1
|
Rashkin SR, Cleves M, Shaw GM, Nembhard WN, Nestoridi E, Jenkins MM, Romitti PA, Lou XY, Browne ML, Mitchell LE, Olshan AF, Lomangino K, Bhattacharyya S, Witte JS, Hobbs CA. A genome-wide association study of obstructive heart defects among participants in the National Birth Defects Prevention Study. Am J Med Genet A 2022; 188:2303-2314. [PMID: 35451555 PMCID: PMC9283270 DOI: 10.1002/ajmg.a.62759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 01/19/2023]
Abstract
Obstructive heart defects (OHDs) share common structural lesions in arteries and cardiac valves, accounting for ~25% of all congenital heart defects. OHDs are highly heritable, resulting from interplay among maternal exposures, genetic susceptibilities, and epigenetic phenomena. A genome-wide association study was conducted in National Birth Defects Prevention Study participants (Ndiscovery = 3978; Nreplication = 2507), investigating the genetic architecture of OHDs using transmission/disequilibrium tests (TDT) in complete case-parental trios (Ndiscovery_TDT = 440; Nreplication_TDT = 275) and case-control analyses separately in infants (Ndiscovery_CCI = 1635; Nreplication_CCI = 990) and mothers (case status defined by infant; Ndiscovery_CCM = 1703; Nreplication_CCM = 1078). In the TDT analysis, the SLC44A2 single nucleotide polymorphism (SNP) rs2360743 was significantly associated with OHD (pdiscovery = 4.08 × 10-9 ; preplication = 2.44 × 10-4 ). A CAPN11 SNP (rs55877192) was suggestively associated with OHD (pdiscovery = 1.61 × 10-7 ; preplication = 0.0016). Two other SNPs were suggestively associated (p < 1 × 10-6 ) with OHD in only the discovery sample. In the case-control analyses, no SNPs were genome-wide significant, and, even with relaxed thresholds ( × discovery < 1 × 10-5 and preplication < 0.05), only one SNP (rs188255766) in the infant analysis was associated with OHDs (pdiscovery = 1.42 × 10-6 ; preplication = 0.04). Additional SNPs with pdiscovery < 1 × 10-5 were in loci supporting previous findings but did not replicate. Overall, there was modest evidence of an association between rs2360743 and rs55877192 and OHD and some evidence validating previously published findings.
Collapse
Affiliation(s)
- Sara R. Rashkin
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA 94158, US
| | - Mario Cleves
- Department of Pediatrics, Morsani College of Medicine, University of South Florida, Health Informatics Institute, Tampa, FL 33612, US
| | - Gary M. Shaw
- Dept of Pediatrics, Stanford University, Stanford, CA 94305, US
| | - Wendy N. Nembhard
- University of Arkansas for Medical Sciences, Department of Epidemiology and Arkansas Center for Birth Defects and Prevention, University of Arkansas for Medical Sciences, Little Rock, AR 72205, US
| | - Eirini Nestoridi
- Massachusetts Center for Birth Defects Research and Prevention, Massachusetts Department of Public Health, Boston, MA 02108, US
| | - Mary M. Jenkins
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA 30333, US
| | - Paul A. Romitti
- Department of Epidemiology, University of Iowa, Iowa City, IA 52242, US
| | - Xiang-Yang Lou
- Department of Biostatistics, College of Public Health and Health Professions & College of Medicine, University of Florida, Gainesville, FL 32603, US
| | - Marilyn L. Browne
- Birth Defects Research Section, New York State Department of Health, Albany, NY 12203, US; Department of Epidemiology and Biostatistics, School of Public Health, University at Albany, Rensselaer, NY 12114, US
| | - Laura E. Mitchell
- Department of Epidemiology, Human Genetics, and Environmental Sciences, UTHealth School of Public Health, Houston, TX 77030, US
| | - Andrew F. Olshan
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, US
| | | | - Sudeepa Bhattacharyya
- Bioinformatics and Data Science at University of Arkansas, Little Rock, AR 72204, US
| | - John S. Witte
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA 94158, US
- These authors contributed equally to this work
| | - Charlotte A. Hobbs
- Rady Children’s Institute for Genomic Medicine, San Diego, CA 92123, US
- These authors contributed equally to this work
| | | |
Collapse
|
2
|
Analysis on the desert adaptability of indigenous sheep in the southern edge of Taklimakan Desert. Sci Rep 2022; 12:12264. [PMID: 35851076 PMCID: PMC9293982 DOI: 10.1038/s41598-022-15986-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 07/04/2022] [Indexed: 11/25/2022] Open
