1
|
Breedon SA, Varma A, Quintero-Galvis JF, Gaitán-Espitia JD, Mejías C, Nespolo RF, Storey KB. Torpor-responsive microRNAs in the heart of the Monito del monte, Dromiciops gliroides. Biofactors 2023; 49:1061-1073. [PMID: 37219063 DOI: 10.1002/biof.1976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/14/2023] [Indexed: 05/24/2023]
Abstract
The marsupial Monito del monte (Dromiciops gliroides) utilizes both daily and seasonal bouts of torpor to preserve energy and prolong survival during periods of cold and unpredictable food availability. Torpor involves changes in cellular metabolism, including specific changes to gene expression that is coordinated in part, by the posttranscriptional gene silencing activity of microRNAs (miRNA). Previously, differential miRNA expression has been identified in D. gliroides liver and skeletal muscle; however, miRNAs in the heart of Monito del monte remained unstudied. In this study, the expression of 82 miRNAs was assessed in the hearts of active and torpid D. gliroides, finding that 14 were significantly differentially expressed during torpor. These 14 miRNAs were then used in bioinformatic analyses to identify Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways that were predicted to be most affected by these differentially expressed miRNAs. Overexpressed miRNAs were predicted to primarily regulate glycosaminoglycan biosynthesis, along with various signaling pathways such as Phosphoinositide-3-kinase/protein kinase B and transforming growth factor-β. Similarly, signaling pathways including phosphatidylinositol and Hippo were predicted to be regulated by the underexpression of miRNAs during torpor. Together, these results suggest potential molecular adaptations that protect against irreversible tissue damage and enable continued cardiac and vascular function despite hypothermia and limited organ perfusion during torpor.
Collapse
Affiliation(s)
- Sarah A Breedon
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | - Anchal Varma
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | - Julian F Quintero-Galvis
- Facultad de Ciencias, Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile
| | - Juan Diego Gaitán-Espitia
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Carlos Mejías
- Facultad de Ciencias, Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile
- Millenium Nucleus of Limit of Life (LiLi), Valdivia, Chile
| | - Roberto F Nespolo
- Facultad de Ciencias, Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile
- Millenium Nucleus of Limit of Life (LiLi), Valdivia, Chile
| | - Kenneth B Storey
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
2
|
Varma A, Breedon SA, Storey KB. Sub-zero microRNA expression in the liver of the frozen hatchling painted turtle, Chrysemys picta marginata. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159304. [PMID: 36220468 DOI: 10.1016/j.scitotenv.2022.159304] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/09/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
The Midland painted turtle (Chrysemys picta marginata) are the highest known vertebrate species to experience and survive freezing and sub-zero temperatures. Painted turtles typically hatch from their eggs in the fall and remain underground in their nests until the following spring. While in these nests over the winter, hatchling turtles withstand over 50 % of their total extracellular body water freezing. Herein, the expression of microRNAs (miRNAs) was investigated in response to freezing stress in the hatchling painted turtle liver. A total of 204 known miRNAs were identified to be expressed in turtles, with 17 being upregulated and 13 being downregulated during freezing. KEGG and GO analyses suggested that upregulated miRNAs inhibit genes of cell cycle and Focal adhesion and Adherens junction, suggesting their role in downregulation of central metabolic processes necessary for metabolic rate depression (MRD) and maintaining the tissue homeostasis. Only 9 of the 36 enriched KEGG pathways were less targeted by miRNAs during freezing, including linoleic acid metabolism and multiple signaling pathways. These predicted upregulated pathways likely promote homeoviscous adaptation and expression of pro-survival/protective proteins for metabolic adaptations necessary for defence of liver during MRD. Overall, miRNA-seq analysis of liver revealed a strong role of miRNA in the adaptive strategy that not only enables hatchlings to substantially suppress their nonessential energy needs but also makes them flexible enough to restore and protect their basal organ functions by activating pro-survival processes.
Collapse
Affiliation(s)
- Anchal Varma
- Institute of Biochemistry & Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Sarah A Breedon
- Institute of Biochemistry & Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Kenneth B Storey
- Institute of Biochemistry & Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada.
| |
Collapse
|
3
|
Li Q, Chen W, Mao X. Characterization of microRNA and gene expression in the cochlea of an echolocating bat ( Rhinolophus affinis). Ecol Evol 2022; 12:e9025. [PMID: 35784079 PMCID: PMC9217883 DOI: 10.1002/ece3.9025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 05/15/2022] [Accepted: 05/26/2022] [Indexed: 11/25/2022] Open
Abstract
MicroRNAs (miRNAs) are important post-transcriptional regulators of gene expression and play key roles in many biological processes, such as development and response to multiple stresses. However, little is known about their roles in generating novel phenotypes and phenotypic variation during the course of animal evolution. Here, we, for the first time, characterized the miRNAs of the cochlea in an echolocating bat (Rhinolophus affinis). We sampled eight individuals from two R. affinis subspecies with significant echolocation call frequency differences. We identified 365 miRNAs and 121 of them were novel. By searching sequences of these miRNAs precursors in multiple high-quality mammal genomes, we found one specific miRNA shared by all echolocating bats but not present in all other nonecholocating mammals. The targeted genes of this miRNA included several known hearing genes (e.g., KCNQ4 and GJB6). Together with the matched mRNA-seq data, we identified 1766 differentially expressed genes (DEGs) between the two subspecies and 555 of them were negatively regulated by differentially expressed miRNAs (DEMs). We found that almost half of known hearing genes in the list of all DEGs were regulated negatively by DEMs, suggesting an important role of miRNAs in call frequency variation of the two subspecies. These targeted DEGs included several important hearing genes (e.g., Piezo1, Piezo2, and CDH23) that have been shown to be important in ultrasonic hearing of echolocating mammals.
Collapse
Affiliation(s)
- Qianqian Li
- School of Ecological and Environmental Sciences, Institute of Eco‐Chongming (IEC)East China Normal UniversityShanghaiChina
| | - Wenli Chen
- School of Ecological and Environmental Sciences, Institute of Eco‐Chongming (IEC)East China Normal UniversityShanghaiChina
| | - Xiuguang Mao
- School of Ecological and Environmental Sciences, Institute of Eco‐Chongming (IEC)East China Normal UniversityShanghaiChina
| |
Collapse
|
4
|
Hadj-Moussa H, Hawkins LJ, Storey KB. Role of MicroRNAs in Extreme Animal Survival Strategies. Methods Mol Biol 2022; 2257:311-347. [PMID: 34432286 DOI: 10.1007/978-1-0716-1170-8_16] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The critical role microRNAs play in modulating global functions is emerging, both in the maintenance of homeostatic mechanisms and in the adaptation to diverse environmental stresses. When stressed, cells must divert metabolic requirements toward immediate survival and eventual recovery and the unique features of miRNAs, such as their relatively ATP-inexpensive biogenesis costs, and the quick and reversible nature of their action, renders them excellent "master controllers" for rapid responses. Many animal survival strategies for dealing with extreme environmental pressures involve prolonged retreats into states of suspended animation to extend the time that they can survive on their limited internal fuel reserves until conditions improve. The ability to retreat into such hypometabolic states is only possible by coupling the global suppression of nonessential energy-expensive functions with an activation of prosurvival networks, a process in which miRNAs are now known to play a major role. In this chapter, we discuss the activation, expression, biogenesis, and unique attributes of miRNA regulation required to facilitate profound metabolic rate depression and implement stress-specific metabolic adaptations. We examine the role of miRNA in strategies of biochemical adaptation including mammalian hibernation, freeze tolerance, freeze avoidance, anoxia and hypoxia survival, estivation, and dehydration tolerance. By comparing these seemingly different adaptive programs in traditional and exotic animal models, we highlight both unique and conserved miRNA-meditated mechanisms for survival. Additional topics discussed include transcription factor networks, temperature dependent miRNA-targeting, and novel species-specific and stress-specific miRNAs.
