1
|
Hladnik M, Baruca Arbeiter A, Gabrovšek P, Tomi F, Gibernau M, Brana S, Bandelj D. New Chloroplast Microsatellites in Helichrysum italicum (Roth) G. Don: Their Characterization and Application for the Evaluation of Genetic Resources. PLANTS (BASEL, SWITZERLAND) 2024; 13:2740. [PMID: 39409608 PMCID: PMC11479114 DOI: 10.3390/plants13192740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/22/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024]
Abstract
Helichrysum italicum (Roth) G. Don is a Mediterranean medicinal plant with great potential in the cosmetics, culinary and pharmaceutical fields due to its unique bioactive compounds. Its recent introduction into agroecosystems has enhanced the exploitation of genetic diversity in natural populations, although limited molecular markers have made this challenging. In the present study, primers were designed for all 43 SSRs (72.1% mononucleotide, 21% dinucleotide and 6.9% trinucleotide repeats) identified in the chloroplast genome. Populations from Cape Kamenjak (Croatia) and Corsica (France) were analyzed with ten carefully selected cpSSR markers. From the initial set of 16 cpSSRs amplified in all samples, 6 cpSSR markers were removed due to low-length polymorphisms, size homoplasy and nucleotide polymorphisms that could not be detected with allele length. Of the 38 haplotypes detected, 32 were unique to their geographic origin. The highest number of private haplotypes was observed in the Cape Kamenjak population (seven out of nine detected). Based on clustering analyses, the Kamenjak population was the most similar to the Capo Pertusato (south Corsica) population, although only one sub-haplotype was shared. Other Corsican populations were more similar to each other. A cross-species transferability test with Helichrysum litoreum Guss. and Helichrysum arenarium (L.) Moench was successfully conducted and private alleles were identified.
Collapse
Affiliation(s)
- Matjaž Hladnik
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, 6000 Koper, Slovenia; (M.H.); (A.B.A.); (P.G.)
| | - Alenka Baruca Arbeiter
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, 6000 Koper, Slovenia; (M.H.); (A.B.A.); (P.G.)
| | - Petra Gabrovšek
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, 6000 Koper, Slovenia; (M.H.); (A.B.A.); (P.G.)
| | - Félix Tomi
- Laboratoire Sciences Pour l’Environnement, Université de Corse-CNRS, UMR 6134 SPE, Route des Sanguinaires, 20000 Ajaccio, France; (F.T.); (M.G.)
| | - Marc Gibernau
- Laboratoire Sciences Pour l’Environnement, Université de Corse-CNRS, UMR 6134 SPE, Route des Sanguinaires, 20000 Ajaccio, France; (F.T.); (M.G.)
| | - Slavko Brana
- Istrian Botanical Society, Trgovačka 45, HR-52215 Vodnjan, Croatia;
| | - Dunja Bandelj
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, 6000 Koper, Slovenia; (M.H.); (A.B.A.); (P.G.)
| |
Collapse
|
2
|
Shen J, Li P, Chu H, Li Y, Meng X, Li Z, Dou J, Wang W, Liu C, Xiao P, He C, Yi Z. Pharmacophylogenetic insights into Scutellaria strigillosa Hemsl.: chloroplast genome and untargeted metabolomics, quantitative analysis and antibacterial analysis. FRONTIERS IN PLANT SCIENCE 2024; 15:1472204. [PMID: 39385988 PMCID: PMC11461247 DOI: 10.3389/fpls.2024.1472204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 08/29/2024] [Indexed: 10/12/2024]
Abstract
Scutellaria strigillosa Hemsl., known for its traditional use in Chinese herbal medicine, is valued for heat-clearing and detoxifying, promoting diuresis, reducing swelling, alleviating pain, and preventing miscarriage. Despite its historical use, comprehensive studies on pharmacophylogenetic analysis, including genetic and chemical profiles and the antimicrobial activity of S. strigillosa are still lacking. Understanding these aspects is crucial for fully realizing its therapeutic potential and ensuring sustainable use. This study aims to elucidate these aspects through comparative genomics, metabolomics, and antimicrobial assays with Scutellaria baicalensis Georgi and Scutellaria barbata D. Don. The chloroplast genome of S. strigillosa was assembled, measuring 152,533 bp, and revealing a high degree of conservation, especially in the protein-coding regions, and identified four regions trnK(UUU)-rps16, trnN(GUU)-trnR(ACG), accD-psaI, psbE-petL) of variability that could serve as phylogenetic markers. The phylogenetic analysis revealed a closer genetic relationship of S. strigillosa with S. tuberifera and S. scordifolia than traditionally classified, suggesting a need for taxonomic reevaluation within the genus. UPLC-Q-TOF-MS analysis in negative ion mode was used to explore the chemical diversity among these species, revealing distinct variations in their chemical compositions. S. strigillosa shared a closer chemical profile with S. barbata, aligning with phylogenetic findings. Metabolomic identification through Progenesis QI software resulted in the tentative identification of 112 metabolites, including a substantial number of flavonoids, diterpenoids, iridoid glycosides, phenylethanoid glycosides, and others. HPLC analysis further detailed the concentrations of 12 actives across the species, highlighting the variation in compound content. S. strigillosa shows antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa, similar to S. baicalensis root extracts. This research enhances the understanding of the phylogenetic and phytochemical profiles and the antibacterial activity of S. strigillosa, offering new insights into its medicinal properties. The findings suggest a need for taxonomic reevaluation within the genus and underscore the potential antibacterial activity of S. strigillosa for therapeutic applications. Further studies are encouraged to explore its full medicinal potential and contribute to the sustainable development of Scutellaria species.