Abstract
The southern margin of the Taklimakan Desert is characterized by low rainfall, heavy sandstorms, sparse vegetation and harsh ecological environment. The indigenous sheep in this area are rich in resources, with the advantages of perennial estrus and good resistance to stress in most sheep. Exploring the molecular markers of livestock adaptability in this environment will provide the molecular basis for breeding research to cope with extreme future changes in the desert environment. In this study, we analyzed the population genetic structure and linkage imbalance of five sheep breeds with three different agricultural geographic characteristics using four complementary genomic selection signals: fixation index (FST), cross-population extended haplotype homozygosity (xp-EHH), Rsb (extended haplotype homozygosity between-populations) and iHS (integrated haplotype homozygosity score). We used Illumina Ovine SNP 50K Genotyping BeadChip Array, and gene annotation and enrichment analysis were performed on selected regions of the obtained genome. The ovary of Qira Black sheep (Follicular phase, Luteal phase, 30th day of pregnancy, 45th day of pregnancy) was collected, and the differentially expressed genes were screened by transcriptomic sequencing. Genome-wide selective sweep results and transcriptome data were combined for association analysis to obtain candidate genes associated with perennial estrus and stable reproduction. In order to verify the significance of the results, 15 resulting genes were randomly selected for fluorescence quantitative analysis. The results showed that Dolang sheep and Qira Black sheep evolved from Kazak sheep. Linkage disequilibrium analysis showed that the decay rate of sheep breeds in the Taklimakan Desert was higher than that in Yili grassland. The signals of FST, xp-EHH, Rsb and iHS detected 526, 332, 308 and 408 genes, respectively, under the threshold of 1% and 17 overlapping genes under the threshold of 5%. A total of 29 genes were detected in association analysis of whole-genome and transcriptome data. This study reveals the genetic mechanism of perennial estrus and environmental adaptability of indigenous sheep breeds in the Taklimakan Desert. It provides a theoretical basis for the conservation and exploitation of genetic resources of indigenous sheep breeds in extreme desert environment. This provides a new perspective for the quick adaptation of sheep and other mammals to extreme environments and future climate changes.
Collapse
|
3
|
Chen CP, Hsieh CH, Chern SR, Wu PS, Chen SW, Lai ST, Chuang TY, Yang CW, Lee CC, Wang W. Prenatal diagnosis and molecular cytogenetic characterization of an interstitial deletion of 18q12.1-q12.3 encompassing DTNA, CELF4 and SETBP1. Taiwan J Obstet Gynecol 2017; 56:847-851. [PMID: 29241933 DOI: 10.1016/j.tjog.2017.10.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2017] [Indexed: 10/18/2022] Open
Abstract
OBJECTIVE We present prenatal diagnosis and molecular cytogenetic characterization of an interstitial deletion of 18q12.1-q12.3. CASE REPORT A 35-year-old woman underwent amniocentesis at 18 weeks of gestation because of advanced maternal age. Amniocentesis revealed a karyotype of 46,XX,del(18)(q12.1q12.3). The fetal ultrasound was unremarkable. The woman underwent repeat amniocentesis at 20 weeks of gestation. Array comparative genomic hybridization (aCGH) using uncultured amniocytes revealed a 10.76-Mb interstitial deletion 18q12.1-q12.3 or arr 18q12.1q12.3 (31,944,347-42,704,784) × 1.0 encompassing 19 Online Mendelian Inheritance of in Man (OMIM) genes including DTNA, CELF4 and SETBP1. Metaphase fluorescence in situ hybridization analysis on cultured amniocytes confirmed an 18q proximal interstitial deletion. The parental karyotypes were normal. Polymorphic DNA marker analysis determined a paternal origin of the deletion. The pregnancy was subsequently terminated at 24 weeks of gestation, and a 650-g fetus was delivered with characteristic facial dysmorphism. CONCLUSION aCGH analysis and polymorphic DNA marker analysis at amniocentesis are useful for determination of the deleted genes and the parental origin of the de novo deletion, and the acquired information is helpful for genetic counseling.