Collapse
Affiliation(s)
| | - Liam J Hawkins
- Department of Biology, Carleton University, Ottawa, ON, Canada
| | | |
Collapse
|
5
|
MicroRNA Cues from Nature: A Roadmap to Decipher and Combat Challenges in Human Health and Disease? Cells 2021; 10:cells10123374. [PMID: 34943882 PMCID: PMC8699674 DOI: 10.3390/cells10123374] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/22/2021] [Accepted: 11/27/2021] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs are small non-coding RNA (18–24 nt long) that fine-tune gene expression at the post-transcriptional level. With the advent of “multi-omics” analysis and sequencing approaches, they have now been implicated in every facet of basic molecular networks, including metabolism, homeostasis, and cell survival to aid cellular machinery in adapting to changing environmental cues. Many animals must endure harsh environmental conditions in nature, including cold/freezing temperatures, oxygen limitation (anoxia/hypoxia), and food or water scarcity, often requiring them to revamp their metabolic organization, frequently on a seasonal or life stage basis. MicroRNAs are important regulatory molecules in such processes, just as they are now well-known to be involved in many human responses to stress or disease. The present review outlines the role of miRNAs in natural animal models of environmental stress and adaptation including torpor/hibernation, anoxia/hypoxia tolerance, and freeze tolerance. We also discuss putative medical applications of advances in miRNA biology including organ preservation for transplant, inflammation, ageing, metabolic disorders (e.g., obesity), mitochondrial dysfunction (mitoMirs) as well as specialized miRNA subgroups respective to low temperature (CryomiRs) and low oxygen (OxymiRs). The review also covers differential regulation of conserved and novel miRNAs involved at cell, tissue, and stress specific levels across multiple species and their roles in survival. Ultimately, the species-specific comparison and conserved miRNA responses seen in evolutionarily disparate animal species can help us to understand the complex miRNA network involved in regulating and reorganizing metabolism to achieve diverse outcomes, not just in nature, but in human health and disease.
Collapse
|
6
|
Lopez MS, Morris-Blanco KC, Ly N, Maves C, Dempsey RJ, Vemuganti R. MicroRNA miR-21 Decreases Post-stroke Brain Damage in Rodents. Transl Stroke Res 2021; 13:483-493. [PMID: 34796453 DOI: 10.1007/s12975-021-00952-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 12/13/2022]
Abstract
Due to their role in controlling translation, microRNAs emerged as novel therapeutic targets to modulate post-stroke outcomes. We previously reported that miR-21 is the most abundantly induced microRNA in the brain of rodents subjected to preconditioning-induced cerebral ischemic tolerance. We currently show that intracerebral administration of miR-21 mimic decreased the infarct volume and promoted better motor function recovery in adult male and female C57BL/6 mice subjected to transient middle cerebral artery occlusion. The miR-21 mimic treatment is also efficacious in aged mice of both sexes subjected to focal ischemia. Mechanistically, miR-21 mimic treatment decreased the post-ischemic levels of several pro-apoptotic and pro-inflammatory RNAs, which might be responsible for the observed neuroprotection. We further observed post-ischemic neuroprotection in adult mice administered with miR-21 mimic intravenously. Overall, the results of this study implicate miR-21 as a promising candidate for therapeutic translation after stroke.
Collapse
Affiliation(s)
- Mary S Lopez
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, 53792, USA.,Cell & Molecular Pathology Training Program, University of Wisconsin, Madison, WI, 53792, USA
| | | | - Nancy Ly
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, 53792, USA
| | - Carly Maves
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, 53792, USA
| | - Robert J Dempsey
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, 53792, USA
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, 53792, USA. .,Cell & Molecular Pathology Training Program, University of Wisconsin, Madison, WI, 53792, USA. .,William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.
| |
Collapse
|
7
|
Saleem R, Al-Attar R, Storey KB. The Activation of Prosurvival Pathways in Myotis lucifugus during Torpor. Physiol Biochem Zool 2021; 94:180-187. [PMID: 33835909 DOI: 10.1086/714219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractHibernation is a strategy used by some mammals to survive harsh winter conditions. Many small mammals, such as the little brown bat, Myotis lucifugus, enter a long-term state of hibernation characterized by a period of deep torpor that can range from days to weeks. Torpid bats undergo metabolic rate depression that not only results in physiological changes but also promotes biochemical changes that favor survival. The present study utilizes multiplex technology to assess key early apoptosis markers and a select group of antioxidant enzymes in muscle, heart, and liver in euthermic controls and torpid bats. Muscle showed a significant decrease in the proapoptotic c-Jun N-terminal kinase and p53 and the antioxidant enzyme catalase but a significant increase in peroxiredoxin 2 levels. The heart responded similarly, with most proapoptotic proteins (caspase 8/9 and p53) remaining at low levels, while the antiapoptotic Bcl-2 protein significantly increased during torpor. There was no significant change in the antioxidant enzymes measured during torpor in the heart compared with the controls. The liver showed increases in catalase and Mn superoxide dismutase 2 enzymes during torpor, which correlated with activation of select antiapoptotic proteins and suppression of levels of proapoptotic ones. Overall, our data demonstrate that antiapoptotic and antioxidant defense responses have organ-specific regulation during torpor in bats. The induction of key antioxidant enzymes and antiapoptotic proteins may function as protective mechanisms that are necessary for surviving torpor.
