1
|
Zhang H, Yan H, Che H, So K, He L, Zhu Y, Liu B, Zhang Y. Establishment of genetic transformation system in Lilium pumilum and functional analysis of LpNAC6 on abiotic stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 350:112292. [PMID: 39414146 DOI: 10.1016/j.plantsci.2024.112292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/18/2024]
Abstract
Lilium pumilum is widely distributed in northeast Asia. It exhibits strong resistance and possesses high ornamental value. However, it currently lacks an efficient and stable transformation system. Therefore, we aimed to establish an effective genetic transformation system using the Agrobacterium-mediated method for L. pumilum, enabling gene transfer into the plant for gene function research and genetic engineering breeding. Our genetic transformation system achieved a transformation efficiency of 7.25 % under specific conditions: a kanamycin (Kana) concentration of 120 mg/L, 3 days of pre-cultivation, an A. tumefaciens concentration of 0.7 OD600, an acetosyringone (AS) concentration of 20 mg/L, and a 15-minute infection period. We investigated the function of the LpNAC6 from L. pumilum by observing phenotypic and physiological changes under stresses induced by salt, alkali, and drought. Furthermore, overexpression of LpNAC6 resulted in enhanced stress tolerance as evidenced by increased levels of SOD, POD, CAT enzymes, improved photosynthetic indices, and elevated chlorophyll contents; as well as reduced levels of MDA and reactive oxygen species (ROS). These findings demonstrate that we have successfully established a transgenic transformation method for L. pumilum while also providing essential information for cultivating stress-tolerant Lilium species and advancing our understanding of the functions of LpNAC6 in plants.
Collapse
Affiliation(s)
- Hongying Zhang
- College of Landscape Architecture, Northeast Forestry University, Harbin 150040, China
| | - Hao Yan
- College of Landscape Architecture, Northeast Forestry University, Harbin 150040, China
| | - Haitao Che
- College of Landscape Architecture, Northeast Forestry University, Harbin 150040, China
| | - Kyongsok So
- College of Landscape Architecture, Northeast Forestry University, Harbin 150040, China; Laboratory for Landscape Architecture, Institute of Architectural Material, State Academy of Sciences, Pyongyang, South Korea
| | - Longyi He
- College of Landscape Architecture, Northeast Forestry University, Harbin 150040, China
| | - Yuxin Zhu
- College of Landscape Architecture, Northeast Forestry University, Harbin 150040, China
| | - Bin Liu
- College of Landscape Architecture, Northeast Forestry University, Harbin 150040, China
| | - Yanni Zhang
- College of Landscape Architecture, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
2
|
Zhou L, Huan X, Zhao K, Jin X, Hu J, Du S, Han Y, Wang S. PagMYB205 Negatively Affects Poplar Salt Tolerance through Reactive Oxygen Species Scavenging and Root Vitality Modulation. Int J Mol Sci 2023; 24:15437. [PMID: 37895117 PMCID: PMC10607357 DOI: 10.3390/ijms242015437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Salt stress is one of the major abiotic stresses that limits plant growth and development. The MYB transcription factor family plays essential roles in plant growth and development, as well as stress tolerance processes. In this study, the cDNA of the 84K poplar (Populus abla × Populus glandulosa) was used as a template to clone the full length of the PagMYB205 gene fragment, and transgenic poplar lines with PagMYB205 overexpression (OX) or inhibited expression (RNAi, RNA interference) were cultivated. The role of PagMYB205 in poplar growth and development and salt tolerance was detected using morphological and physiological methods. The full-length CDS sequence of PagMYB205 was 906 bp, encoding 301 amino acids, and the upstream promoter sequence contained abiotic stress-related cis-acting elements. The results of subcellular localization and transactivation assays showed that the protein had no self-activating activity and was localized in the nucleus. Under salt stress, the rooting rate and root vitality of RNAi were higher than OX and wild type (WT). However, the malondialdehyde (MDA) content of the RNAi lines was significantly lower than that of the wild-type (WT) and OX lines, but the reactive oxygen species (ROS) scavenging ability, such as the peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT) enzyme activities, was dramatically more powerful. Most significantly of all, the RNAi3 line with the lowest expression level of PagMYB205 had the lowest MDA content, the best enzyme activity and root vitality, and the best salt stress tolerance compared to the other lines. The above results suggest that the transcription factor PagMYB205 could negatively regulate salt stress tolerance by regulating antioxidant enzyme activity and root vitality.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shengji Wang
- College of Forestry, Shanxi Agricultural University, Jinzhong 030801, China
| |
Collapse
|
3
|
Comparative Transcriptomic Analysis of Root and Leaf Transcript Profiles Reveals the Coordinated Mechanisms in Response to Salinity Stress in Common Vetch. Int J Mol Sci 2022; 23:ijms23158477. [PMID: 35955619 PMCID: PMC9369433 DOI: 10.3390/ijms23158477] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 12/07/2022] Open
Abstract
Owing to its strong environmental suitability to adverse abiotic stress conditions, common vetch (Vicia sativa) is grown worldwide for both forage and green manure purposes and is an important protein source for human consumption and livestock feed. The germination of common vetch seeds and growth of seedlings are severely affected by salinity stress, and the response of common vetch to salinity stress at the molecular level is still poorly understood. In this study, we report the first comparative transcriptomic analysis of the leaves and roots of common vetch under salinity stress. A total of 6361 differentially expressed genes were identified in leaves and roots. In the roots, the stress response was dominated by genes involved in peroxidase activity. However, the genes in leaves focused mainly on Ca2+ transport. Overexpression of six salinity-inducible transcription factors in yeast further confirmed their biological functions in the salinity stress response. Our study provides the most comprehensive transcriptomic analysis of common vetch leaf and root responses to salinity stress. Our findings broaden the knowledge of the common and distinct intrinsic molecular mechanisms within the leaves and roots of common vetch and could help to develop common vetch cultivars with high salinity tolerance.
