1
|
Cerone M, Smith TK. Desaturases: Structural and mechanistic insights into the biosynthesis of unsaturated fatty acids. IUBMB Life 2022; 74:1036-1051. [PMID: 36017969 PMCID: PMC9825965 DOI: 10.1002/iub.2671] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/21/2022] [Indexed: 01/11/2023]
Abstract
This review highlights the key role of fatty acid desaturases in the synthesis of naturally occurring, more common and not unsaturated fatty acids. The three major classes of fatty acid desaturases, such as acyl-lipid, acyl-acyl carrier protein and acyl-coenzyme A, are described in detail, with particular attention to the cellular localisation, the structure, the substrate and product specificity and the expression and regulation of desaturase genes. The review also gives an insight into the biocatalytic reaction of fatty acid desaturation by covering the general and more class-specific mechanistic studies around the synthesis of unsaturated fatty acids Finally, we conclude the review by looking at the numerous novel applications for desaturases in order to meet the very high demand for polyunsaturated fatty acids, taking into account the opportunity for the development of new, more efficient, easily reproducible, sustainable bioengineering advances in the field.
Collapse
Affiliation(s)
- Michela Cerone
- Biomedical Sciences Research ComplexUniversity of St AndrewsSt AndrewsScotland
| | - Terry K. Smith
- Biomedical Sciences Research ComplexUniversity of St AndrewsSt AndrewsScotland
| |
Collapse
|
2
|
Wu C, Hong B, Jiang S, Luo X, Lin H, Zhou Y, Wu J, Yue X, Shi H, Wu R. Recent advances on essential fatty acid biosynthesis and production: Clarifying the roles of Δ12/Δ15 fatty acid desaturase. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2021.108306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
3
|
Liu Y, Koh CMJ, Yap SA, Cai L, Ji L. Understanding and exploiting the fatty acid desaturation system in Rhodotorula toruloides. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:73. [PMID: 33741038 PMCID: PMC7977280 DOI: 10.1186/s13068-021-01924-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/06/2021] [Indexed: 05/17/2023]
Abstract
BACKGROUND Rhodotorula toruloides is a robust producer of triacylglycerol owing to its fast growth rate and strong metabolic flux under conditions of high cell density fermentation. However, the molecular basis of fatty acid biosynthesis, desaturation and regulation remains elusive. RESULTS We present the molecular characterization of four fatty acid desaturase (FAD) genes in R. toruloides. Biosynthesis of oleic acid (OA) and palmitoleic acid (POA) was conferred by a single-copy ∆9 Fad (Ole1) as targeted deletion of which abolished the biosynthesis of all unsaturated fatty acids. Conversion of OA to linoleic acid (LA) and α-linolenic acid (ALA) was predominantly catalyzed by the bifunctional ∆12/∆15 Fad2. FAD4 was found to encode a trifunctional ∆9/∆12/∆15 FAD, playing important roles in lipid and biomass production as well as stress resistance. Furthermore, an abundantly transcribed OLE1-related gene, OLE2 encoding a 149-aa protein, was shown to regulate Ole1 regioselectivity. Like other fungi, the transcription of FAD genes was controlled by nitrogen levels and fatty acids in the medium. A conserved DNA motif, (T/C)(G/A)TTGCAGA(T/C)CCCAG, was demonstrated to mediate the transcription of OLE1 by POA/OA. The applications of these FAD genes were illustrated by engineering high-level production of OA and γ-linolenic acid (GLA). CONCLUSION Our work has gained novel insights on the transcriptional regulation of FAD genes, evolution of FAD enzymes and their roles in UFA biosynthesis, membrane stress resistance and, cell mass and total fatty acid production. Our findings should illuminate fatty acid metabolic engineering in R. toruloides and beyond.
Collapse
Affiliation(s)
- Yanbin Liu
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Chong Mei John Koh
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Sihui Amy Yap
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Lin Cai
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Lianghui Ji
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore.