Collapse
Affiliation(s)
- Jie Shen
- School of Medical Laboratory, Shandong Second Medical University, Weifang, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Panpan Li
- Key Laboratory of Immune Microenvironment and Inflammatory Disease Research in Universities of Shandong Province, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, China
| | - Hairong Chu
- School of Medical Laboratory, Shandong Second Medical University, Weifang, China
| | - Yong Li
- Experimental Center for Medical Research, Shandong Second Medical University, Weifang, China
| | - Xiangying Meng
- School of Medical Laboratory, Shandong Second Medical University, Weifang, China
| | - Zhenpeng Li
- School of Medical Laboratory, Shandong Second Medical University, Weifang, China
| | - Jiayao Dou
- School of Medical Laboratory, Shandong Second Medical University, Weifang, China
| | - Wentao Wang
- School of Medical Laboratory, Shandong Second Medical University, Weifang, China
| | - Chenyang Liu
- School of Medical Laboratory, Shandong Second Medical University, Weifang, China
| | - Peigen Xiao
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Chunnian He
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Zhengjun Yi
- School of Medical Laboratory, Shandong Second Medical University, Weifang, China
| |
Collapse
|
3
|
Xu X, Huang H, Lin S, Zhou L, Yi Y, Lin E, Feng L, Zheng Y, Lin A, Yu L, Shen Y, Henry RJ, Fang J. Twelve newly assembled jasmine chloroplast genomes: unveiling genomic diversity, phylogenetic relationships and evolutionary patterns among Oleaceae and Jasminum species. BMC PLANT BIOLOGY 2024; 24:331. [PMID: 38664619 PMCID: PMC11044428 DOI: 10.1186/s12870-024-04995-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 04/08/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND Jasmine (Jasminum), renowned for its ornamental value and captivating fragrance, has given rise to numerous species and accessions. However, limited knowledge exists regarding the evolutionary relationships among various Jasminum species. RESULTS In the present study, we sequenced seven distinct Jasminum species, resulting in the assembly of twelve high-quality complete chloroplast (cp) genomes. Our findings revealed that the size of the 12 cp genomes ranged from 159 to 165 kb and encoded 134-135 genes, including 86-88 protein-coding genes, 38-40 tRNA genes, and 8 rRNA genes. J. nudiflorum exhibited a larger genome size compared to other species, mainly attributed to the elevated number of forward repeats (FRs). Despite the typically conservative nature of chloroplasts, variations in the presence or absence of accD have been observed within J. sambac. The calculation of nucleotide diversity (Pi) values for 19 cp genomes indicated that potential mutation hotspots were more likely to be located in LSC regions than in other regions, particularly in genes ycf2, rbcL, atpE, ndhK, and ndhC (Pi > 0.2). Ka/Ks values revealed strong selection pressure on the genes rps2, atpA, rpoA, rpoC1, and rpl33 when comparing J. sambac with the three most closely related species (J. auriculatum, J. multiflorum, and J. dichotomum). Additionally, SNP identification, along with the results of Structure, PCA, and phylogenetic tree analyses, divided the Jasminum cp genomes into six groups. Notably, J. polyanthum showed gene flow signals from both the G5 group (J. nudiflorum) and the G3 group (J. tortuosum and J. fluminense). Phylogenetic tree analysis reflected that most species from the same genus clustered together with robust support in Oleaceae, strongly supporting the monophyletic nature of cp genomes within the genus Jasminum. CONCLUSION Overall, this study provides comprehensive insights into the genomic composition, variation, and phylogenetic relationships among various Jasminum species. These findings enhance our understanding of the genetic diversity and evolutionary history of Jasminum.
Collapse
Affiliation(s)
- Xiuming Xu
- College of Life Science, Fujian Normal University, Fuzhou, 350117, China
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Hechen Huang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Shaoqing Lin
- College of Life Science, Fujian Normal University, Fuzhou, 350117, China
| | - Linwei Zhou
- College of Life Science, Fujian Normal University, Fuzhou, 350117, China
| | - Yuchong Yi
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Enwen Lin
- College of Life Science, Fujian Normal University, Fuzhou, 350117, China
| | - Liqing Feng
- College of Life Science, Fujian Normal University, Fuzhou, 350117, China
| | - Yu Zheng
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Aiting Lin
- College of Life Science, Fujian Normal University, Fuzhou, 350117, China
| | - Liying Yu
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Yingjia Shen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Robert J Henry
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, Australia
| | - Jingping Fang
- College of Life Science, Fujian Normal University, Fuzhou, 350117, China.
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, Australia.
| |
Collapse
|
4
|
Shen J, Li P, Wang Y, Yang K, Li Y, Yao H, Wang Q, Xiao P, He C. Pharmacophylogenetic study of Scutellaria baicalensis and its substitute medicinal species based on the chloroplast genomics, metabolomics, and active ingredient. FRONTIERS IN PLANT SCIENCE 2022; 13:951824. [PMID: 36061787 PMCID: PMC9433114 DOI: 10.3389/fpls.2022.951824] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
The genetic relationships among the species in Scutellaria genus remain unclear because of the variation in the number of species and complex trait. The usage of S. baicalensis and its four substitute medicinal species (S. amoena, S. hypericifolia, S. likiangensis, and S. viscidula) in traditional medicines make their specialized metabolism important in China, but interspecific genetic and chemical differences have rarely been reported for these species. In this study, the chloroplast genomes of four substitute species for S. baicalensis were assembled, and comparative and phylogenetic analyses were performed with these species and other Scutellaria relatives. In addition, metabolomics analyses were performed and the contents of the main active compounds were determined to reveal the interspecific chemical diversity of S. baicalensis and its four substitute species. The full lengths of their chloroplast genomes ranged from 151,574 to 151,816 bp with an average GC content of 38.34%, and a total of 113 genes were annotated. In the chloroplast genomes of S. baicalensis and its four substitutes, one hypervariable region (petA-psbL) is proposed as a potential DNA barcode. Phylogenetic analysis showed that the subdivision of the genus Scutellaria should be reconsidered. The metabolomics and content determination analyses showed that the four species exhibit a metabolism similar to that of S. baicalensis in different parts. Except for the roots of S. likiangensis, all parts of the substitute species showed high contents of baicalin. Genetic and chemical analyses of four substitute medicinal species for S. baicalensis were performed here for the first time, and their pharmacophylogenetic relationships were further explored, providing a scientific basis for the subsequent development of the medicinal value and resource utilization of Scutellaria.
