1
|
Zhao X, Dong Q, Zhu H, Ding Y, Deng D, Miao H, Tan Y, Ge L. Methuselah-like 2 mediated 20-hydroxyecdysone (20E) signaling regulates molting and fecundity in Nilaparvata lugens (Stål) (Hemiptera: Delphacidae). PEST MANAGEMENT SCIENCE 2025. [PMID: 39980407 DOI: 10.1002/ps.8722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/13/2025] [Accepted: 02/05/2025] [Indexed: 02/22/2025]
Abstract
BACKGROUND G protein-coupled receptors (GPCRs) are very promising as the targets of endogenous neuropeptides/neuromodulators that, upon binding to receptors, induce profound changes in insect physiology. The Methuselan/Methuselan-like subfamily of GPCRs is reported to be associated with longevity and stress resistance. A previous study showed the fungicide jingangmycin-induced expression of Mthl2 and enhanced stress resistance in Nilaparvata lugens. However, the other physiological functions of Mthl2 remain unelucidated. RESULTS The Mthl2 was highly expressed before molting and decreased after that until the next ecdysis, showing a cyclical pattern related to molting behavior and predominantly distributed in cuticle-producing and reproductive tissues in N. lugens. Silencing Mthl2 by RNAi in nymphs disrupted the synthesis of 20E, caused downregulation of the 20E signaling-related genes, and further affected the transcription of cuticular proteins. Moreover, it led to the malformation of the integument structure and a declined emergence rate, whereas exogenous 20E could rescue the declined emergence rate caused by knockdown of Mthl2. Furthermore, depletion of Mthl2 through RNAi in the N. lugens nymphal stage influenced the development of the ovaries and fecundity in female adults. The soluble protein content in reproductive tissues, the protein and transcript levels of Vitellogenin (Vg) were significantly decreased after silencing of Mthl2, ultimately leading to a decline in the number of offspring with an obviously transgenerational consequence. CONCLUSION The current study revealed the physiological functions of Mthl2 in molting and fecundity of N. lugens, which can be used as an RNAi-based insecticide discovery to control this pest. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xudong Zhao
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Qiaoqiao Dong
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Haowen Zhu
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Yuting Ding
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Di Deng
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Hong Miao
- College of Mechanical Engineering, Yangzhou University, Yangzhou, China
| | - Yongan Tan
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - LinQuan Ge
- College of Plant Protection, Yangzhou University, Yangzhou, China
| |
Collapse
|
2
|
Zhang XY, He QH, Zhang TT, Wu HH, Zhang JZ, Ma EB. Characteristics of Halloween genes and RNA interference-mediated functional analysis of LmCYP307a2 in Locusta migratoria. INSECT SCIENCE 2022; 29:51-64. [PMID: 33634599 DOI: 10.1111/1744-7917.12907] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/19/2021] [Accepted: 01/24/2021] [Indexed: 06/12/2023]
Abstract
Halloween genes are involved in the biosynthesis of the molting hormone, which plays a key role in insect ecdysis, development, metamorphosis, and reproduction. Our previous work identified five Halloween genes from Locusta migratoria, but their functions are currently unknown. In this study, the sequences of these five Halloween genes were analyzed and characterized. LmCYP307a2, LmCYP306a1, LmCYP302a1, and LmCYP315a1 were primarily expressed in the prothoracic glands, while LmCYP314a1 was universally expressed in peripheral tissues, especially in the ovaries and Malpighian tubules. All five Halloween genes were mainly expressed from the 5th to the 7th d in 5th-instar nymphs. RNA interference (RNAi) silencing of LmCYP307a2 resulted in severe molting delays and molting failure, which could be rescued by supplementary 20-hydroxyecdysone. A hematoxylin and eosin staining analysis suggested that the RNAi of LmCYP307a2 inhibited the ecdysis process by inhibiting the apolysis and degradation of the old cuticle, and by promoting the synthesis of a new cuticle. Quantitative reverse transcription polymerase chain reaction results showed that the expressions of LmE74, LmCht5, and LmCht10 were dramatically down-regulated, while that of LmChsI was substantially up-regulated, after knockdown of LmCYP307a2. The results suggest that LmCYP307a2 is related to the molt process via regulation of chitin synthesis and degradation.