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.
| |
Collapse
|
4
|
Matsuzawa T, Maehara T, Kamisaka Y, Ayabe-Chujo Y, Takaku H, Yaoi K. Identification and characterization of Pseudozyma antarctica Δ12 fatty acid desaturase and its utilization for the production of polyunsaturated fatty acids. J Biosci Bioeng 2020; 130:604-609. [PMID: 32847739 DOI: 10.1016/j.jbiosc.2020.07.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 10/23/2022]
Abstract
Fatty acid desaturases, especially Δ12 fatty acid desaturases, are key enzymes for the production of unsaturated fatty acids in oleaginous yeasts. In this study, we identified and characterized a gene encoding Δ12 fatty acid desaturase of Pseudozyma antarctica named PaFAD2. Almost all oleic acid (C18:1) was converted to linoleic acid by the heterologous expression of the PaFAD2 gene in Saccharomyces cerevisiae and Lipomyces starkeyi oleaginous yeast. Notably, PaFad2 converted not only oleic acid to linoleic acid, but also palmitoleic acid (C16:1) to 9,12-hexadecadienoic acid (C16:2). These results indicated that the PaFAD2 gene was very useful for the production of polyunsaturated fatty acids in yeast, including oleaginous yeast.
Collapse
Affiliation(s)
- Tomohiko Matsuzawa
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan.
| | - Tomoko Maehara
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Yasushi Kamisaka
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Yuko Ayabe-Chujo
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Hiroaki Takaku
- Department of Applied Life Science, Niigata University of Pharmacy and Applied Life Science, 265-1 Higashijima, Akiha-ku, Niigata 956-8603, Japan
| | - Katsuro Yaoi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| |
Collapse
|
5
|
Matsuzawa T, Maehara T, Kamisaka Y, Ara S, Takaku H, Yaoi K. Identification and characterization of Δ12 and Δ12/Δ15 bifunctional fatty acid desaturases in the oleaginous yeast Lipomyces starkeyi. Appl Microbiol Biotechnol 2018; 102:8817-8826. [PMID: 30206660 DOI: 10.1007/s00253-018-9345-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/07/2018] [Accepted: 08/25/2018] [Indexed: 12/16/2022]
Abstract
Fatty acid desaturases play vital roles in the synthesis of unsaturated fatty acids. In this study, Δ12 and Δ12/Δ15 fatty acid desaturases of the oleaginous yeast Lipomyces starkeyi, termed LsFad2 and LsFad3, respectively, were identified and characterized. Saccharomyces cerevisiae expressing LsFAD2 converted oleic acid (C18:1) to linoleic acid (C18:2), while a strain of LsFAD3-expressing S. cerevisiae converted oleic acid to linoleic acid, and linoleic acid to α-linolenic acid (C18:3), indicating that LsFad2 and LsFad3 were Δ12 and bifunctional Δ12/Δ15 fatty acid desaturases, respectively. The overexpression of LsFAD2 in L. starkeyi caused an accumulation of linoleic acid and a reduction in oleic acid levels. In contrast, overexpression of LsFAD3 induced the production of α-linolenic acid. Deletion of LsFAD2 and LsFAD3 induced the accumulation of oleic acid and linoleic acid, respectively. Our findings are significant for the commercial production of polyunsaturated fatty acids, such as ω-3 polyunsaturated fatty acids, in L. starkeyi.
Collapse
Affiliation(s)
- Tomohiko Matsuzawa
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Tomoko Maehara
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Yasushi Kamisaka
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Satoshi Ara
- Department of Applied Life Science, Niigata University of Pharmacy and Applied Life Science, 265-1 Higashijima, Akiha-ku, Niigata, 956-8603, Japan
| | - Hiroaki Takaku
- Department of Applied Life Science, Niigata University of Pharmacy and Applied Life Science, 265-1 Higashijima, Akiha-ku, Niigata, 956-8603, Japan
| | - Katsuro Yaoi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan.
| |
Collapse
|
6
|
Δ12-fatty acid desaturase is involved in growth at low temperature in yeast Yarrowia lipolytica. Biochem Biophys Res Commun 2017; 488:165-170. [DOI: 10.1016/j.bbrc.2017.05.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 05/04/2017] [Indexed: 12/19/2022]
|
7
|
Santomartino R, Riego-Ruiz L, Bianchi MM. Three, two, one yeast fatty acid desaturases: regulation and function. World J Microbiol Biotechnol 2017; 33:89. [PMID: 28390014 DOI: 10.1007/s11274-017-2257-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 03/31/2017] [Indexed: 01/01/2023]
Abstract
Fatty acid composition of biological membranes functionally adapts to environmental conditions by changing its composition through the activity of lipid biosynthetic enzymes, including the fatty acid desaturases. Three major desaturases are present in yeasts, responsible for the generation of double bonds in position C9-C10, C12-C13 and C15-C16 of the carbon backbone. In this review, we will report data addressed to define the functional role of basidiomycete and ascomycete yeast desaturase enzymes in response to various external signals and the regulation of the expression of their corresponding genes. Many yeast species have the complete set of three desaturases; however, only the Δ9 desaturase seems to be necessary and sufficient to ensure yeast viability. The evolutionary issue of this observation will be discussed.