Collapse
Affiliation(s)
- Chih-Ping Chen
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei, Taiwan; Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan; Department of Medicine, Mackay Medical College, New Taipei, Taiwan; Department of Biotechnology, Asia University, Taichung, Taiwan; School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan; Institute of Clinical and Community Health Nursing, National Yang-Ming University, Taipei, Taiwan; Department of Obstetrics and Gynecology, School of Medicine, National Yang-Ming University, Taipei, Taiwan.
| | - Chih-Heng Hsieh
- Department of Obstetrics and Gynecology, BIN KUN Women's & Children's Hospital, Taoyuan, Taiwan
| | - Schu-Rern Chern
- Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan
| | | | - Shin-Wen Chen
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Shih-Ting Lai
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Tzu-Yun Chuang
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Chien-Wen Yang
- Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan
| | - Chen-Chi Lee
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Wayseen Wang
- Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan; Department of Bioengineering, Tatung University, Taipei, Taiwan
| |
Collapse
|
4
|
Characteristics of rare and private deletions identified in phenotypically normal individuals. Hum Genome Var 2017; 4:17037. [PMID: 28912957 PMCID: PMC5597573 DOI: 10.1038/hgv.2017.37] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 07/10/2017] [Accepted: 07/10/2017] [Indexed: 11/13/2022] Open
Abstract
Genomic copy number variations (CNVs) identified through chromosomal microarray testing must be validated to confirm whether they are pathogenically and functionally relevant to their respective clinical features. Although larger deletions have a higher probability to be pathogenic, this is not always true. Phenotypically normal individuals showed five CNV deletions larger than 1.5 Mb. The genes related to autosomal dominant trait were absent within these CNV deletions.
Collapse
|
5
|
Zhang KK, Xiang M, Zhou L, Liu J, Curry N, Heine Suñer D, Garcia-Pavia P, Zhang X, Wang Q, Xie L. Gene network and familial analyses uncover a gene network involving Tbx5/Osr1/Pcsk6 interaction in the second heart field for atrial septation. Hum Mol Genet 2016; 25:1140-51. [PMID: 26744331 PMCID: PMC4764195 DOI: 10.1093/hmg/ddv636] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 12/21/2015] [Accepted: 12/30/2015] [Indexed: 12/12/2022] Open
Abstract
Atrial septal defects (ASDs) are a common human congenital heart disease (CHD) that can be induced by genetic abnormalities. Our previous studies have demonstrated a genetic interaction between Tbx5 and Osr1 in the second heart field (SHF) for atrial septation. We hypothesized that Osr1 and Tbx5 share a common signaling networking and downstream targets for atrial septation. To identify this molecular networks, we acquired the RNA-Seq transcriptome data from the posterior SHF of wild-type, Tbx5(+/) (-), Osr1(+/-), Osr1(-/-) and Tbx5(+/-)/Osr1(+/-) mutant embryos. Gene set analysis was used to identify the Kyoto Encyclopedia of Genes and Genomes pathways that were affected by the doses of Tbx5 and Osr1. A gene network module involving Tbx5 and Osr1 was identified using a non-parametric distance metric, distance correlation. A subset of 10 core genes and gene-gene interactions in the network module were validated by gene expression alterations in posterior second heart field (pSHF) of Tbx5 and Osr1 transgenic mouse embryos, a time-course gene expression change during P19CL6 cell differentiation. Pcsk6 was one of the network module genes that were linked to Tbx5. We validated the direct regulation of Tbx5 on Pcsk6 using immunohistochemical staining of pSHF, ChIP-quantitative polymerase chain reaction and luciferase reporter assay. Importantly, we identified Pcsk6 as a novel gene associated with ASD via a human genotyping study of an ASD family. In summary, our study implicated a gene network involving Tbx5, Osr1 and Pcsk6 interaction in SHF for atrial septation, providing a molecular framework for understanding the role of Tbx5 in CHD ontogeny.