Collapse
Affiliation(s)
- Jie Shen
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- School of Medical Laboratory, Weifang Medical University, Weifang, China
| | - Pei Li
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yue Wang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Kailing Yang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yue Li
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Hui Yao
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Qiang Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Peigen Xiao
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Chunnian He
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
5
|
Nazar N, Howard C, Slater A, Sgamma T. Challenges in Medicinal and Aromatic Plants DNA Barcoding-Lessons from the Lamiaceae. PLANTS (BASEL, SWITZERLAND) 2022; 11:137. [PMID: 35009140 PMCID: PMC8747715 DOI: 10.3390/plants11010137] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/26/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
The potential value of DNA barcoding for the identification of medicinal plants and authentication of traded plant materials has been widely recognized; however, a number of challenges remain before DNA methods are fully accepted as an essential quality control method by industry and regulatory authorities. The successes and limitations of conventional DNA barcoding are considered in relation to important members of the Lamiaceae. The mint family (Lamiaceae) contains over one thousand species recorded as having a medicinal use, with many more exploited in food and cosmetics for their aromatic properties. The family is characterized by a diversity of secondary products, most notably the essential oils (EOs) produced in external glandular structures on the aerial parts of the plant that typify well-known plants of the basil (Ocimum), lavender (Lavandula), mint (Mentha), thyme (Thymus), sage (Salvia) and related genera. This complex, species-rich family includes widely cultivated commercial hybrids and endangered wild-harvested traditional medicines, and examples of potential toxic adulterants within the family are explored in detail. The opportunities provided by next generation sequencing technologies to whole plastome barcoding and nuclear genome sequencing are also discussed with relevant examples.
Collapse
Affiliation(s)
- Nazia Nazar
- Biomolecular Technology Group, Leicester School of Allied Health Science, Faculty of Health and Life Sciences, De Montfort University, Leicester LE1 9BH, UK;
| | - Caroline Howard
- Tree of Life Programme, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK;
| | - Adrian Slater
- Biomolecular Technology Group, Leicester School of Allied Health Science, Faculty of Health and Life Sciences, De Montfort University, Leicester LE1 9BH, UK;
| | - Tiziana Sgamma
- Biomolecular Technology Group, Leicester School of Allied Health Science, Faculty of Health and Life Sciences, De Montfort University, Leicester LE1 9BH, UK;
| |
Collapse
|
6
|
Sun J, Wang Y, Garran TA, Qiao P, Wang M, Yuan Q, Guo L, Huang L. Heterogeneous Genetic Diversity Estimation of a Promising Domestication Medicinal Motherwort Leonurus Cardiaca Based on Chloroplast Genome Resources. Front Genet 2021; 12:721022. [PMID: 34603384 PMCID: PMC8479170 DOI: 10.3389/fgene.2021.721022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 09/01/2021] [Indexed: 11/30/2022] Open
Abstract
Leonurus cardiaca has a long history of use in western herbal medicine and is applied for the treatment of gynaecological conditions, anxiety, and heart diseases. Because of its botanical relationship to the primary Chinese species, L. japonicus, and extensive medical indications that go beyond the traditional indications for the Chinese species, it is a promising medicinal resource. Therefore, the features of genetic diversity and variability in the species have been prioritized. To explore these issues, we sequenced the chloroplast genomes of 22 accessions of L. cardiaca from different geographical locations worldwide using high-throughput sequencing. The results indicate that L. cardiaca has a typical quadripartite structure and range from 1,51,236 bp to 1,51,831 bp in size, forming eight haplotypes. The genomes all contain 114 distinct genes, including 80 protein-coding genes, 30 transfer RNA genes and four ribosomal RNA genes. Comparative analysis showed abundant diversity of single nucleotide polymorphisms (SNPs), indels, simple sequence repeats (SSRs) in 22 accessions. Codon usage showed highly similar results for L. cardiaca species. The phylogenetic and network analysis indicated 22 accessions forming four clades that were partly related to the geographical distribution. In summary, our study highlights the advantage of chloroplast genome with large data sets in intraspecific diversity evaluation and provides a new tool to facilitate medicinal plant conservation and domestication.
Collapse
Affiliation(s)
- Jiahui Sun
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yiheng Wang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Thomas Avery Garran
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ping Qiao
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Academician workstation, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Mengli Wang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qingjun Yuan
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
7
|
Zheng XH, Duan HC, Li SM, Dong Q. The complete chloroplast genome of Crateva unilocularis (Capparaceae). Mitochondrial DNA B Resour 2021; 6:658-659. [PMID: 33763540 PMCID: PMC7927983 DOI: 10.1080/23802359.2021.1878949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/27/2020] [Indexed: 11/28/2022] Open
Abstract
Crateva unilocularis is naturally distributed in Southern China, which is an elite natural tree with high edible and medicinal value. In this study, whole chloroplast (cp) genome of Crateva unilocularis was assembled and characterized on the basis of Illumina pair-end sequencing data. The complete cp genome was 156,417 bp in length, containing a large single-copy region (LSC) of 85,607 bp and a small single-copy region (SSC) of 18,164 bp, which were separated by a pair of 26,323 bp inverted repeat regions (IRs). The genome contained 128 genes, including 85 protein-coding genes, 35 tRNA genes, and 8 rRNA genes. The overall GC content is 36.32%, while the corresponding values of the LSC, SSC, and IR regions were 33.98, 29.45, and 42.48%, respectively. The maximum-likelihood phylogenetic analysis showed a strong sister relationship with Crateva tapia. These findings provide a foundation for further investigation of cp genome evolution in Crateva unilocularis and other higher plants.