Collapse
Affiliation(s)
- Rosa Santomartino
- Dip. di Biologia e Biotecnologie C. Darwin, Sapienza Università di Roma, p.le Aldo Moro 5, 00185, Rome, Italy
| | - Lina Riego-Ruiz
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), A.C., San Luis Potosí, Mexico
| | - Michele M Bianchi
- Dip. di Biologia e Biotecnologie C. Darwin, Sapienza Università di Roma, p.le Aldo Moro 5, 00185, Rome, Italy.
| |
Collapse
|
8
|
Tan L, Zhuo R, Li S, Ma F, Zhang X. Differential expression of desaturase genes and changes in fatty acid composition of Mortierella sp. AGED in response to environmental factors. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:1876-1884. [PMID: 27508521 DOI: 10.1002/jsfa.7990] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 08/05/2016] [Accepted: 08/05/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Some oleaginous fungi can produce large amounts of polyunsaturated fatty acids (PUFAs) which serve many physiological functions. Numerous desaturases are critical for the synthesis of PUFAs. This study aimed to investigate the regulation of lipid production and desaturase gene expression in Mortierella sp. AGED in response to different environmental factors, and the relationships between lipid production and desaturase gene expression. RESULTS The fatty acid composition and mRNA levels of desaturase genes were significantly changed under low temperatures. With the exception of Δ5-desaturase, the transcript levels of all desaturase genes increased at a temperature of 20 °C. Changes in content of lipid and PUFAs responding to low temperature were consistent with desaturase gene expression. Time course studies on gene expression showed that mRNA levels of four desaturase genes increased rapidly after transferring the cells to low temperature. Ethanol (1.5% v/v) increased the transcript levels of Δ9-, Δ6- and Δ5-desaturase genes significantly and of Δ12-desaturase gene slightly. Different metal ions such as Ca2+ , Zn2+ and Fe3+ could stimulate PUFA synthesis and up-regulate desaturase gene transcription, while Cu2+ inhibited desaturase gene expression and lipid accumulation. CONCLUSION This study should enable us to understand the regulatory mechanism of desaturase gene expression and lipid synthesis. It is helpful to improve PUFA productivity in Mortierella sp. AGED. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Li Tan
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Rui Zhuo
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Shue Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Fuying Ma
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaoyu Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
9
|
De Angelis L, Rinaldi T, Cirigliano A, Bello C, Reverberi M, Amaretti A, Montanari A, Santomartino R, Raimondi S, Gonzalez A, Bianchi MM. Functional roles of the fatty acid desaturases encoded by KlOLE1, FAD2 and FAD3 in the yeast Kluyveromyces lactis. MICROBIOLOGY-SGM 2016; 162:1435-1445. [PMID: 27233577 DOI: 10.1099/mic.0.000315] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Functional properties of cell membranes depend on their composition, particularly on the relative amount of saturated, unsaturated and polyunsaturated fatty acids present in the phospholipids. The aim of this study was to investigate the effect of cell membrane composition on cell fitness, adaptation and stress response in Kluyveromyces lactis. To this purpose, we have deleted the genes FAD2 and FAD3 encoding Δ12 and ω3 desaturases in Kluyveromyces lactis, thus generating mutant strains with altered fatty acid composition of membranes. These strains were viable and able to grow in stressing conditions like hypoxia and low temperature. Deletion of the Δ9 desaturase-encoding gene KlOLE1 resulted in lethality, suggesting that this enzyme has an essential role in this yeast. Transcription of the desaturase genes KlOLE1, FAD2 and FAD3 and cellular localization of the corresponding enzymes, have been studied under hypoxia and cold stress. Our findings indicate that expression of these desaturase genes and membrane composition were modulated by hypoxia and temperature stress, although the changes induced by these and other assayed conditions did not dramatically affect the general cellular fitness.