Collapse
|
4
|
Liu JN, Ma X, Yan L, Liang Q, Fang H, Wang C, Dong Y, Chai Z, Zhou R, Bao Y, Wang L, Gai S, Lang X, Yang KQ, Chen R, Wu D. MicroRNA and Degradome Profiling Uncover Defense Response of Fraxinus velutina Torr. to Salt Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:847853. [PMID: 35432418 PMCID: PMC9011107 DOI: 10.3389/fpls.2022.847853] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/23/2022] [Indexed: 05/13/2023]
Abstract
Soil salinization is a major environmental problem that seriously threatens the sustainable development of regional ecosystems and local economies. Fraxinus velutina Torr. is an excellent salt-tolerant tree species, which is widely planted in the saline-alkaline soils in China. A growing body of evidence shows that microRNAs (miRNAs) play important roles in the defense response of plants to salt stress; however, how miRNAs in F. velutina exert anti-salt stress remains unclear. We previously identified two contrasting F. velutina cuttings clones, salt-tolerant (R7) and salt-sensitive (S4) and found that R7 exhibits higher salt tolerance than S4. To identify salt-responsive miRNAs and their target genes, the leaves and roots of R7 and S4 exposed to salt stress were subjected to miRNA and degradome sequencing analysis. The results showed that compared with S4, R7 showed 89 and 138 differentially expressed miRNAs in leaves and roots, respectively. Specifically, in R7 leaves, miR164d, miR171b/c, miR396a, and miR160g targeting NAC1, SCL22, GRF1, and ARF18, respectively, were involved in salt tolerance. In R7 roots, miR396a, miR156a/b, miR8175, miR319a/d, and miR393a targeting TGA2.3, SBP14, GR-RBP, TCP2/4, and TIR1, respectively, participated in salt stress responses. Taken together, the findings presented here revealed the key regulatory network of miRNAs in R7 responding to salt stress, thereby providing new insights into improving salt tolerance of F. velutina through miRNA manipulation.
Collapse
Affiliation(s)
- Jian Ning Liu
- College of Forestry, Shandong Agricultural University, Tai’an, China
| | - Xinmei Ma
- College of Forestry, Shandong Agricultural University, Tai’an, China
| | - Liping Yan
- Shandong Provincial Academy of Forestry, Jinan, China
| | - Qiang Liang
- College of Forestry, Shandong Agricultural University, Tai’an, China
- Shandong Taishan Forest Ecosystem Research Station, Shandong Agricultural University, Tai’an, China
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Shandong Agricultural University, Tai’an, China
| | - Hongcheng Fang
- College of Forestry, Shandong Agricultural University, Tai’an, China
- Shandong Taishan Forest Ecosystem Research Station, Shandong Agricultural University, Tai’an, China
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Shandong Agricultural University, Tai’an, China
| | - Changxi Wang
- College of Forestry, Shandong Agricultural University, Tai’an, China
| | - Yuhui Dong
- College of Forestry, Shandong Agricultural University, Tai’an, China
- Shandong Taishan Forest Ecosystem Research Station, Shandong Agricultural University, Tai’an, China
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Shandong Agricultural University, Tai’an, China
| | - Zejia Chai
- College of Forestry, Shandong Agricultural University, Tai’an, China
| | - Rui Zhou
- College of Forestry, Shandong Agricultural University, Tai’an, China
| | - Yan Bao
- College of Forestry, Shandong Agricultural University, Tai’an, China
| | - Lichang Wang
- College of Forestry, Shandong Agricultural University, Tai’an, China
| | - Shasha Gai