Collapse
Affiliation(s)
- Xin-hua Zheng
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Kunming, China
- Forestry College, Southwest Forestry University, Kunming, China
| | - Hua-chao Duan
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Kunming, China
- Forestry College, Southwest Forestry University, Kunming, China
| | - Shi-min Li
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Kunming, China
- Forestry College, Southwest Forestry University, Kunming, China
| | - Qiong Dong
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Kunming, China
- Forestry College, Southwest Forestry University, Kunming, China
| |
Collapse
|
8
|
Wu H, Ma PF, Li HT, Hu GX, Li DZ. Comparative plastomic analysis and insights into the phylogeny of Salvia (Lamiaceae). PLANT DIVERSITY 2021; 43:15-26. [PMID: 33778221 PMCID: PMC7987561 DOI: 10.1016/j.pld.2020.07.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 05/13/2023]
Abstract
Salvia is the largest genus of Lamiaceae, with almost 1000 species, and has been divided into 11 subgenera. Salvia subg. Glutinaria, native to East Asia, is particularly important because of its potential medicinal value. However, the interspecific relationships of this subgenus have not been resolved and the plastomes of Salvia have rarely been studied. In the current study, we compared plastid genome structure and organization of 19 species of Salvia (14 newly sequenced and 5 previously published). Our comparative analysis showed that all Salvia plastomes examined have a quadripartite structure typical of most angiosperms and contain an identical set of 114 unique genes (80 protein-coding genes, 4 rRNA genes, and 30 tRNA genes). The plastome structure of all Salvia species is highly conserved like other Lamiaceae plastomes. Gene content, gene order, and GC content were highly similar in these plastomes. The inverted repeats/single copy region (IR/SC) boundaries of Salvia are highly conserved, and IR contraction only occurred in two species (Salvia mekongensis and S. rosmarinus). In Salvia, sequence divergence was higher in non-coding regions than in coding regions. We found that using large single copy (LSC) and small single copy regions (SSC) with exclusion of the rapidly evolving sites produced the highest resolution in phylogenetic analysis of Salvia, suggesting that using suitable informative sites to build trees is more conducive in phylogenetic research. This study assembled a powerful matrix data set for studying the phylogeny of Salvia, resolving the interspecific relationship of Salvia subg. Glutinaria. The newly sequenced plastid genomes will also enrich the plastome database of Salvia, providing the scientific basis for the development and utilization of germplasm resources of this large and important genus.
Collapse
Affiliation(s)
- Hong Wu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peng-Fei Ma
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Hong-Tao Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Guo-Xiong Hu
- College of Life Sciences, Guizhou University, Guiyang, Guizhou, 550025, China
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| |
Collapse
|
9
|
Guo R, Li L, Su J, Li S, Duncan SE, Liu Z, Fan G. Pharmacological Activity and Mechanism of Tanshinone IIA in Related Diseases. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:4735-4748. [PMID: 33192051 PMCID: PMC7653026 DOI: 10.2147/dddt.s266911] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/24/2020] [Indexed: 12/18/2022]
Abstract
Salvia miltiorrhiza: (Danshen) is a significant (traditional Chinese medication) natural remedy, enhancing blood circulation and clear blood stasis. In this view, it is widely used against several heart diseases, eg, cardiomyopathy, arrhythmia, and congenital heart defects. Tanshinone IIA (tan-IIA) is the main fat-soluble component of Salvia miltiorrhiza. Modern pharmacological study shows that tan-IIA has anti-inflammatory and anti-oxidant activities. Tan-IIA induces remarkable cardioprotective effects via enhancing angiogenesis which may serve as an effective treatment against cardiovascular diseases (CVD). There is also evidence that tan-IIA has extensive immunomodulatory effects and plays a significant role in the development and function of immune cells. Tan-IIA reduces the production of inflammatory mediators and restores abnormal signaling pathways via regulating the function and activation of immune cells. It can also regulate signal transduction pathways, ie, TLR/NF-κB pathway and MAPKs/NF-κB pathway, thereby tan-IIA has an anti-inflammatory, anticoagulant, antithrombotic and neuroprotective role. It plays a protective role in the pathogenesis of cardiovascular disorders (ie, atherosclerosis, hypertension) and Alzheimer’s disease. It has also been revealed that tan-IIA has an anti-tumor role by killing various tumor cells, inducing differentiation and apoptosis, and has potential activity against carcinoma progression. In the review of this fact, the tan-IIA role in different diseases and its mechanism have been summarized while its clinical applications are also explored to provide a new perspective of Salvia miltiorrhiza. An extensive study on the mechanism of action of tan-IIA is of great significance for the effective use of Chinese herbal medicine and the promotion of its status and influence on the world.