Collapse
Affiliation(s)
- Ke K Zhang
- Department of Pathology, School of Medicine and Health Sciences, ND INBRE Bioinformatics Core, University of North Dakota, Grand Forks, ND 58202, USA
| | - Menglan Xiang
- Department of Basic Sciences, School of Medicine and Health Sciences and ND INBRE Bioinformatics Core, University of North Dakota, Grand Forks, ND 58202, USA
| | - Lun Zhou
- Department of Basic Sciences, School of Medicine and Health Sciences and Department of Gerontology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jielin Liu
- Department of Basic Sciences, School of Medicine and Health Sciences and
| | - Nathan Curry
- Department of Basic Sciences, School of Medicine and Health Sciences and
| | - Damian Heine Suñer
- Laboratori de Genetica Molecular, Hospital Son Espases, Palma de Mallorca 07010, Spain
| | - Pablo Garcia-Pavia
- Department of Cardiology, Heart Failure and Inherited Cardiac Diseases Unit, Hospital Universitario Puerta de Hierro Majadahonda, Manuel de Falla, 1, 28222 Majadahonda, Madrid, Spain
| | - Xiaohua Zhang
- Nemours Research Institute, Nemours Children's hospital, Orlando, FL 32827, USA
| | - Qin Wang
- Department of Molecular Cardiology, Center for Cardiovascular Genetics, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA, Department of Molecular Medicine and Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA and
| | - Linglin Xie
- Department of Basic Sciences, School of Medicine and Health Sciences and Department of Nutrition and Food Science, Texas A&M University, Cater-Mattil Hall Rm 217B, TAMU 2253, College Station, TX 77843, USA
| |
Collapse
|
6
|
Zlotina A, Nikulina T, Yany N, Moiseeva O, Pervunina T, Grekhov E, Kostareva A. Ring chromosome 18 in combination with 18q12.1 (DTNA) interstitial microdeletion in a patient with multiple congenital defects. Mol Cytogenet 2016; 9:18. [PMID: 26893613 PMCID: PMC4758088 DOI: 10.1186/s13039-016-0229-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 02/10/2016] [Indexed: 11/20/2022] Open
Abstract
Background Ring chromosome 18 [r(18)] syndrome represents a relatively rare condition with a complex clinical picture including multiple congenital dysmorphia and varying degrees of mental retardation. The condition is cytogenetically characterized by a complete or mosaic form of ring chromosome 18, with ring formation being usually accompanied by the partial loss of both chromosomal arms. Here we observed a 20-year-old male patient who along with the features typical for r(18) carriers additionally manifested a severe congenital subaortic stenosis. To define the genetic basis of such a compound phenotype, standard cytogenetic and high-resolution molecular-cytogenetic analysis of the patient was performed. Case presentation Standard chromosome analysis of cultured lymphocytes confirmed 46, XY, r(18) karyotype. Array-based comparative genomic hybridization (array-CGH) allowed to define precisely the breakpoints of 18p and 18q terminal deletions, thus identifying the hemizygosity extent, and to reveal an additional duplication adjoining the breakpoint of the 18p deletion. Apart from the terminal imbalances, we found an interstitial microdeletion of 442 kb in size (18q12.1) that encompassed DTNA gene encoding α-dystrobrevin, a member of dystrophin-associated glycoprotein complex. While limited data on the role of DTNA missense mutations in pathogenesis of human cardiac abnormalities exist, a microdeletion corresponding to whole DTNA sequence and not involving other genes has not been earlier described. Conclusions A detailed molecular-cytogenetic characterization of the patient with multiple congenital abnormalities enabled to unravel a combination of genetic defects, namely, a ring chromosome 18 with terminal imbalances and DTNA whole-gene deletion. We suggest that such combination could contribute to the complex phenotype. The findings obtained allow to extend the knowledge of the role of DTNA haploinsufficiency in congenital heart malformation, though further comprehensive functional studies are required. Electronic supplementary material The online version of this article (doi:10.1186/s13039-016-0229-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anna Zlotina
- Almazov Federal Medical Research Centre, Saint-Petersburg, 197341 Russia ; Institute of translational Medicine, ITMO University, Saint-Petersburg, 199034 Russia ; Cytology and Histology Department, Saint Petersburg State University, Saint-Petersburg, 199034 Russia
| | - Tatiana Nikulina
- Almazov Federal Medical Research Centre, Saint-Petersburg, 197341 Russia
| | - Natalia Yany
- Almazov Federal Medical Research Centre, Saint-Petersburg, 197341 Russia
| | - Olga Moiseeva
- Almazov Federal Medical Research Centre, Saint-Petersburg, 197341 Russia
| | - Tatiana Pervunina
- Almazov Federal Medical Research Centre, Saint-Petersburg, 197341 Russia
| | - Eugeny Grekhov
- Almazov Federal Medical Research Centre, Saint-Petersburg, 197341 Russia
| | - Anna Kostareva
- Almazov Federal Medical Research Centre, Saint-Petersburg, 197341 Russia ; Department of Women's and Children's Health, Center for Molecular Medicine, Karolinska Institute, Stockholm, 17176 Sweden
| |
Collapse
|
7
|
Wang PH, Chen CP. Noninvasive prenatal testing for fetal trisomy in mixed risk factors pregnancy population. Taiwan J Obstet Gynecol 2015; 54:109-10. [DOI: 10.1016/j.tjog.2014.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2014] [Indexed: 11/28/2022] Open
|