Collapse
|
8
|
Giroud S, Habold C, Nespolo RF, Mejías C, Terrien J, Logan SM, Henning RH, Storey KB. The Torpid State: Recent Advances in Metabolic Adaptations and Protective Mechanisms †. Front Physiol 2021; 11:623665. [PMID: 33551846 PMCID: PMC7854925 DOI: 10.3389/fphys.2020.623665] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/21/2020] [Indexed: 12/18/2022] Open
Abstract
Torpor and hibernation are powerful strategies enabling animals to survive periods of low resource availability. The state of torpor results from an active and drastic reduction of an individual's metabolic rate (MR) associated with a relatively pronounced decrease in body temperature. To date, several forms of torpor have been described in all three mammalian subclasses, i.e., monotremes, marsupials, and placentals, as well as in a few avian orders. This review highlights some of the characteristics, from the whole organism down to cellular and molecular aspects, associated with the torpor phenotype. The first part of this review focuses on the specific metabolic adaptations of torpor, as it is used by many species from temperate zones. This notably includes the endocrine changes involved in fat- and food-storing hibernating species, explaining biomedical implications of MR depression. We further compare adaptive mechanisms occurring in opportunistic vs. seasonal heterotherms, such as tropical and sub-tropical species. Such comparisons bring new insights into the metabolic origins of hibernation among tropical species, including resistance mechanisms to oxidative stress. The second section of this review emphasizes the mechanisms enabling heterotherms to protect their key organs against potential threats, such as reactive oxygen species, associated with the torpid state. We notably address the mechanisms of cellular rehabilitation and protection during torpor and hibernation, with an emphasis on the brain, a central organ requiring protection during torpor and recovery. Also, a special focus is given to the role of an ubiquitous and readily-diffusing molecule, hydrogen sulfide (H2S), in protecting against ischemia-reperfusion damage in various organs over the torpor-arousal cycle and during the torpid state. We conclude that (i) the flexibility of torpor use as an adaptive strategy enables different heterothermic species to substantially suppress their energy needs during periods of severely reduced food availability, (ii) the torpor phenotype implies marked metabolic adaptations from the whole organism down to cellular and molecular levels, and (iii) the torpid state is associated with highly efficient rehabilitation and protective mechanisms ensuring the continuity of proper bodily functions. Comparison of mechanisms in monotremes and marsupials is warranted for understanding the origin and evolution of mammalian torpor.
Collapse
Affiliation(s)
- Sylvain Giroud
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Caroline Habold
- University of Strasbourg, CNRS, IPHC, UMR 7178, Strasbourg, France
| | - Roberto F. Nespolo
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, ANID – Millennium Science Initiative Program-iBio, Valdivia, Chile
- Center of Applied Ecology and Sustainability, Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carlos Mejías
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, ANID – Millennium Science Initiative Program-iBio, Valdivia, Chile
- Center of Applied Ecology and Sustainability, Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jérémy Terrien
- Unité Mécanismes Adaptatifs et Evolution (MECADEV), UMR 7179, CNRS, Muséum National d’Histoire Naturelle, Brunoy, France
| | | | - Robert H. Henning
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, Groningen, Netherlands
| | | |
Collapse
|
9
|
Capraro A, O'Meally D, Waters SA, Patel HR, Georges A, Waters PD. MicroRNA dynamics during hibernation of the Australian central bearded dragon (Pogona vitticeps). Sci Rep 2020; 10:17854. [PMID: 33082398 PMCID: PMC7576210 DOI: 10.1038/s41598-020-73706-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 09/17/2020] [Indexed: 11/12/2022] Open
Abstract
Hibernation is a physiological state employed by many animals that are exposed to limited food and adverse winter conditions. Controlling tissue-specific and organism wide changes in metabolism and cellular function requires precise regulation of gene expression, including by microRNAs (miRNAs). Here we profile miRNA expression in the central bearded dragon (Pogona vitticeps) using small RNA sequencing of brain, heart, and skeletal muscle from individuals in late hibernation and four days post-arousal. A total of 1295 miRNAs were identified in the central bearded dragon genome; 664 of which were novel to central bearded dragon. We identified differentially expressed miRNAs (DEmiRs) in all tissues and correlated mRNA expression with known and predicted target mRNAs. Functional analysis of DEmiR targets revealed an enrichment of differentially expressed mRNA targets involved in metabolic processes. However, we failed to reveal biologically relevant tissue-specific processes subjected to miRNA-mediated regulation in heart and skeletal muscle. In brain, neuroprotective pathways were identified as potential targets regulated by miRNAs. Our data suggests that miRNAs are necessary for modulating the shift in cellular metabolism during hibernation and regulating neuroprotection in the brain. This study is the first of its kind in a hibernating reptile and provides key insight into this ephemeral phenotype.
Collapse
Affiliation(s)
- Alexander Capraro
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, UNSW Sydney, Kensington, NSW, 2052, Australia.
| | - Denis O'Meally
- Institute for Applied Ecology, University of Canberra, Canberra, ACT, 2601, Australia
- Center for Gene Therapy, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| | - Shafagh A Waters
- School of Women's & Children's Health, Faculty of Medicine, UNSW Sydney, Kensington, NSW, 2052, Australia
| | - Hardip R Patel
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Arthur Georges
- Institute for Applied Ecology, University of Canberra, Canberra, ACT, 2601, Australia
| | - Paul D Waters
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, UNSW Sydney, Kensington, NSW, 2052, Australia
| |
Collapse
|
10
|
A Unique Energy-Saving Strategy during Hibernation Revealed by Multi-Omics Analysis in the Chinese Alligator. iScience 2020; 23:101202. [PMID: 32534442 PMCID: PMC7298530 DOI: 10.1016/j.isci.2020.101202] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/16/2020] [Accepted: 05/22/2020] [Indexed: 12/11/2022] Open
Abstract
Many ectotherms hibernate in face of the harsh winter conditions to improve their survival rate. However, the molecular mechanism underlying this process remains unclear. Here, we explored the hibernation mechanism of Chinese alligator using integrative multi-omics analysis. We revealed that (1) the thyroid hormone biosynthesis, nutrition absorption and metabolism, muscle contraction, urinary excretion and immunity function pathways are overall downregulated during hibernation; (2) the fat catabolism is completely suppressed, contrasting with the upregulation of hepatic fatty-acid-transporter CPT1A, suggesting a unique energy-saving strategy that differs from that in hibernating mammals; (3) the hibernation-related genes are not only directly regulated by DNA methylation but also controlled by methylation-dependent transcription networks. In addition, we identified and compared tissue-specific, species-specific, and conserved season-biased miRNAs, demonstrating complex post-transcriptional regulation during hibernation. Our study revealed the genetic and epigenetic mechanisms underlying hibernation in the Chinese alligator and provided molecular insights into the evolution of hibernation regulation.