Collapse
Affiliation(s)
- Rui Guo
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China.,School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Lan Li
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China.,School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Jing Su
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Sheng Li
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Sophia Esi Duncan
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Zhihao Liu
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China.,School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Guanwei Fan
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China.,School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| |
Collapse
|
10
|
Zhao F, Li B, Drew BT, Chen YP, Wang Q, Yu WB, Liu ED, Salmaki Y, Peng H, Xiang CL. Leveraging plastomes for comparative analysis and phylogenomic inference within Scutellarioideae (Lamiaceae). PLoS One 2020; 15:e0232602. [PMID: 32379799 PMCID: PMC7205251 DOI: 10.1371/journal.pone.0232602] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 04/17/2020] [Indexed: 01/02/2023] Open
Abstract
Scutellaria, or skullcaps, are medicinally important herbs in China, India, Japan, and elsewhere. Though Scutellaria is the second largest and one of the more taxonomically challenging genera within Lamiaceae, few molecular systematic studies have been undertaken within the genus; in part due to a paucity of available informative markers. The lack of informative molecular markers for Scutellaria hinders our ability to accurately and robustly reconstruct phylogenetic relationships, which hampers our understanding of the diversity, phylogeny, and evolutionary history of this cosmopolitan genus. Comparative analyses of 15 plastomes, representing 14 species of subfamily Scutellarioideae, indicate that plastomes within Scutellarioideae contain about 151,000 nucleotides, and possess a typical quadripartite structure. In total, 590 simple sequence repeats, 489 longer repeats, and 16 hyper-variable regions were identified from the 15 plastomes. Phylogenetic relationships among the 14 species representing four of the five genera of Scutellarioideae were resolved with high support values, but the current infrageneric classification of Scutellaria was not supported in all analyses. Complete plastome sequences provide better resolution at an interspecific level than using few to several plastid markers in phylogenetic reconstruction. The data presented here will serve as a foundation to facilitate DNA barcoding, species identification, and systematic research within Scutellaria, which is an important medicinal plant resource worldwide.
Collapse
Affiliation(s)
- Fei Zhao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bo Li
- Research Centre of Ecological Sciences, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Bryan T. Drew
- Department of Biology, University of Nebraska at Kearney, Kearney, Nebraska, United States of America
| | - Ya-Ping Chen
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Qiang Wang
- State Key Laboratory of Systematic & Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, China
| | - Wen-Bin Yu
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
| | - En-De Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Yasaman Salmaki
- Center of Excellence in Phylogeny of Living Organisms and Department of Plant Sciences, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Hua Peng
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Chun-Lei Xiang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
11
|
Unraveling the Chloroplast Genomes of Two Prosopis Species to Identify Its Genomic Information, Comparative Analyses and Phylogenetic Relationship. Int J Mol Sci 2020; 21:ijms21093280. [PMID: 32384622 PMCID: PMC7247323 DOI: 10.3390/ijms21093280] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/14/2020] [Accepted: 04/23/2020] [Indexed: 12/18/2022] Open
Abstract
Genus Prosopis (family Fabaceae) are shrubby trees, native to arid and semi-arid regions of Asia, Africa, and America and known for nitrogen fixation. Here, we have sequenced the complete chloroplast (cp) genomes of two Prosopis species (P. juliflora and P. cineraria) and compared them with previously sequenced P. glandulosa, Adenanthera microsperma, and Parkia javanica belonging to the same family. The complete genome sequences of Prosopis species and related species ranged from 159,389 bp (A. microsperma) to 163,677 bp (P. cineraria). The overall GC contents of the genomes were almost the similar (35.9–36.6%). The P. juliflora and P. cineraria genomes encoded 132 and 131 genes, respectively, whereas both the species comprised of 85 protein-coding genes higher than other compared species. About 140, 134, and 129 repeats were identified in P. juliflora, P. cineraria and P. glandulosa cp genomes, respectively. Similarly, the maximum number of simple sequence repeats were determined in P. juliflora (88), P. cineraria (84), and P. glandulosa (78). Moreover, complete cp genome comparison determined a high degree of sequence similarity among P. juliflora, P. cineraria, and P. glandulosa, however some divergence in the intergenic spacers of A. microsperma and Parkia javanica were observed. The phylogenetic analysis showed that P. juliflora is closer to P. cineraria than P. glandulosa.
Collapse
|
12
|
Khan A, Asaf S, Khan AL, Khan A, Al-Harrasi A, Al-Sudairy O, AbdulKareem NM, Al-Saady N, Al-Rawahi A. Complete chloroplast genomes of medicinally important Teucrium species and comparative analyses with related species from Lamiaceae. PeerJ 2019; 7:e7260. [PMID: 31328036 PMCID: PMC6625504 DOI: 10.7717/peerj.7260] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 06/05/2019] [Indexed: 02/05/2023] Open
Abstract
Teucrium is one of the most economically and ecologically important genera in the Lamiaceae family; however, it is currently the least well understood at the plastome level. In the current study, we sequenced the complete chloroplast (cp) genomes of T. stocksianum subsp. stenophyllum R.A.King (TSS), T. stocksianum subsp. stocksianum Boiss. (TS) and T. mascatense Boiss. (TM) through next-generation sequencing and compared them with the cp genomes of related species in Lamiaceae (Ajuga reptans L., Caryopteris mongholica Bunge, Lamium album L., Lamium galeobdolon (L.) Crantz, and Stachys byzantina K.Koch). The results revealed that the TSS, TS and TM cp genomes have sizes of 150,087, 150,076 and 150,499 bp, respectively. Similarly, the large single-copy (LSC) regions of TSS, TS and TM had sizes of 81,707, 81,682 and 82,075 bp, respectively. The gene contents and orders of these genomes were similar to those of other angiosperm species. However, various differences were observed at the inverted repeat (IR) junctions, and the extent of the IR expansion into ψrps19 was 58 bp, 23 bp and 61 bp in TSS, TS and TM, respectively. Similarly, in all genomes, the pbsA gene was present in the LSC at varying distances from the JLA (IRa-LSC) junction. Furthermore, 89, 72, and 92 repeats were identified in the TSS, TM and TS cp genomes, respectively. The highest number of simple sequence repeats was found in TSS (128), followed by TS (127) and TM (121). Pairwise alignments of the TSS cp genome with related cp genomes showed a high degree of synteny. However, relatively lower sequence identity was observed when various coding regions were compared to those of related cp genomes. The average pairwise divergence among the complete cp genomes showed that TSS was more divergent from TM (0.018) than from TS (0.006). The current study provides valuable genomic insight into the genus Teucrium and its subspecies that may be applied to a more comprehensive study.