- College of Forestry, Shandong Agricultural University, Tai’an, China
| | - Xinya Lang
- College of Forestry, Shandong Agricultural University, Tai’an, China
| | - Ke Qiang Yang
- College of Forestry, Shandong Agricultural University, Tai’an, China
- Shandong Taishan Forest Ecosystem Research Station, Shandong Agricultural University, Tai’an, China
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Shandong Agricultural University, Tai’an, China
- *Correspondence: Ke Qiang Yang,
| | - Rong Chen
- Culaishan Forest Farm, Tai’an, China
- Rong Chen,
| | - Dejun Wu
- Shandong Provincial Academy of Forestry, Jinan, China
- Dejun Wu,
| |
Collapse
|
5
|
Liang XD, Shalapy M, Zhao SF, Liu JH, Wang JY. A stress-responsive transcription factor PeNAC1 regulating beta-D-glucan biosynthetic genes enhances salt tolerance in oat. PLANTA 2021; 254:130. [PMID: 34817644 DOI: 10.1007/s00425-021-03770-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
A Populus euphratica NAC gene regulates (1,3; 1,4)-β-D-glucan content in oat developing seed and improves the spikelet number and grain number per spike in transgenic oat under salinity conditions Salinity is the major factor affecting the production and quality of oat, and improving oat salt tolerance to increase yield and quality is vital. (1,3;1,4)-β-D-glucan in Gramineae is the key component in response to various environmental signals, and it is the most important functional ingredient in oat grain. The NAC transcription factors are important candidate genes used in genetic engineering to improve plant abiotic stress tolerance. In this study, we introduced Populus euphratica PeNAC1, controlled by its own promoter, into hexaploid cultivated oat and produced six transgenic lines. Compared to the non-transgenic control, the expression of PeNAC1 significantly improved the seed germination rate, seedling survival rate, and leaf chlorophyll content in the transgenic plants under salt stress. These physiological changes increased the spikelet number and grain number per spike in the transgenic oat under salinity conditions and reduced the yield loss per plant. The results indicated that the heterologous expression of PeNAC1 plays an effective role in improving the salt tolerance in transgenic oat. In addition, overexpressing PeNAC1 significantly increased the (1,3;1,4)-β-D-glucan content as well as the expression level of the (1,3;1,4)-β-D-glucan biosynthetic genes AsCslF3, AsCslF6, and AsCslF9 in the transgenic lines under salt stress, which suggested that PeNAC1 regulates the synthesis of (1,3;1,4)-β-D-glucan. Our research should assist in the discovery of the diverse action modes of NAC proteins, while PeNAC1 will be useful for improving the salt tolerance and quality of oat through molecular breeding.
Collapse
Affiliation(s)
- Xiao-Dong Liang
- XinJiang Academy of Agricultural Sciences Grain Crops Institute, No. 403 Nanchang Road, Urumqi, 830091, China
- Biotechnology Research Institute of Chinese Academy of Agricultural Sciences, No. 12 Zhong Guan Cun South Street, Beijing, 100081, China
| | - Mohamed Shalapy
- XinJiang Academy of Agricultural Sciences Grain Crops Institute, No. 403 Nanchang Road, Urumqi, 830091, China
| | - Shi-Feng Zhao
- Zhangjiakou Academy of Agricultural Sciences, Zhangjiakou, 075000, China
| | - Jing-Hui Liu
- Inner Mongolia Agriculture University, No. 275 Xue Yuan East Street, Hohhot, 010019, China.
| | - Jun-Ying Wang
- XinJiang Academy of Agricultural Sciences Grain Crops Institute, No. 403 Nanchang Road, Urumqi, 830091, China.