Collapse
|
11
|
Al-Attar R, Storey KB. Suspended in time: Molecular responses to hibernation also promote longevity. Exp Gerontol 2020; 134:110889. [PMID: 32114078 DOI: 10.1016/j.exger.2020.110889] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 12/16/2022]
Abstract
Aging in most animals is an inevitable process that causes or is a result of physiological, biochemical, and molecular changes in the body, and has a strong influence on an organism's lifespan. Although advancement in medicine has allowed humans to live longer, the prevalence of age-associated medical complications is continuously burdening older adults worldwide. Current animal models used in research to study aging have provided novel information that has helped investigators understand the aging process; however, these models are limiting. Aging is a complex process that is regulated at multiple biological levels, and while a single manipulation in these models can provide information on a process, it is not enough to understand the global regulation of aging. Some mammalian hibernators live up to 9.8-times higher than their expected average lifespan, and new research attributes this increase to their ability to hibernate. A common theme amongst these mammalian hibernators is their ability to greatly reduce their metabolic rate to a fraction of their normal rate and initiate cytoprotective responses that enable their survival. Metabolic rate depression is strictly regulated at different biological levels in order to enable the animal to not only survive, but to also do so by relying mainly on their limited internal fuels. As such, understanding both the global and specific regulatory mechanisms used to promote survival during hibernation could, in theory, allow investigators to have a better understanding of the aging process. This can also allow pharmaceutical industries to find therapeutics that could delay or reverse age-associated medical complications and promote healthy aging and longevity in humans.
Collapse
Affiliation(s)
- Rasha Al-Attar
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada.
| | - Kenneth B Storey
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada.
| |
Collapse
|
12
|
Hawkins LJ, Storey KB. Advances and applications of environmental stress adaptation research. Comp Biochem Physiol A Mol Integr Physiol 2019; 240:110623. [PMID: 31778815 DOI: 10.1016/j.cbpa.2019.110623] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 02/06/2023]
Abstract
Evolution has produced animals that survive extreme fluctuations in environmental conditions including freezing temperatures, anoxia, desiccating conditions, and prolonged periods without food. For example, the wood frog survives whole-body freezing every winter, arresting all gross physiological functions, but recovers functions upon thawing in the spring. Likewise, many small mammals hibernate for months at a time with minimal metabolic activity, organ perfusion, and movement, yet do not suffer significant muscle atrophy upon arousal. These conditions and the biochemical adaptations employed to deal with them can be viewed as Nature's answer to problems that humans wish to answer, particularly in a biomedical context. This review focuses on recent advances in the field of animal environmental stress adaptation, starting with an emphasis on new areas of research such as epigenetics and microRNA. We then examine new and emerging technologies such as genome editing, novel sequencing applications, and single cell analysis and how these can push us closer to a deeper understanding of biochemical adaptation. Next, evaluate the potential contributions of new high-throughput technologies (e.g. next-generation sequencing, mass spectrometry proteomics) to better understanding the adaptations that support these extreme phenotypes. Concluding, we examine some of the human applications that can be gained from understanding the principles of biochemical adaptation including organ preservation and treatments for conditions such as ischemic stroke and muscle disuse atrophy.
Collapse
Affiliation(s)
- Liam J Hawkins
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Kenneth B Storey
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.
| |
Collapse
|
13
|
Reynolds JA. Noncoding RNA Regulation of Dormant States in Evolutionarily Diverse Animals. THE BIOLOGICAL BULLETIN 2019; 237:192-209. [PMID: 31714856 DOI: 10.1086/705484] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Dormancy is evolutionarily widespread and can take many forms, including diapause, dauer formation, estivation, and hibernation. Each type of dormancy is characterized by distinct features; but accumulating evidence suggests that each is regulated by some common processes, often referred to as a common "toolkit" of regulatory mechanisms, that likely include noncoding RNAs that regulate gene expression. Noncoding RNAs, especially microRNAs, are well-known regulators of biological processes associated with numerous dormancy-related processes, including cell cycle progression, cell growth and proliferation, developmental timing, metabolism, and environmental stress tolerance. This review provides a summary of our current understanding of noncoding RNAs and their involvement in regulating dormancy.
Collapse
|
14
|
Biggar KK, Storey KB. Functional impact of microRNA regulation in models of extreme stress adaptation. J Mol Cell Biol 2019; 10:93-101. [PMID: 29206937 DOI: 10.1093/jmcb/mjx053] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 11/30/2017] [Indexed: 01/12/2023] Open
Abstract
When confronted with severe environmental stress, some animals are able to undergo a substantial reorganization of their cellular environment that enables long-term survival. One molecular mechanism of adaptation that has received considerable attention in recent years has been the action of reversible transcriptome regulation by microRNA. The implementation of new computational and high-throughput experimental approaches has started to uncover the vital contributions of microRNA towards stress adaptation. Indeed, recent studies have suggested that microRNA may have a major regulatory influence over a number of cellular processes that are essential to prolonged environmental stress survival. To date, a number of studies have highlighted the role of microRNA in the regulation of a metabolically depressed state, documenting stress-responsive microRNA expression during mammalian hibernation, frog and insect freeze tolerance, and turtle and marine snail anoxia tolerance. These studies collectively indicate a conserved principle of microRNA stress response across phylogeny. As we are on the verge of dissecting the role of microRNA in environmental stress adaptation, this review summarizes recent research advances and the hallmark expression patterns that facilitate stress survival.
Collapse
Affiliation(s)
- Kyle K Biggar
- Institute of Biochemistry & Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Kenneth B Storey
- Institute of Biochemistry & Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
15
|
MiR-200-3p Is Potentially Involved in Cell Cycle Arrest by Regulating Cyclin A during Aestivation in Apostichopus japonicus. Cells 2019; 8:cells8080843. [PMID: 31390757 PMCID: PMC6721757 DOI: 10.3390/cells8080843] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/02/2019] [Accepted: 08/04/2019] [Indexed: 11/16/2022] Open
Abstract
The sea cucumber (Apostichopus japonicus) has become a good model organism for studying environmentally induced aestivation in marine invertebrates. We hypothesized that mechanisms that arrest energy-expensive cell cycle activity would contribute significantly to establishing the hypometabolic state during aestivation. Cyclin A is a core and particularly interesting cell cycle regulator that functions in both the S phase and in mitosis. In the present study, negative relationships between miR-200-3p and AjCA expressions were detected at both the transcriptional and the translational levels during aestivation in A. japonicus. Dual-luciferase reporter assays confirmed the targeted location of the miR-200-3p binding site within the AjCA gene transcript. Furthermore, gain- and loss-of-function experiments were conducted in vivo with sea cucumbers to verify the interaction between miR-200-3p and AjCA in intestine tissue by qRT-PCR and Western blotting. The results show that the overexpression of miR-200-3p mimics suppressed AjCA transcript levels and translated protein production, whereas transfection with a miR-200-3p inhibitor enhanced both AjCA mRNA and AjCA protein in A. japonicus intestine. Our findings suggested a potential mechanism that reversibly arrests cell cycle progression during aestivation, which may center on miR-200-3p inhibitory control over the translation of cyclin A mRNA transcripts.