Collapse
Affiliation(s)
- Arif Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Sajjad Asaf
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Abdul Latif Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Adil Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Omar Al-Sudairy
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | | | | | - Ahmed Al-Rawahi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| |
Collapse
|
13
|
Mollion M, Ehlers BK, Figuet E, Santoni S, Lenormand T, Maurice S, Galtier N, Bataillon T. Patterns of Genome-Wide Nucleotide Diversity in the Gynodioecious Plant Thymus vulgaris Are Compatible with Recent Sweeps of Cytoplasmic Genes. Genome Biol Evol 2018; 10:239-248. [PMID: 29272394 PMCID: PMC5815141 DOI: 10.1093/gbe/evx272] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2017] [Indexed: 12/14/2022] Open
Abstract
Gynodioecy is a sexual dimorphism where females coexist with hermaphrodite individuals. In most cases, this dimorphism involves the interaction of cytoplasmic male sterility (CMS) genes and nuclear restorer genes. Two scenarios can account for how these interactions maintain gynodioecy. Either CMS genes recurrently enter populations at low frequency via mutation or migration and go to fixation unimpeded (successive sweeps), or CMS genes maintain polymorphism over evolutionary time through interactions with a nuclear restorer allele (balanced polymorphism). To distinguish between these scenarios, we used transcriptome sequencing in gynodioecious Thymus vulgaris and surveyed genome-wide diversity in 18 naturally occurring individuals sampled from populations at a local geographic scale. We contrast the amount and patterns of nucleotide diversity in the nuclear and cytoplasmic genome, and find ample diversity at the nuclear level (π = 0.019 at synonymous sites) but reduced genetic diversity and an excess of rare polymorphisms in the cytoplasmic genome relative to the nuclear genome. Our finding is incompatible with the maintenance of gynodioecy via scenarios invoking long-term balancing selection, and instead suggests the recent fixation of CMS lineages in the populations studied.
Collapse
Affiliation(s)
- Maeva Mollion
- Bioinformatics Research Center, Aarhus University, C.F. Møllers Alle 8, Building 1110, 8000 Aarhus C, Denmark
| | - Bodil K Ehlers
- Department of Bioscience, Aarhus University, Vejlsøvej 25, 8600 Silkeborg, Denmark
| | - Emeric Figuet
- Institut des Sciences de l'Evolution, UMR5554 - Université de Montpellier - CNRS - IRD - EPHE, Place E. Bataillon - CC64, 34095 Montpellier, France
| | - Sylvain Santoni
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), CNRS, 1919, route de Mende 34293 Montpellier, France
| | - Thomas Lenormand
- Centre d'Ecologie Fonctionnelle et Evolutive, CNRS, 1919, route de Mende 34293 Montpellier, France
| | - Sandrine Maurice
- Institut des Sciences de l'Evolution, UMR5554 - Université de Montpellier - CNRS - IRD - EPHE, Place E. Bataillon - CC64, 34095 Montpellier, France
| | - Nicolas Galtier
- Institut des Sciences de l'Evolution, UMR5554 - Université de Montpellier - CNRS - IRD - EPHE, Place E. Bataillon - CC64, 34095 Montpellier, France
| | - Thomas Bataillon
- Bioinformatics Research Center, Aarhus University, C.F. Møllers Alle 8, Building 1110, 8000 Aarhus C, Denmark
| |
Collapse
|
14
|
Su Y, Huang L, Wang Z, Wang T. Comparative chloroplast genomics between the invasive weed Mikania micrantha and its indigenous congener Mikania cordata: Structure variation, identification of highly divergent regions, divergence time estimation, and phylogenetic analysis. Mol Phylogenet Evol 2018; 126:181-195. [PMID: 29684597 DOI: 10.1016/j.ympev.2018.04.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 03/07/2018] [Accepted: 04/09/2018] [Indexed: 11/27/2022]
Abstract
Mikania micrantha and Mikania cordata are the only two species in genus Mikania (Asteraceae) in China. They share very similar morphological and life-history characteristics but occupy quite different habitats. Most importantly, they generate totally different ecological consequences. While M. micrantha has become an exotic invasive weed, M. cordata exists as an indigenous species with no harmful effects on native plants or habitats. As a continuous study of our previously reported M. micrantha chloroplast (cp) genome, in this study we have further sequenced the M. cordata cp genome to (1) conduct a comparative genome analysis to gain insights into the mechanism of invasiveness; (2) develop cp markers to examine the population genetic adaptation of M. micrantha; and (3) screen variable genome regions of phylogenetic utility. The M. cordata chloroplast genome is 151,984 bp in length and displays a typical quadripartite structure. The number and distribution of protein coding genes, tRNA genes, and rRNA genes of M. cordata are identical to those of M. micrantha. The main difference lays in that the pseudogenization of ndhF and a 118-bp palindromic repeat only arises in M. cordata. Fourteen highly divergent regions, 235 base substitutions, and 58 indels were identified between the two cp genomes. Phylogenetic inferences revealed a sister relationship between M. micrantha and M. cordata whose divergence was estimated to occur around 1.78 million years ago (MYA). Twelve cpSSR loci were detected to be polymorphic and adopted to survey the genetic adaptation of M. micrantha populations. No cpSSR loci were found to undergo selection. Our results build a foundation to examine the invasive mechanism of Mikania weed.
