW, Town DD, Wang W. Cri-du-chat (5p-) syndrome presenting with cerebellar hypoplasia and hypospadias: prenatal diagnosis and aCGH characterization using uncultured amniocytes. Gene 2013; 524:407-11. [PMID: 23500598 DOI: 10.1016/j.gene.2013.03.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 02/20/2013] [Accepted: 03/02/2013] [Indexed: 11/28/2022]
Abstract
We present prenatal diagnosis of a de novo distal deletion involving 5p(5p15.1→pter) using uncultured amniocytes in a pregnancy with cerebellar hypoplasia, hypospadias and facial dysmorphisms in the fetus. We discuss the genotype-phenotype correlation and the consequence of haploinsufficiency of CTNND2, SEMA5A, TERT, SRD5A1 and TPPP. We speculate that haploinsufficiency of SRD5A1 and TPPP may be responsible for hypospadias and cerebellar hypoplasia, respectively, in this case.
Collapse
Affiliation(s)
- Chih-Ping Chen
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei, Taiwan.
| | | | | | | | | | | | | | | |
Collapse
|