| |
Collapse
|
6
|
Hou D, Zhao Z, Hu Q, Li L, Vasupalli N, Zhuo J, Zeng W, Wu A, Lin X. PeSNAC-1 a NAC transcription factor from moso bamboo (Phyllostachys edulis) confers tolerance to salinity and drought stress in transgenic rice. TREE PHYSIOLOGY 2020; 40:1792-1806. [PMID: 32761243 DOI: 10.1093/treephys/tpaa099] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 08/02/2020] [Indexed: 05/16/2023]
Abstract
NAC (NAM, AFAT and CUC) proteins play necessary roles in plant response to environmental stresses. However, the functional roles of NAC genes in moso bamboo (Phyllostachys edulis), an essential economic perennial woody bamboo species, are not well documented. In this study, we retrieved 152 PeNAC genes from the moso bamboo V2 genome, and PeSNAC-1 was isolated and functionally characterized. PeSNAC-1 was localized in the nucleus and had no transactivation activity in yeast. PeSNAC-1 extremely expressed in rhizome and young roots (0.1 and 0.5 cm) and was significantly induced by drought and salt treatments but repressed by abscisic acid (ABA), methyl jasmonate and high temperature (42 °C) in moso bamboo. Under water shortage and salinity conditions, survival ratios, Fv/Fm values, physiological indexes such as activities of superoxide dismutase, peroxidase and catalase and contents of malondialdehyde, H2O2 and proline were significantly higher in transgenic rice than the wild type, which suggests enhanced tolerance to drought and salt stress in PeSANC-1 overexpressed plants. Transcript levels of Na+/H+ antiporter and Na+ transporter genes (OsSOS1, OsNHX1 and OsHKT1;5), ABA signaling and biosynthesis genes (OsABI2, OsRAB16, OsPP2C68, OsLEA3-1, OsLEA3, OsNCED3, OsNCED4 and OsNCED5) and ABA-independent genes (OsDREB1A, OsDREB1B and OsDREB2A) were substantially higher in transgenic as compared with the wild type. Moreover, protein interaction analysis revealed that PeSNAC-1 could interact with stress responsive PeSNAC-2/4 and PeNAP-1/4/5 in both yeast and plant cells, which indicates a synergistic effect of those proteins in regulating the moso bamboo stress response. Our data demonstrate that PeSNAC-1 likely improved salt and drought stress tolerance via modulating gene regulation in both ABA-dependent and independent signaling pathways in transgenic rice. In addition, PeSNAC-1 functions as an important positive stress regulator in moso bamboo, participating in PeSNAC-1 and PeSNAC-2/4 or PeSNAC-1 and PeNAP-1/4/5 interaction networks.
Collapse
Affiliation(s)
- Dan Hou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin'An, 311300 Zhejiang, China
| | - Zhongyu Zhao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin'An, 311300 Zhejiang, China
| | - Qiutao Hu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin'An, 311300 Zhejiang, China
| | - Ling Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin'An, 311300 Zhejiang, China
| | - Naresh Vasupalli
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin'An, 311300 Zhejiang, China
| | - Juan Zhuo
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin'An, 311300 Zhejiang, China
| | - Wei Zeng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin'An, 311300 Zhejiang, China
| | - Aimin Wu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Xinchun Lin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin'An, 311300 Zhejiang, China
| |
Collapse
|
7
|
Pang X, Xue M, Ren M, Nan D, Wu Y, Guo H. Ammopiptanthus mongolicus stress-responsive NAC gene enhances the tolerance of transgenic Arabidopsis thaliana to drought and cold stresses. Genet Mol Biol 2019; 42:624-634. [PMID: 31424071 PMCID: PMC6905445 DOI: 10.1590/1678-4685-gmb-2018-0101] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 02/11/2019] [Indexed: 12/02/2022] Open
Abstract
Drought and cold are the primary factors limiting plant growth worldwide. The Ammopiptanthus mongolicus NAC11 (AmNAC11) gene encodes a stress-responsive transcription factor. Expression of the AmNAC11 gene was induced by drought, cold and high salinity. The AmNAC11 protein was localized in the nucleus and plays an important role in tolerance to drought, cold and salt stresses. We also found that differential expression of AmNAC11 was induced in the early stages of seed germination and was related to root growth. When the AmNAC11 gene was introduced into Arabidopsis thaliana by an Agrobacterium-mediated method, the transgenic lines expressing AmNAC11 displayed significantly enhanced tolerance to drought and freezing stresses compared to wild-type Arabidopsis thaliana plants. These results indicated that over-expression of the AmNAC11 gene in Arabidopsis could significantly enhance its tolerance to drought and freezing stresses. Our study provides a promising approach to improve the tolerance of crop cultivars to abiotic stresses through genetic engineering.