Collapse
Affiliation(s)
- Yingjuan Su
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China; Research Institute of Sun Yat-sen University in Shenzhen, Shenzhen, China
| | - Lu Huang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhen Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Ting Wang
- College of Life Sciences, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.
| |
Collapse
|
15
|
The Chloroplast Genome Sequence of Scutellaria baicalensis Provides Insight into Intraspecific and Interspecific Chloroplast Genome Diversity in Scutellaria. Genes (Basel) 2017; 8:genes8090227. [PMID: 28902130 PMCID: PMC5615360 DOI: 10.3390/genes8090227] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 09/01/2017] [Accepted: 09/05/2017] [Indexed: 12/17/2022] Open
Abstract
Scutellaria baicalensis Georgi (Lamiaceae) is the source of the well-known traditional Chinese medicine “HuangQin” (Radix Scutellariae). Natural sources of S. baicalensis are rapidly declining due to high market demand and overexploitation. Moreover, the commercial products of Radix Scutellariae have often been found to contain adulterants in recent years, which may give rise to issues regarding drug efficacy and safety. In this study, we developed valuable chloroplast molecular resources by comparing intraspecific and interspecific chloroplast genome. The S. baicalensis chloroplast genome is a circular molecule consisting of two single-copy regions separated by a pair of inverted repeats. Comparative analyses of three Scutellaria chloroplast genomes revealed six variable regions (trnH-psbA, trnK-rps16, petN-psbM, trnT-trnL, petA-psbJ, and ycf1) that could be used as DNA barcodes. There were 25 single nucleotide polymorphisms(SNPs) and 29 indels between the two S. baicalensis genotypes. All of the indels occurred within non-coding regions. Phylogenetic analysis suggested that Scutellarioideae is a sister taxon to Lamioideae. These resources could be used to explore the variation present in Scutellaria populations and for further evolutionary, phylogenetic, barcoding and genetic engineering studies, in addition to effective exploration and conservation of S. baicalensis.
Collapse
|
16
|
The complete chloroplast genome of Caryopteris mongholica and phylogenetic implications in Lamiaceae. CONSERV GENET RESOUR 2017. [DOI: 10.1007/s12686-017-0802-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Vining KJ, Johnson SR, Ahkami A, Lange I, Parrish AN, Trapp SC, Croteau RB, Straub SCK, Pandelova I, Lange BM. Draft Genome Sequence of Mentha longifolia and Development of Resources for Mint Cultivar Improvement. MOLECULAR PLANT 2017; 10:323-339. [PMID: 27867107 DOI: 10.1016/j.molp.2016.10.018] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 10/28/2016] [Accepted: 10/29/2016] [Indexed: 05/08/2023]
Abstract
The genus Mentha encompasses mint species cultivated for their essential oils, which are formulated into a vast array of consumer products. Desirable oil characteristics and resistance to the fungal disease Verticillium wilt are top priorities for the mint industry. However, cultivated mints have complex polyploid genomes and are sterile. Breeding efforts, therefore, require the development of genomic resources for fertile mint species. Here, we present draft de novo genome and plastome assemblies for a wilt-resistant South African accession of Mentha longifolia (L.) Huds., a diploid species ancestral to cultivated peppermint and spearmint. The 353 Mb genome contains 35 597 predicted protein-coding genes, including 292 disease resistance gene homologs, and nine genes determining essential oil characteristics. A genetic linkage map ordered 1397 genome scaffolds on 12 pseudochromosomes. More than two million simple sequence repeats were identified, which will facilitate molecular marker development. The M. longifolia genome is a valuable resource for both metabolic engineering and molecular breeding. This is exemplified by employing the genome sequence to clone and functionally characterize the promoters in a peppermint cultivar, and demonstrating the utility of a glandular trichome-specific promoter to increase expression of a biosynthetic gene, thereby modulating essential oil composition.
Collapse
Affiliation(s)
- Kelly J Vining
- Department of Horticulture, Oregon State University, Corvallis, OR 97331, USA.
| | - Sean R Johnson
- M. J. Murdock Metabolomics Laboratory, Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, USA
| | - Amirhossein Ahkami
- M. J. Murdock Metabolomics Laboratory, Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, USA
| | - Iris Lange
- M. J. Murdock Metabolomics Laboratory, Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, USA
| | - Amber N Parrish
- M. J. Murdock Metabolomics Laboratory, Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, USA
| | - Susan C Trapp
- M. J. Murdock Metabolomics Laboratory, Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, USA
| | - Rodney B Croteau
- M. J. Murdock Metabolomics Laboratory, Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, USA
| | - Shannon C K Straub
- Department of Biology, Hobart and William Smith Colleges, Geneva, NY 14456, USA
| | - Iovanna Pandelova
- Department of Horticulture, Oregon State University, Corvallis, OR 97331, USA
| | - B Markus Lange
- M. J. Murdock Metabolomics Laboratory, Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, USA.
| |
Collapse
|
18
|
He Y, Xiao H, Deng C, Xiong L, Yang J, Peng C. The Complete Chloroplast Genome Sequences of the Medicinal Plant Pogostemon cablin. Int J Mol Sci 2016; 17:ijms17060820. [PMID: 27275817 PMCID: PMC4926354 DOI: 10.3390/ijms17060820] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/04/2016] [Accepted: 05/09/2016] [Indexed: 01/15/2023] Open
Abstract
Pogostemon cablin, the natural source of patchouli alcohol, is an important herb in the Lamiaceae family. Here, we present the entire chloroplast genome of P. cablin. This genome, with 38.24% GC content, is 152,460 bp in length. The genome presents a typical quadripartite structure with two inverted repeats (each 25,417 bp in length), separated by one small and one large single-copy region (17,652 and 83,974 bp in length, respectively). The chloroplast genome encodes 127 genes, of which 107 genes are single-copy, including 79 protein-coding genes, four rRNA genes, and 24 tRNA genes. The genome structure, GC content, and codon usage of this chloroplast genome are similar to those of other species in the family, except that it encodes less protein-coding genes and tRNA genes. Phylogenetic analysis reveals that P. cablin diverged from the Scutellarioideae clade about 29.45 million years ago (Mya). Furthermore, most of the simple sequence repeats (SSRs) are short polyadenine or polythymine repeats that contribute to high AT content in the chloroplast genome. Complete sequences and annotation of P. cablin chloroplast genome will facilitate phylogenic, population and genetic engineering research investigations involving this particular species.