Collapse
|
16
|
Capraro A, O'Meally D, Waters SA, Patel HR, Georges A, Waters PD. Waking the sleeping dragon: gene expression profiling reveals adaptive strategies of the hibernating reptile Pogona vitticeps. BMC Genomics 2019; 20:460. [PMID: 31170930 PMCID: PMC6555745 DOI: 10.1186/s12864-019-5750-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/29/2019] [Indexed: 12/30/2022] Open
Abstract
Background Hibernation is a physiological state exploited by many animals exposed to prolonged adverse environmental conditions associated with winter. Large changes in metabolism and cellular function occur, with many stress response pathways modulated to tolerate physiological challenges that might otherwise be lethal. Many studies have sought to elucidate the molecular mechanisms of mammalian hibernation, but detailed analyses are lacking in reptiles. Here we examine gene expression in the Australian central bearded dragon (Pogona vitticeps) using mRNA-seq and label-free quantitative mass spectrometry in matched brain, heart and skeletal muscle samples from animals at late hibernation, 2 days post-arousal and 2 months post-arousal. Results We identified differentially expressed genes in all tissues between hibernation and post-arousal time points; with 4264 differentially expressed genes in brain, 5340 differentially expressed genes in heart, and 5587 differentially expressed genes in skeletal muscle. Furthermore, we identified 2482 differentially expressed genes across all tissues. Proteomic analysis identified 743 proteins (58 differentially expressed) in brain, 535 (57 differentially expressed) in heart, and 337 (36 differentially expressed) in skeletal muscle. Tissue-specific analyses revealed enrichment of protective mechanisms in all tissues, including neuroprotective pathways in brain, cardiac hypertrophic processes in heart, and atrophy protective pathways in skeletal muscle. In all tissues stress response pathways were induced during hibernation, as well as evidence for gene expression regulation at transcription, translation and post-translation. Conclusions These results reveal critical stress response pathways and protective mechanisms that allow for maintenance of both tissue-specific function, and survival during hibernation in the central bearded dragon. Furthermore, we provide evidence for multiple levels of gene expression regulation during hibernation, particularly enrichment of miRNA-mediated translational repression machinery; a process that would allow for rapid and energy efficient reactivation of translation from mature mRNA molecules at arousal. This study is the first molecular investigation of its kind in a hibernating reptile, and identifies strategies not yet observed in other hibernators to cope stress associated with this remarkable state of metabolic depression. Electronic supplementary material The online version of this article (10.1186/s12864-019-5750-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alexander Capraro
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, UNSW Sydney, Sydney, NSW, 2052, Australia.
| | - Denis O'Meally
- Institute for Applied Ecology, University of Canberra, Canberra, ACT, 2601, Australia.,Present address: Center for Gene Therapy, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| | - Shafagh A Waters
- School of Women's & Children's Health, Faculty of Medicine, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Hardip R Patel
- John Curtin School of Medical Research, Australian National University, Canberra, 2601, ACT, Australia
| | - Arthur Georges
- Institute for Applied Ecology, University of Canberra, Canberra, ACT, 2601, Australia
| | - Paul D Waters
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, UNSW Sydney, Sydney, NSW, 2052, Australia
| |
Collapse
|
17
|
Biggar K, Luu B, Wu C, Pifferi F, Perret M, Storey K. Identification of novel and conserved microRNA and their expression in the gray mouse lemur, Microcebus murinus, a primate capable of daily torpor. Gene 2018; 677:332-339. [DOI: 10.1016/j.gene.2018.08.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/10/2018] [Accepted: 08/04/2018] [Indexed: 12/13/2022]
|
18
|
He P, Wei P, Zhang B, Zhao Y, Li Q, Chen X, Zeng D, Peng M, Yang C, Peng J, Chen X. Identification of microRNAs involved in cold adaptation of Litopenaeus vannamei by high-throughput sequencing. Gene 2018; 677:24-31. [DOI: 10.1016/j.gene.2018.07.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 06/10/2018] [Accepted: 07/13/2018] [Indexed: 12/14/2022]
|
19
|
Riggs CL, Podrabsky JE. Small noncoding RNA expression during extreme anoxia tolerance of annual killifish (Austrofundulus limnaeus) embryos. Physiol Genomics 2017; 49:505-518. [DOI: 10.1152/physiolgenomics.00016.2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 07/10/2017] [Accepted: 08/09/2017] [Indexed: 12/11/2022] Open
Abstract
Small noncoding RNAs (sncRNA) have recently emerged as specific and rapid regulators of gene expression, involved in a myriad of cellular and organismal processes. MicroRNAs, a class of sncRNAs, are differentially expressed in diverse taxa in response to environmental stress, including anoxia. In most vertebrates, a brief period of oxygen deprivation results in severe tissue damage or death. Studies on sncRNA and anoxia have focused on these anoxia-sensitive species. Studying sncRNAs in anoxia-tolerant organisms may provide insight into adaptive mechanisms supporting anoxia tolerance. Embryos of the annual killifish Austrofundulus limnaeus are the most anoxia-tolerant vertebrates known, surviving over 100 days at their peak tolerance at 25°C. Their anoxia tolerance and physiology vary over development, such that both anoxia-tolerant and anoxia-sensitive phenotypes comprise the species. This allows for a robust comparison to identify sncRNAs essential to anoxia-tolerance. For this study, RNA sequencing was used to identify and quantify expression of sncRNAs in four embryonic stages of A. limnaeus in response to an exposure to anoxia and subsequent aerobic recovery. Unique stage-specific patterns of expression were identified that correlate with anoxia tolerance. In addition, embryos of A. limnaeus appear to constitutively express stress-responsive miRNAs. Most differentially expressed sncRNAs were expressed at higher levels during recovery. Many novel groups of sncRNAs with expression profiles suggesting a key role in anoxia tolerance were identified, including sncRNAs derived from mitochondrial tRNAs. This global analysis has revealed groups of candidate sncRNAs that we hypothesize support anoxia tolerance.
Collapse
Affiliation(s)
- Claire L. Riggs
- Department of Biology, Portland State University, Portland, Oregon
| | | |
Collapse
|
20
|
Exploration of low temperature microRNA function in an anoxia tolerant vertebrate ectotherm, the red eared slider turtle ( Trachemys scripta elegans ). J Therm Biol 2017; 68:139-146. [DOI: 10.1016/j.jtherbio.2016.09.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/07/2016] [Accepted: 09/12/2016] [Indexed: 12/14/2022]
|
21
|
Czenze ZJ, Jonasson KA, Willis CKR. Thrifty Females, Frisky Males: Winter Energetics of Hibernating Bats from a Cold Climate. Physiol Biochem Zool 2017. [DOI: 10.1086/692623] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
22
|
Arfat Y, Chang H, Gao Y. Stress-responsive microRNAs are involved in re-programming of metabolic functions in hibernators. J Cell Physiol 2017; 233:2695-2704. [PMID: 28574587 DOI: 10.1002/jcp.26034] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/01/2017] [Indexed: 12/21/2022]
Abstract
Mammalian hibernation includes re-programing of metabolic capacities, partially, encouraged by microRNAs (miRNAs). Albeit much is known about the functions of miRNAs, we need learning on low temperature miRNAs target determination. As hibernators can withstand low body temperatures (TB) for a long time without anguish tissue damage, understanding the means and mechanisms that empower them to do as such are of restorative intrigue. Nonetheless, these mechanisms by which miRNAs and the hibernators react to stressful conditions are not much clear. It is evident from recent data that the gene expression and the translation of mRNA to protein are controlled by miRNAs. The miRNAs also influence regulation of major cellular processes. As the significance of miRNAs in stress conditions adaptation are getting clearer, this audit article abridges the key alterations in miRNA expression and the mechanism that facilitates stress survival.