Collapse
Affiliation(s)
- Xinyue Pang
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, China
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
- State Key Laboratory of Cotton Biology, Anyang, China
- Key Laboratory of Desert and Desertification, Chinese Academy of Sciences, Lanzhou, Gansu, China
| | - Min Xue
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, China
| | - Meiyan Ren
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, China
| | - Dina Nan
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, China
| | - Yaqi Wu
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, China
| | - Huiqin Guo
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
8
|
Wang J, Zhang L, Wang X, Liu L, Lin X, Wang W, Qi C, Cao Y, Li S, Ren S, Zhang Y, Zhang W, Guo YD. PvNAC1 increases biomass and enhances salt tolerance by decreasing Na + accumulation and promoting ROS scavenging in switchgrass (Panicum virgatum L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 280:66-76. [PMID: 30824030 DOI: 10.1016/j.plantsci.2018.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/13/2018] [Accepted: 11/15/2018] [Indexed: 06/09/2023]
Abstract
Switchgrass (Panicum virgatum L.) is a bioenergy crop; thus, it is important to improve biomass to effectively produce bioethanol, particularly under adverse stress conditions. NAC transcription factors are involved in the abiotic stress response. PvNAC1 was isolated in the nucleus of switchgrass, with its C-terminal region containing a transcriptional activation domain. PvNAC1 expression was induced by dehydration, salt, H2O2, and abscisic acid treatments. Overexpressing (OE) PvNAC1 improved growth performance, leading to significantly taller and heavier (dry weight) plants. Moreover, cellulose content was significantly higher in OE plants, indicating that PvNAC1 plays an important role regulating growth and bioethanol production. PvNAC1 RNA interference (RNAi) switchgrass plants exhibited reduced dry weight and cellulose content. OE PvNAC1 enhanced tolerance to salt stress, through higher reactive oxygen species scavenging ability and less Na+ and more K+ accumulation in roots and shoots. RNAi plants were more sensitive to salt stress. The quantitative polymerase chain reaction results revealed that some stress responsive genes, three antioxidant enzymatic genes, and an ion homeostasis-related gene were upregulated in OE plants and downregulated in RNAi plants. These results show that PvNAC1 functions as a transcriptional activator in response to salt stress and growth.
Collapse
Affiliation(s)
- Jinfang Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Lei Zhang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xiaoyun Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Lun Liu
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xinpeng Lin
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Wenjing Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Chuandong Qi
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yunyun Cao
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Shuangtao Li
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Shuxin Ren
- School of Agriculture, Virginia State University, PO Box 9061, Petersburg, VA 23806, USA
| | - Yunwei Zhang
- Department of Grassland Science, China Agricultural University, Beijing, 100193, China
| | - Wanjun Zhang
- Department of Grassland Science, China Agricultural University, Beijing, 100193, China
| | - Yang-Dong Guo
- College of Horticulture, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
9
|
Polle A, Chen SL, Eckert C, Harfouche A. Engineering Drought Resistance in Forest Trees. FRONTIERS IN PLANT SCIENCE 2019; 9:1875. [PMID: 30671067 DOI: 10.3389/fpls.2018.0187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 12/04/2018] [Indexed: 05/27/2023]
Abstract
Climatic stresses limit plant growth and productivity. In the past decade, tree improvement programs were mainly focused on yield but it is obvious that enhanced stress resistance is also required. In this review we highlight important drought avoidance and tolerance mechanisms in forest trees. Genomes of economically important trees species with divergent resistance mechanisms can now be exploited to uncover the mechanistic basis of long-term drought adaptation at the whole plant level. Molecular tree physiology indicates that osmotic adjustment, antioxidative defense and increased water use efficiency are important targets for enhanced drought tolerance at the cellular and tissue level. Recent biotechnological approaches focused on overexpression of genes involved in stress sensing and signaling, such as the abscisic acid core pathway, and down-stream transcription factors. By this strategy, a suite of defense systems was recruited, generally enhancing drought and salt stress tolerance under laboratory conditions. However, field studies are still scarce. Under field conditions trees are exposed to combinations of stresses that vary in duration and magnitude. Variable stresses may overrule the positive effect achieved by engineering an individual defense pathway. To assess the usability of distinct modifications, large-scale experimental field studies in different environments are necessary. To optimize the balance between growth and defense, the use of stress-inducible promoters may be useful. Future improvement programs for drought resistance will benefit from a better understanding of the intricate networks that ameliorate molecular and ecological traits of forest trees.