Collapse
Affiliation(s)
- Yang He
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Hongtao Xiao
- School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China.
- Department of Pharmacy, Hospital of the University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Chengdu 610072, China.
| | - Cao Deng
- Department of Bioinformatics, DNA Stories Bioinformatics Center, Chengdu 611731, China.
| | - Liang Xiong
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Jian Yang
- Department of Bioinformatics, DNA Stories Bioinformatics Center, Chengdu 611731, China.
| | - Cheng Peng
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
19
|
Welch AJ, Collins K, Ratan A, Drautz-Moses DI, Schuster SC, Lindqvist C. Data characterizing the chloroplast genomes of extinct and endangered Hawaiian endemic mints (Lamiaceae) and their close relatives. Data Brief 2016; 7:900-22. [PMID: 27077093 PMCID: PMC4816906 DOI: 10.1016/j.dib.2016.03.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 03/05/2016] [Accepted: 03/07/2016] [Indexed: 11/22/2022] Open
Abstract
These data are presented in support of a plastid phylogenomic analysis of the recent radiation of the Hawaiian endemic mints (Lamiaceae), and their close relatives in the genus Stachys, "The quest to resolve recent radiations: Plastid phylogenomics of extinct and endangered Hawaiian endemic mints (Lamiaceae)" [1]. Here we describe the chloroplast genome sequences for 12 mint taxa. Data presented include summaries of gene content and length for these taxa, structural comparison of the mint chloroplast genomes with published sequences from other species in the order Lamiales, and comparisons of variability among three Hawaiian taxa vs. three outgroup taxa. Finally, we provide a list of 108 primer pairs targeting the most variable regions within this group and designed specifically for amplification of DNA extracted from degraded herbarium material.
Collapse
Affiliation(s)
- Andreanna J. Welch
- Department of Biological Sciences, University at Buffalo (SUNY), Buffalo, NY 14260, USA
- Corresponding author at: School of Biological and Biomedical Sciences, Durham University, South Road, Durham DH1 3LE, UK.School of Biological and Biomedical Sciences, Durham University, South RoadDurhamDH1 3LEUK
| | - Katherine Collins
- Department of Biological Sciences, University at Buffalo (SUNY), Buffalo, NY 14260, USA
| | - Aakrosh Ratan
- Department of Public Health Sciences and Center for Public Health Genomics, University of Virginia, Charlottesville 22908, VA, USA
| | - Daniela I. Drautz-Moses
- Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore
| | - Stephan C. Schuster
- Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore
| | - Charlotte Lindqvist
- Department of Biological Sciences, University at Buffalo (SUNY), Buffalo, NY 14260, USA
- Corresponding author at: Department of Biological Sciences, University at Buffalo (SUNY), Buffalo, NY, 14260, USA.Department of Biological Sciences, University at Buffalo (SUNY)BuffaloNY14260USA
| |
Collapse
|
20
|
The quest to resolve recent radiations: Plastid phylogenomics of extinct and endangered Hawaiian endemic mints (Lamiaceae). Mol Phylogenet Evol 2016; 99:16-33. [DOI: 10.1016/j.ympev.2016.02.024] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/26/2016] [Accepted: 02/28/2016] [Indexed: 11/17/2022]
|
21
|
Wheeler GL, Dorman HE, Buchanan A, Challagundla L, Wallace LE. A review of the prevalence, utility, and caveats of using chloroplast simple sequence repeats for studies of plant biology. APPLICATIONS IN PLANT SCIENCES 2014; 2:apps.1400059. [PMID: 25506520 PMCID: PMC4259455 DOI: 10.3732/apps.1400059] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 10/06/2014] [Indexed: 05/02/2023]
Abstract
Microsatellites occur in all plant genomes and provide useful markers for studies of genetic diversity and structure. Chloroplast microsatellites (cpSSRs) are frequently targeted because they are more easily isolated than nuclear microsatellites. Here, we quantified the frequency and uses of cpSSRs based on a literature review of over 400 studies published 1995-2013. These markers are an important and economical tool for plant biologists and continue to be used alongside modern genomics approaches to study genetic diversity and structure, evolutionary history, and hybridization in native and agricultural species. Studies using species-specific primers reported a greater number of polymorphic loci than those employing universal primers. A major disadvantage to cpSSRs is fragment size homoplasy; therefore, we documented its occurrence at several cpSSR loci within and between species of Acmispon (Fabaceae). Based on our empirical data set, we recommend targeted sequencing of a subset of samples combined with fragment genotyping as a cost-efficient, data-rich approach to the use of cpSSRs and as a test of homoplasy. The availability of genomic resources for plants aids in the development of primers for new study systems, thereby enhancing the utility of cpSSRs across plant biology.
Collapse
Affiliation(s)
- Gregory L. Wheeler
- Department of Biological Sciences, Mississippi State University, P.O. Box GY, Mississippi State, Mississippi 39762 USA
| | - Hanna E. Dorman
- Department of Biological Sciences, Mississippi State University, P.O. Box GY, Mississippi State, Mississippi 39762 USA
| | - Alenda Buchanan
- Department of Biological Sciences, Mississippi State University, P.O. Box GY, Mississippi State, Mississippi 39762 USA
| | - Lavanya Challagundla
- Department of Biological Sciences, Mississippi State University, P.O. Box GY, Mississippi State, Mississippi 39762 USA
| | - Lisa E. Wallace
- Department of Biological Sciences, Mississippi State University, P.O. Box GY, Mississippi State, Mississippi 39762 USA
| |
Collapse
|