Collapse
Affiliation(s)
- Yasir Arfat
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China (College of Life Sciences, Northwest University), Ministry of Education, Xi'an, China
| | - Hui Chang
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China (College of Life Sciences, Northwest University), Ministry of Education, Xi'an, China
| | - Yunfang Gao
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China (College of Life Sciences, Northwest University), Ministry of Education, Xi'an, China
| |
Collapse
|
23
|
Frigault JJ, Morin MD, Morin PJ. Differential expression and emerging functions of non-coding RNAs in cold adaptation. J Comp Physiol B 2016; 187:19-28. [PMID: 27866230 DOI: 10.1007/s00360-016-1049-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/07/2016] [Accepted: 10/26/2016] [Indexed: 01/16/2023]
Abstract
Several species undergo substantial physiological and biochemical changes to confront the harsh conditions associated with winter. Small mammalian hibernators and cold-hardy insects are examples of natural models of cold adaptation that have been amply explored. While the molecular picture associated with cold adaptation has started to become clearer in recent years, notably through the use of high-throughput experimental approaches, the underlying cold-associated functions attributed to several non-coding RNAs, including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), remain to be better characterized. Nevertheless, key pioneering work has provided clues on the likely relevance of these molecules in cold adaptation. With an emphasis on mammalian hibernation and insect cold hardiness, this work first reviews various molecular changes documented so far in these processes. The cascades leading to miRNA and lncRNA production as well as the mechanisms of action of these non-coding RNAs are subsequently described. Finally, we present examples of differentially expressed non-coding RNAs in models of cold adaptation and elaborate on the potential significance of this modulation with respect to low-temperature adaptation.
Collapse
Affiliation(s)
- Jacques J Frigault
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, NB, E1A 3E9, Canada
| | - Mathieu D Morin
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, NB, E1A 3E9, Canada
| | - Pier Jr Morin
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, NB, E1A 3E9, Canada.
| |
Collapse
|
24
|
Luu BE, Biggar KK, Wu CW, Storey KB. Torpor-responsive expression of novel microRNA regulating metabolism and other cellular pathways in the thirteen-lined ground squirrel,Ictidomys tridecemlineatus. FEBS Lett 2016; 590:3574-3582. [DOI: 10.1002/1873-3468.12435] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 09/07/2016] [Accepted: 09/08/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Bryan E. Luu
- Institute of Biochemistry and Department of Biology; Carleton University; Ottawa Canada
| | - Kyle K. Biggar
- Institute of Biochemistry and Department of Biology; Carleton University; Ottawa Canada
| | - Cheng-Wei Wu
- Institute of Biochemistry and Department of Biology; Carleton University; Ottawa Canada
| | - Kenneth B. Storey
- Institute of Biochemistry and Department of Biology; Carleton University; Ottawa Canada
| |
Collapse
|
25
|
The hibernating South American marsupial, Dromiciops gliroides, displays torpor-sensitive microRNA expression patterns. Sci Rep 2016; 6:24627. [PMID: 27090740 PMCID: PMC4835794 DOI: 10.1038/srep24627] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/31/2016] [Indexed: 01/05/2023] Open
Abstract
When faced with adverse environmental conditions, the marsupial Dromiciops gliroides uses either daily or seasonal torpor to support survival and is the only known hibernating mammal in South America. As the sole living representative of the ancient Order Microbiotheria, this species can provide crucial information about the evolutionary origins and biochemical mechanisms of hibernation. Hibernation is a complex energy-saving strategy that involves changes in gene expression that are elicited in part by microRNAs. To better elucidate the role of microRNAs in orchestrating hypometabolism, a modified stem-loop technique and quantitative PCR were used to characterize the relative expression levels of 85 microRNAs in liver and skeletal muscle of control and torpid D. gliroides. Thirty-nine microRNAs were differentially regulated during torpor; of these, 35 were downregulated in liver and 11 were differentially expressed in skeletal muscle. Bioinformatic analysis predicted that the downregulated liver microRNAs were associated with activation of MAPK, PI3K-Akt and mTOR pathways, suggesting their importance in facilitating marsupial torpor. In skeletal muscle, hibernation-responsive microRNAs were predicted to regulate focal adhesion, ErbB, and mTOR pathways, indicating a promotion of muscle maintenance mechanisms. These tissue-specific responses suggest that microRNAs regulate key molecular pathways that facilitate hibernation, thermoregulation, and prevention of muscle disuse atrophy.
Collapse
|
26
|
Bansal S, Luu BE, Storey KB. MicroRNA regulation in heart and skeletal muscle over the freeze–thaw cycle in the freeze tolerant wood frog. J Comp Physiol B 2015; 186:229-41. [DOI: 10.1007/s00360-015-0951-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 11/09/2015] [Accepted: 11/25/2015] [Indexed: 01/14/2023]
|
27
|
Luu BE, Storey KB. Dehydration triggers differential microRNA expression in Xenopus laevis brain. Gene 2015; 573:64-9. [DOI: 10.1016/j.gene.2015.07.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/23/2015] [Accepted: 07/09/2015] [Indexed: 12/17/2022]
|
28
|
Low-temperature microRNA expression in the painted turtle,Chrysemys pictaduring freezing stress. FEBS Lett 2015; 589:3665-70. [DOI: 10.1016/j.febslet.2015.10.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 10/21/2015] [Accepted: 10/21/2015] [Indexed: 12/12/2022]
|
29
|
Lang-Ouellette D, Richard TG, Morin P. Mammalian hibernation and regulation of lipid metabolism: a focus on non-coding RNAs. BIOCHEMISTRY (MOSCOW) 2015; 79:1161-71. [PMID: 25540001 DOI: 10.1134/s0006297914110030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Numerous species will confront severe environmental conditions by undergoing significant metabolic rate reduction. Mammalian hibernation is one such natural model of hypometabolism. Hibernators experience considerable physiological, metabolic, and molecular changes to survive the harsh challenges associated with winter. Whether as fuel source or as key signaling molecules, lipids are of primary importance for a successful bout of hibernation and their careful regulation throughout this process is essential. In recent years, a plethora of non-coding RNAs has emerged as potential regulators of targets implicated in lipid metabolism in diverse models. In this review, we introduce the general characteristics associated with mammalian hibernation, present the importance of lipid metabolism prior to and during hibernation, as well as discuss the potential relevance of non-coding RNAs such as miRNAs and lncRNAs during this process.