Collapse
Affiliation(s)
- Andrea Polle
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Forest Botany and Tree Physiology, University of Goettingen, Göttingen, Germany
- Centre of Biodiversity and Sustainable Land Use, University of Goettingen, Göttingen, Germany
| | - Shao Liang Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Christian Eckert
- Forest Botany and Tree Physiology, University of Goettingen, Göttingen, Germany
| | - Antoine Harfouche
- Department for Innovation in Biological, Agrofood and Forest systems, University of Tuscia, Viterbo, Italy
| |
Collapse
|
10
|
Polle A, Chen SL, Eckert C, Harfouche A. Engineering Drought Resistance in Forest Trees. FRONTIERS IN PLANT SCIENCE 2019; 9:1875. [PMID: 30671067 PMCID: PMC6331418 DOI: 10.3389/fpls.2018.01875] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 12/04/2018] [Indexed: 05/03/2023]
Abstract
Climatic stresses limit plant growth and productivity. In the past decade, tree improvement programs were mainly focused on yield but it is obvious that enhanced stress resistance is also required. In this review we highlight important drought avoidance and tolerance mechanisms in forest trees. Genomes of economically important trees species with divergent resistance mechanisms can now be exploited to uncover the mechanistic basis of long-term drought adaptation at the whole plant level. Molecular tree physiology indicates that osmotic adjustment, antioxidative defense and increased water use efficiency are important targets for enhanced drought tolerance at the cellular and tissue level. Recent biotechnological approaches focused on overexpression of genes involved in stress sensing and signaling, such as the abscisic acid core pathway, and down-stream transcription factors. By this strategy, a suite of defense systems was recruited, generally enhancing drought and salt stress tolerance under laboratory conditions. However, field studies are still scarce. Under field conditions trees are exposed to combinations of stresses that vary in duration and magnitude. Variable stresses may overrule the positive effect achieved by engineering an individual defense pathway. To assess the usability of distinct modifications, large-scale experimental field studies in different environments are necessary. To optimize the balance between growth and defense, the use of stress-inducible promoters may be useful. Future improvement programs for drought resistance will benefit from a better understanding of the intricate networks that ameliorate molecular and ecological traits of forest trees.
Collapse
Affiliation(s)
- Andrea Polle
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Forest Botany and Tree Physiology, University of Goettingen, Göttingen, Germany
- Centre of Biodiversity and Sustainable Land Use, University of Goettingen, Göttingen, Germany
| | - Shao Liang Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Christian Eckert
- Forest Botany and Tree Physiology, University of Goettingen, Göttingen, Germany
| | - Antoine Harfouche
- Department for Innovation in Biological, Agrofood and Forest systems, University of Tuscia, Viterbo, Italy
| |
Collapse
|
11
|
Tissue-Specific Transcriptome Analysis Reveals Multiple Responses to Salt Stress in Populus euphratica Seedlings. Genes (Basel) 2017; 8:genes8120372. [PMID: 29292723 PMCID: PMC5748690 DOI: 10.3390/genes8120372] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/24/2017] [Accepted: 11/29/2017] [Indexed: 01/05/2023] Open
Abstract
Salt stress is one of the most crucial factors impacting plant growth, development and reproduction. However, information regarding differences in tissue-specific gene expression patterns, which may improve a plant’s tolerance to salt stress, is limited. Here, we investigated the gene expression patterns in tissues of Populus euphratica Oliv. seedlings using RNA sequencing (RNA-Seq) technology. A total of 109.3 million, 125bp paired-end clean reads were generated, and 6428, 4797, 2335 and 3358 differentially expressed genes (DEGs) were identified in leaf, phloem, xylem and root tissues, respectively. While the tissue-specific DEGs under salt stress had diverse functions, “membrane transporter activity” was the most significant leaf function, whereas “oxidation–reduction process” was the most significant function in root tissue. Further analysis of the tissue-specific DEGs showed that the expression patterns or functions of gene families, such as SOS, NHX, GolS, GPX, APX, RBOHF and CBL, were diverse, suggesting that calcium signaling, reactive oxygen species (ROS) and salt overly sensitive (SOS) pathways are all involved in ionic homeostasis in tissues from P. euphratica seedlings. The DEGs, for example the up-regulated antioxidant genes, contribute to ROS-scavenging induced by salt stress but result in decreased Na+ concentrations in root vasculature cells and in xylem sap, while the down-regulated rbohF leads to the reverse results. These results suggest that the divergence of DEGs expression patterns contribute to maintenance of ionic and ROS homeostasis in tissues and improve plant salinity tolerance. We comprehensively analyzed the response of P. euphratica seedlings to salt stress and provide helpful genetic resources for studying plant-abiotic stress interactions.