Collapse
Affiliation(s)
- Lorenzo De Angelis
- Department of Biology and Biotechnology C. Darwin, Sapienza Università di Roma, p.le Aldo Moro 5, 00185, Roma, Italy
| | - Teresa Rinaldi
- Department of Biology and Biotechnology C. Darwin, Sapienza Università di Roma, p.le Aldo Moro 5, 00185, Roma, Italy.,Pasteur Institute Cenci-Bolognetti Foundation, Viale Regina Elena 291, 00161 Roma, Italy
| | - Angela Cirigliano
- Department of Biology and Biotechnology C. Darwin, Sapienza Università di Roma, p.le Aldo Moro 5, 00185, Roma, Italy
| | - Cristiano Bello
- Department of Environmental Biology, Sapienza Università di Roma, Roma, Italy
| | - Massimo Reverberi
- Department of Environmental Biology, Sapienza Università di Roma, Roma, Italy
| | - Alberto Amaretti
- Department of Life Sciences, Università di Modena e Reggio Emilia, Via Università, 4, 41121, Modena, Italy
| | - Arianna Montanari
- Department of Biology and Biotechnology C. Darwin, Sapienza Università di Roma, p.le Aldo Moro 5, 00185, Roma, Italy
| | - Rosa Santomartino
- Department of Biology and Biotechnology C. Darwin, Sapienza Università di Roma, p.le Aldo Moro 5, 00185, Roma, Italy
| | - Stefano Raimondi
- Department of Life Sciences, Università di Modena e Reggio Emilia, Via Università, 4, 41121, Modena, Italy
| | - Alicia Gonzalez
- Department of Biochemistry and Structural Biology, Universidad Nacional Autónoma de México, Mexico
| | - Michele M Bianchi
- Department of Biology and Biotechnology C. Darwin, Sapienza Università di Roma, p.le Aldo Moro 5, 00185, Roma, Italy
| |
Collapse
|
10
|
Lee JM, Lee H, Kang S, Park WJ. Fatty Acid Desaturases, Polyunsaturated Fatty Acid Regulation, and Biotechnological Advances. Nutrients 2016; 8:nu8010023. [PMID: 26742061 PMCID: PMC4728637 DOI: 10.3390/nu8010023] [Citation(s) in RCA: 207] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 12/07/2015] [Accepted: 12/17/2015] [Indexed: 02/07/2023] Open
Abstract
Polyunsaturated fatty acids (PUFAs) are considered to be critical nutrients to regulate human health and development, and numerous fatty acid desaturases play key roles in synthesizing PUFAs. Given the lack of delta-12 and -15 desaturases and the low levels of conversion to PUFAs, humans must consume some omega-3 and omega-6 fatty acids in their diet. Many studies on fatty acid desaturases as well as PUFAs have shown that fatty acid desaturase genes are closely related to different human physiological conditions. Since the first front-end desaturases from cyanobacteria were cloned, numerous desaturase genes have been identified and animals and plants have been genetically engineered to produce PUFAs such as eicosapentaenoic acid and docosahexaenoic acid. Recently, a biotechnological approach has been used to develop clinical treatments for human physiological conditions, including cancers and neurogenetic disorders. Thus, understanding the functions and regulation of PUFAs associated with human health and development by using biotechnology may facilitate the engineering of more advanced PUFA production and provide new insights into the complexity of fatty acid metabolism.
Collapse
Affiliation(s)
- Je Min Lee
- Department of Horticultural Science, Kyungpook National University, Daegu 41566, Korea.
| | - Hyungjae Lee
- Department of Food Engineering, Dankook University, Cheonan, Chungnam 31116, Korea.
| | - SeokBeom Kang
- Citrus Research Station, National Institute of Horticultural & Herbal Science, RDA, Seogwipo 63607, Korea.
| | - Woo Jung Park
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung, Gangwon 25457, Korea.
| |
Collapse
|
11
|
Ning C, Jiang Y, Meng J, Zhou C, Tao J. Herbaceous peony seed oil: A rich source of unsaturated fatty acids and γ-tocopherol. EUR J LIPID SCI TECH 2014. [DOI: 10.1002/ejlt.201400212] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Chuanlong Ning
- Jiangsu Key Laboratory of Crop Genetics and Physiology; College of Horticulture and Plant Protection, Yangzhou University; Yangzhou China
| | - Yao Jiang
- Jiangsu Key Laboratory of Crop Genetics and Physiology; College of Horticulture and Plant Protection, Yangzhou University; Yangzhou China
| | - Jiasong Meng
- Jiangsu Key Laboratory of Crop Genetics and Physiology; College of Horticulture and Plant Protection, Yangzhou University; Yangzhou China
| | - Chunhua Zhou
- Jiangsu Key Laboratory of Crop Genetics and Physiology; College of Horticulture and Plant Protection, Yangzhou University; Yangzhou China
| | - Jun Tao
- Jiangsu Key Laboratory of Crop Genetics and Physiology; College of Horticulture and Plant Protection, Yangzhou University; Yangzhou China
| |
Collapse
|