Collapse
Affiliation(s)
- D Lang-Ouellette
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, New Brunswick, E1A 3E9, Canada.
| | | | | |
Collapse
|
30
|
Yuan L, Geiser F, Lin B, Sun H, Chen J, Zhang S. Down but Not Out: The Role of MicroRNAs in Hibernating Bats. PLoS One 2015; 10:e0135064. [PMID: 26244645 PMCID: PMC4526555 DOI: 10.1371/journal.pone.0135064] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 07/16/2015] [Indexed: 01/17/2023] Open
Abstract
MicroRNAs (miRNAs) regulate many physiological processes through post-transcriptional control of gene expression and are a major part of the small noncoding RNAs (snRNA). As hibernators can survive at low body temperatures (Tb) for many months without suffering tissue damage, understanding the mechanisms that enable them to do so are of medical interest. Because the brain integrates peripheral physiology and white adipose tissue (WAT) is the primary energy source during hibernation, we hypothesized that both of these organs play a crucial role in hibernation, and thus, their activity would be relatively increased during hibernation. We carried out the first genomic analysis of small RNAs, specifically miRNAs, in the brain and WAT of a hibernating bat (Myotis ricketti) by comparing deeply torpid with euthermic individual bats using high-throughput sequencing (Solexa) and qPCR validation of expression levels. A total of 196 miRNAs (including 77 novel bat-specific miRNAs) were identified, and of these, 49 miRNAs showed significant differences in expression during hibernation, including 33 in the brain and 25 in WAT (P≤0.01 &│logFC│≥1). Stem-loop qPCR confirmed the miRNA expression patterns identified by Solexa sequencing. Moreover, 31 miRNAs showed tissue- or state-specific expression, and six miRNAs with counts >100 were specifically expressed in the brain. Putative target gene prediction combined with KEGG pathway and GO annotation showed that many essential processes of both organs are significantly correlated with differentially expressed miRNAs during bat hibernation. This is especially evident with down-regulated miRNAs, indicating that many physiological pathways are altered during hibernation. Thus, our novel findings of miRNAs and Interspersed Elements in a hibernating bat suggest that brain and WAT are active with respect to the miRNA expression activity during hibernation.
Collapse
Affiliation(s)
- Lihong Yuan
- Guangdong Entomological Institute, Guangzhou, China
- Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangzhou, China
- Guangdong Key Laboratory of Integrated Pest Management in Agriculture, Guangzhou, China
| | - Fritz Geiser
- Center for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, Australia
| | - Benfu Lin
- Animal Husbandry and Veterinary Bureau of Huadu District, Guangzhou, China
| | - Haibo Sun
- MininGene Biotechnology Co. Ltd, Beijing, China
| | - Jinping Chen
- Guangdong Entomological Institute, Guangzhou, China
- Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangzhou, China
- Guangdong Key Laboratory of Integrated Pest Management in Agriculture, Guangzhou, China
| | - Shuyi Zhang
- Institute of Molecular Ecology and Evolution, Institutes for Advanced Interdisciplinary Research, East China Normal University, Shanghai, China
| |
Collapse
|
31
|
Yu D, Qian K, Storey KB, Hu Y, Zhang J. The complete mitochondrial genome of Myotis lucifugus (Chiroptera: Vespertilionidae). Mitochondrial DNA A DNA Mapp Seq Anal 2015; 27:2423-4. [PMID: 26057009 DOI: 10.3109/19401736.2015.1030625] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The mitochondrial genome of the little brown bat, Myotis lucifugus (Chiroptera: Vespertilionidae), is a circular molecule of 17,038 bp in length, containing 22 transfer RNAs genes, 13 protein-coding genes, two ribosomal RNAs, and one D-loop region. The A + T content of the overall base composition of the H-strand is 63.2% with individual nucleotides comprising T 29.8%, C 23.4%, A 33.3%, and G 13.5%. In BI and ML trees, we found M. lucifugus is a sister clade to M. brandtii, Myotis is a sister clade to Murina, and Pipistrellus is a sister clade to (Chalinolobus + (Eptesicus + Vespertilio)) (1.00 in BI, >100% in ML). The monophyly of Myotis, Murina, and Plecotus is well supported (1.00 in BI, 100% in ML).
Collapse
Affiliation(s)
- Danna Yu
- a Institute of Ecology, Zhejiang Normal University , Jinhua , Zhejiang Province , China
| | - Kenan Qian
- a Institute of Ecology, Zhejiang Normal University , Jinhua , Zhejiang Province , China .,b College of Life Science and Chemistry, Zhejiang Normal University , Jinhua , Zhejiang Province , China , and
| | - Kenneth B Storey
- c Department of Biology , Carleton University , Ottawa , Ontario , Canada
| | - Yizhong Hu
- b College of Life Science and Chemistry, Zhejiang Normal University , Jinhua , Zhejiang Province , China , and
| | - Jiayong Zhang
- a Institute of Ecology, Zhejiang Normal University , Jinhua , Zhejiang Province , China .,b College of Life Science and Chemistry, Zhejiang Normal University , Jinhua , Zhejiang Province , China , and
| |
Collapse
|
32
|
Biggar KK, Storey KB. Insight into post-transcriptional gene regulation: stress-responsive microRNAs and their role in the environmental stress survival of tolerant animals. J Exp Biol 2015; 218:1281-9. [DOI: 10.1242/jeb.104828] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
ABSTRACT
Living animals are constantly faced with various environmental stresses that challenge normal life, including: oxygen limitation, very low or high temperature, as well as restriction of water and food. It has been well established that in response to these stresses, tolerant organisms regularly respond with a distinct suite of cellular modifications that involve transcriptional, translational and post-translational modification. In recent years, a new mechanism of rapid and reversible transcriptome regulation, via the action of non-coding RNA molecules, has emerged into post-transcriptional regulation and has since been shown to be part of the survival response. However, these RNA-based mechanisms by which tolerant organisms respond to stressed conditions are not well understood. Recent studies have begun to show that non-coding RNAs control gene expression and translation of mRNA to protein, and can also have regulatory influence over major cellular processes. For example, select microRNAs have been shown to have regulatory influence over the cell cycle, apoptosis, signal transduction, muscle atrophy and fatty acid metabolism during periods of environmental stress. As we are on the verge of dissecting the roles of non-coding RNA in environmental stress adaptation, this Commentary summarizes the hallmark alterations in microRNA expression that facilitate stress survival.