Collapse
|
12
|
Marques DN, Reis SPD, de Souza CR. Plant NAC transcription factors responsive to abiotic stresses. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.plgene.2017.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Xu X, Xiao L, Feng J, Chen N, Chen Y, Song B, Xue K, Shi S, Zhou Y, Jenks MA. Cuticle lipids on heteromorphic leaves of Populus euphratica Oliv. growing in riparian habitats differing in available soil moisture. PHYSIOLOGIA PLANTARUM 2016; 158:318-330. [PMID: 27184005 DOI: 10.1111/ppl.12471] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 04/13/2016] [Accepted: 05/03/2016] [Indexed: 05/11/2023]
Abstract
Populus euphratica is an important native tree found in arid regions from North Africa and South Europe to China, and is known to tolerate many forms of environmental stress, including drought. We describe cuticle waxes, cutin and cuticle permeability for the heteromorphic leaves of P. euphratica growing in two riparian habitats that differ in available soil moisture. Scanning electron microscopy revealed variation in epicuticular wax crystallization associated with leaf type and site. P. euphratica leaves are dominated by cuticular wax alkanes, primary-alcohols and fatty acids. The major cutin monomers were 10,16-diOH C16:0 acids. Broad-ovate leaves (associated with adult phase growth) produced 1.3- and 1.6-fold more waxes, and 2.1- and 0.9-fold more cutin monomers, than lanceolate leaves (associated with juvenile phase growth) at the wetter site and drier site, respectively. The alkane-synthesis-associated ECERIFERUM1 (CER1), as well as ABC transporter- and elongase-associated genes, were expressed at much higher levels at the drier than wetter sites, indicating their potential function in elevating leaf cuticle lipids in the dry site conditions. Higher cuticle lipid amounts were closely associated with lower cuticle permeability (both chlorophyll efflux and water loss). Our results implicate cuticle lipids as among the xeromorphic traits associated with P. euphratica adult-phase broad-ovate leaves. Results here provide useful information for protecting natural populations of P. euphratica and their associated ecosystems, and shed new light on the functional interaction of cuticle and leaf heterophylly in adaptation to more arid, limited-moisture environments.
Collapse
Affiliation(s)
- Xiaojing Xu
- College of Life and Environmental Sciences, Minzu University of China, 27 South Zhongguancun Avenue, Beijing, 100081, P.R. China
| | - Lei Xiao
- College of Life and Environmental Sciences, Minzu University of China, 27 South Zhongguancun Avenue, Beijing, 100081, P.R. China
| | - Jinchao Feng
- College of Life and Environmental Sciences, Minzu University of China, 27 South Zhongguancun Avenue, Beijing, 100081, P.R. China.
| | - Ningmei Chen
- College of Life and Environmental Sciences, Minzu University of China, 27 South Zhongguancun Avenue, Beijing, 100081, P.R. China
| | - Yue Chen
- College of Life and Environmental Sciences, Minzu University of China, 27 South Zhongguancun Avenue, Beijing, 100081, P.R. China
| | - Buerbatu Song
- College of Life and Environmental Sciences, Minzu University of China, 27 South Zhongguancun Avenue, Beijing, 100081, P.R. China
| | - Kun Xue
- College of Life and Environmental Sciences, Minzu University of China, 27 South Zhongguancun Avenue, Beijing, 100081, P.R. China
| | - Sha Shi
- College of Life and Environmental Sciences, Minzu University of China, 27 South Zhongguancun Avenue, Beijing, 100081, P.R. China
| | - Yijun Zhou
- College of Life and Environmental Sciences, Minzu University of China, 27 South Zhongguancun Avenue, Beijing, 100081, P.R. China
| | - Matthew A Jenks
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV, 26505, USA.
| |
Collapse
|
14
|
Wang JY, Wang JP, Yang HF. Identification and functional characterization of the NAC gene promoter from Populus euphratica. PLANTA 2016; 244:417-427. [PMID: 27084679 DOI: 10.1007/s00425-016-2511-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 03/26/2016] [Indexed: 06/05/2023]
Abstract
The PeNAC1 promoter is a non-tissue-specific and stress-inducible promoter containing a GA-responsive element and a MYB recognition sequence that are responsible for induced expression patterns. NAC transcription factors play vital roles in complex signaling networks during plant stress responses. Promoters as crucial molecular switches are involved in the transcriptional regulation of gene activities dynamic network controlling a variety of biological processes, such as developmental processes, responses to hormone and abiotic stress. In this study, a 1217-bp flanking fragment of the stress-responsive NAC gene PeNAC1 was isolated from Populus euphratica. In transgenic Arabidopsis, this promoter fragment was found to have a higher activity than the cauliflower mosaic virus 35S promoter and remained active throughout the plant life cycle, particularly in the spiral vessels and cortical cells of vascular tissues of various organs. We identified a gibberellic acid-responsive element, required for response to gibberellic acid and involved in the salt-stress signaling pathway, and a MYB recognition sequence, which has an important role in promoter response to drought stress, in the PeNAC1 promoter. These results suggest that the PeNAC1 promoter is more effective, non-tissue-specific, and inducible. In addition, the presence of a putative NAC protein-binding motif in the PeNAC1 promoter indicates that PeNAC1 is either regulated by other NAC transcription factors or is self-regulated. Our research will help reveal the regulatory mechanism of the upstream region of the PeNAC1 gene and provide a foundation for the use of the PeNAC1 promoter in molecular breeding.
Collapse
Affiliation(s)
- Jun-Ying Wang
- Biotechnology Research Institute of the Chinese Academy of Agricultural Sciences, No. 12 Zhong Guan Cun South Street, 100081, Beijing, China.
| | - Jun-Ping Wang
- Tianjin University of Science and Technology, No. 29 13th Avenue, Tianjin Economic and Technological Development Area, 300457, Tianjin, China.
| | - Hai-Feng Yang
- Inner Mongolia Agriculture University, 010019, Hohhot, China
| |
Collapse
|
15
|
Gong X, Zhang J, Liu JH. A stress responsive gene of Fortunella crassifolia FcSISP functions in salt stress resistance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 83:10-9. [PMID: 25054478 DOI: 10.1016/j.plaphy.2014.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Accepted: 07/03/2014] [Indexed: 05/23/2023]
Abstract
Exploration of genes functioning in salt tolerance is crucial for generating transgenic plants with enhanced salt tolerance. In this study, we report the isolation and functional characterization of a stress-responsive gene FcSISP from Meiwa kumquat (Fortunella crassifolia). FcSISP encodes a putative protein of 47 amino acids, with a calculated molecular mass of 4.94 kDa and theoretical isoelectric point of 3.76, and was localized in the nucleus. Transcript levels of FcSISP were induced by dehydration, cold, salt and bacterium causing citrus canker, and hormones (salicylic acid and abscisic acid), with the greatest induction under salt treatment. Overexpression of FcSISP in tobacco (Nicotiana nudicaulis) conferred enhanced salt tolerance. The transgenic lines accumulated lower Na(+) contents, leading to reduced Na/K ratio, but accumulated more proline than the wild type (WT). Steady state mRNA levels of genes involved in Na(+) exchange (three SOS genes and three NHX genes) and proline synthesis (P5CS and P5CR) were higher in the transgenic lines in comparison with WT. Moreover, overexpression of FcSISP in trifoliate orange [Poncirus trifoliata (L.) Raf.], a widely-used and salt-sensitive citrus rootstock, led to elevated salt tolerance. Taken together, the data demonstrate that FcSISP plays a positive role in salt tolerance and that it holds a great potential for engineering salt tolerance in crops.
Collapse
Affiliation(s)
- Xiaoqing Gong
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Jingyan Zhang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Ji-Hong Liu
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
16
|
Chen J, Tian Q, Pang T, Jiang L, Wu R, Xia X, Yin W. Deep-sequencing transcriptome analysis of low temperature perception in a desert tree, Populus euphratica. BMC Genomics 2014; 15:326. [PMID: 24884892 PMCID: PMC4035058 DOI: 10.1186/1471-2164-15-326] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 04/23/2014] [Indexed: 01/31/2023] Open
Abstract
Background Compared with other Populus species, Populus euphratica Oliv. exhibits better tolerance to abiotic stress, especially those involving extreme temperatures. However, little is known about gene regulation and signaling pathways involved in low temperature stress responses in this species. Recent development of Illumina/Solexa-based deep-sequencing technologies has accelerated the study of global transcription profiling under specific conditions. To understand the gene network controlling low temperature perception in P. euphratica, we performed transcriptome sequencing using Solexa sequence analysis to generate a leaf transcriptome at a depth of 10 gigabases for each sample. Results Using the Trinity method, 52,081,238 high-quality trimmed reads were assembled into a non-redundant set and 108,502 unigenes with an average length of 1,047 bp were generated. After performing functional annotations by aligning all-unigenes with public protein databases, 85,584 unigenes were annotated. Differentially expressed genes were investigated using the FPKM method by applying the Benjamini and Hochberg corrections. Overall, 2,858 transcripts were identified as differentially expressed unigenes in at least two samples and 131 were assigned as unigenes expressed differently in all three samples. In 4°C-treated sample and -4°C-treated sample, 1,661 and 866 differently expressed unigenes were detected at an estimated absolute log2-fold change of > 1, respectively. Among them, the respective number of up-regulated unigenes in C4 and F4 sample was 1,113 and 630, while the respective number of down-regulated ungenes is 548 and 236. To increase our understanding of these differentially expressed genes, we performed gene ontology enrichment and metabolic pathway enrichment analyses. A large number of early cold (below or above freezing temperature)-responsive genes were identified, suggesting that a multitude of transcriptional cascades function in cold perception. Analyses of multiple cold-responsive genes, transcription factors, and some key transduction components involved in ABA and calcium signaling revealed their potential function in low temperature responses in P. euphratica. Conclusions Our results provide a global transcriptome picture of P. euphratica under low temperature stress. The potential cold stress related transcripts identified in this study provide valuable information for further understanding the molecular mechanisms of low temperature perception in P. euphratica. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-326) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | - Xinli Xia
- National Engineering Laboratory for Tree Breeding, Beijing 100083, China.
| | | |
Collapse
|