Collapse
Affiliation(s)
- Kyle K. Biggar
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada N6A 5C1
| | - Kenneth B. Storey
- Institute of Biochemistry & Department of Biology, Carleton University, Ottawa, Ontario, Canada K1S 5B6
| |
Collapse
|
33
|
Biggar KK, Biggar Y, Storey KB. Identification of a novel dehydration responsive gene, drp10, from the African clawed frog, Xenopus laevis. ACTA ACUST UNITED AC 2015; 323:375-81. [PMID: 25866033 DOI: 10.1002/jez.1930] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 02/25/2015] [Accepted: 03/04/2015] [Indexed: 12/21/2022]
Abstract
During periods of environmental stress a number of different anuran species employ adaptive strategies to promote survival. Our study found that in response to dehydration (i.e., loss of total body water content), the African clawed frog (Xenopus laevis) increased the expression of a novel gene (drp10) that encodes a structural homolog of the freeze-responsive FR10 protein found in wood frogs. Similar to FR10, the DRP10 protein was found to also contain a highly conserved N-terminal cleavable signal peptide. Furthermore, DRP10 was found to have high structural homology to the available crystal structures of type A and E apolipoproteins in Homo sapiens, and a type IV LS-12 anti-freeze protein in the longhorn sculpin, Myoxocephalus octodecemspinosis. In response to dehydration, the transcript expression of drp10 was found to increase 1.52 ± 0.16-fold and 1.97 ± 0.11-fold in response to medium (15%) and high (30%) dehydration stresses in the liver tissue of X. laevis, respectively, while drp10 expression increased 2.12 ± 0.12-fold and 1.46 ± 0.16-fold in kidney tissue. Although the molecular function of both dehydration-responsive DRP10 and the freeze-responsive FR10 have just begun to be elucidated, it is likely that both are frog-specific proteins that likely share a similar purpose during water-related stresses.
Collapse
Affiliation(s)
- Kyle K Biggar
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, Ontario
| | - Yulia Biggar
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, Ontario
| | - Kenneth B Storey
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, Ontario
| |
Collapse
|
34
|
Biggar KK, Storey KB. New Approaches to Comparative and Animal Stress Biology Research in the Post-genomic Era: A Contextual Overview. Comput Struct Biotechnol J 2014; 11:138-46. [PMID: 25408848 PMCID: PMC4232569 DOI: 10.1016/j.csbj.2014.09.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 09/07/2014] [Accepted: 09/11/2014] [Indexed: 02/06/2023] Open
Abstract
Although much is known about the physiological responses of many environmental stresses in tolerant animals, studies evaluating the regulation of stress-induced mechanisms that regulate the transitions to and from this state are beginning to explore new and fascinating areas of molecular research. Current findings have developed a general, but refined, view of the important molecular pathways contributing to stress-survival. However, studies utilizing newly developed technologies that broadly focus on genomic and proteomic screening are beginning to identify many new targets for future study. This minireview will provide a contextual overview on the use of DNA/RNA sequencing, microRNA annotation and prediction software, protein structure and function prediction tools, as well as methods of high-throughput protein expression analysis. We will also use select examples to highlight the existing use of these technologies in stress biology research. Such tools can be used in comparative stress biology in the characterization of animal responses to environmental challenges. Although there are many areas of study left to be explored, research in comparative stress biology will always be continuing as new technologies allow the further analysis of cell function, and new paradigms in gene regulation and regulatory molecules (such as microRNAs) are continuing to be discovered. Building upon the findings of past research, while utilizing new technologies in the appropriate manner, future studies can be carried out in new and exciting areas still unexplored. Proper use of rapidly developing technologies will help to create a complete understanding of the animal stress response and survival mechanisms utilized by many diverse organisms.
Collapse
Affiliation(s)
| | - Kenneth B. Storey
- Institute of Biochemistry, Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
35
|
Cowled C, Stewart CR, Likic VA, Friedländer MR, Tachedjian M, Jenkins KA, Tizard ML, Cottee P, Marsh GA, Zhou P, Baker ML, Bean AG, Wang LF. Characterisation of novel microRNAs in the Black flying fox (Pteropus alecto) by deep sequencing. BMC Genomics 2014; 15:682. [PMID: 25128405 PMCID: PMC4156645 DOI: 10.1186/1471-2164-15-682] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 08/07/2014] [Indexed: 12/11/2022] Open
Abstract
Background Bats are a major source of new and emerging viral diseases. Despite the fact that bats carry and shed highly pathogenic viruses including Ebola, Nipah and SARS, they rarely display clinical symptoms of infection. Host factors influencing viral replication are poorly understood in bats and are likely to include both pre- and post-transcriptional regulatory mechanisms. MicroRNAs are a major mechanism of post-transcriptional gene regulation, however very little is known about them in bats. Results This study describes 399 microRNAs identified by deep sequencing of small RNA isolated from tissues of the Black flying fox, Pteropus alecto, a confirmed natural reservoir of the human pathogens Hendra virus and Australian bat lyssavirus. Of the microRNAs identified, more than 100 are unique amongst vertebrates, including a subset containing mutations in critical seed regions. Clusters of rapidly-evolving microRNAs were identified, as well as microRNAs predicted to target genes involved in antiviral immunity, the DNA damage response, apoptosis and autophagy. Closer inspection of the predicted targets for several highly supported novel miRNA candidates suggests putative roles in host-virus interaction. Conclusions MicroRNAs are likely to play major roles in regulating virus-host interaction in bats, via dampening of inflammatory responses (limiting the effects of immunopathology), and directly limiting the extent of viral replication, either through restricting the availability of essential factors or by controlling apoptosis. Characterisation of the bat microRNA repertoire is an essential step towards understanding transcriptional regulation during viral infection, and will assist in the identification of mechanisms that enable bats to act as natural virus reservoirs. This in turn will facilitate the development of antiviral strategies for use in humans and other species. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-682) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christopher Cowled
- CSIRO Australian Animal Health Laboratory, 5 Portarlington Rd, Geelong East, Victoria 3220, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Biggar KK, Storey KB. Insight into temperature-dependent microRNA function in mammalian hibernators: Perspectives on cold-influenced microRNA/target interaction. Temperature (Austin) 2014; 1:84-6. [PMID: 27582076 PMCID: PMC4977176 DOI: 10.4161/temp.29656] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 06/18/2014] [Accepted: 06/19/2014] [Indexed: 12/19/2022] Open
Abstract
Mammalian hibernation involves re-programming of metabolic functions, in part, facilitated by microRNA. Although much is known about microRNA function, we lack knowledge on low temperature microRNA target selection. It is possible that the thermodynamics of microRNA target selection could dictate unique temperature-dependent sets of microRNA targets for hibernators.
Collapse
Affiliation(s)
- Kyle K Biggar
- Institute of Biochemistry and Department of Biology; Carleton University; Ottawa, ON Canada
| | - Kenneth B Storey
- Institute of Biochemistry and Department of Biology; Carleton University; Ottawa, ON Canada
| |
Collapse
|