Collapse
Affiliation(s)
- Xue-Yao Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Qi-Hui He
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Ting-Ting Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Hai-Hua Wu
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Jian-Zhen Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - En-Bo Ma
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China
| |
Collapse
|
3
|
Zhou X, Ye YZ, Ogihara MH, Takeshima M, Fujinaga D, Liu CW, Zhu Z, Kataoka H, Bao YY. Functional analysis of ecdysteroid biosynthetic enzymes of the rice planthopper, Nilaparvata lugens. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 123:103428. [PMID: 32553573 DOI: 10.1016/j.ibmb.2020.103428] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
Ecdysteroids, insect steroid hormones, play key roles in regulating insect development and reproduction. Hemipteran insects require ecdysteroids for egg production; however, ecdysteroid synthesis (ecdysteroidogenesis) details have not been elucidated. We identified all known genes encoding ecdysteroidogenic enzymes in Nilaparvata lugens and clarified their necessity during nymphal and ovarian development. We confirmed that N. lugens utilized 20-hydroxyecdysone as an active hormone. Assays using heterologous expression of enzymes in Drosophila S2 cells showed conserved functions of enzymes Neverland, CYP306A2, CYP314A1 and CYP315A1, but not CYP302A1. RNA interference and rescue analysis using 20-hydroxyecdysone demonstrated that most of the genes were necessary for nymphal development. The identified N. lugens enzymes showed conserved functions and pathways for ecdysteroidogenesis. Knockdown of ecdysteroidogenic enzyme genes in newly molted females caused failure of egg production: less vitellogenic and mature eggs in ovaries, fewer laid eggs and embryonic development deficiency of laid eggs. Considering the high expressions of ecdysteroidogenic enzyme genes in adults and ovaries, ecdysteroidogenesis in ovaries was critical for N. lugens ovarian development. Our study presents initial evidence that hemipteran insects require ecdysteroidogenesis for ovarian development.
Collapse
Affiliation(s)
- Xiang Zhou
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yi-Zhou Ye
- Department of Integrated Biosciences, Graduated School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8562, Japan
| | - Mari H Ogihara
- Department of Integrated Biosciences, Graduated School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8562, Japan; Present Address: Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, 2 Ikenodai, Tsukuba, Ibaraki, 305-0901, Japan
| | - Mika Takeshima
- Department of Integrated Biosciences, Graduated School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8562, Japan
| | - Daiki Fujinaga
- Department of Integrated Biosciences, Graduated School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8562, Japan
| | - Cheng-Wen Liu
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhen Zhu
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China; Department of Integrated Biosciences, Graduated School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8562, Japan
| | - Hiroshi Kataoka
- Department of Integrated Biosciences, Graduated School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8562, Japan.
| | - Yan-Yuan Bao
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
4
|
Zhang Q, Dou W, Pan D, Chen EH, Niu JZ, Smagghe G, Wang JJ. Genome-Wide Analysis of MicroRNAs in Relation to Pupariation in Oriental Fruit Fly. Front Physiol 2019; 10:301. [PMID: 30967796 PMCID: PMC6439999 DOI: 10.3389/fphys.2019.00301] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 03/07/2019] [Indexed: 12/15/2022] Open
Abstract
Insect metamorphosis is a complex process involving drastic morphological and physiological changes. microRNAs (miRNAs) are a class of endogenous small non-coding RNAs that play key roles in regulating various biological processes, including metamorphosis, by post-transcriptional repression of mRNAs. The oriental fruit fly, Bactrocera dorsalis, is one of the most destructive insect pests in many Asian countries and the Pacific Islands. The regulatory role of miRNAs in B. dorsalis metamorphosis is unclear. To better understand the molecular regulatory mechanisms of miRNAs in pupariation, Illumina sequencing of the wandering stage (WS), the late WS and the white puparium stage of B. dorsalis were performed. Two hundred forty-nine miRNAs, including 184 known miRNAs and 65 novel miRNAs, were obtained. Among these miRNAs, 19 miRNAs were differentially expressed in pupariation, and eight miRNAs showed relative high expression levels (>50 TPM), of which five differentially expressed miRNAs (DEMs) had target differentially expressed genes (DEGs) predicted by the expected miRNA-mRNA negative regulation pattern using the Illumina HiSeq data. Four sets of DEMs and their predicted target DEGs were confirmed by qPCR. Of the four miRNAs, two miRNAs were down-regulated: miR-981, which may target pdpc, and Bdo-novel-mir-55, which potentially regulates spsX1, psB/C, and chit3. The other two miRNAs were up-regulated: let-7a-3p, which possibly controls lap, and Bdo-novel-mir-24, which may regulate ipc and sp1/2. This study provides a useful resource to elucidate the regulatory role of miRNAs and understand the molecular mechanisms of metamorphosis.
Collapse
Affiliation(s)
- Qiang Zhang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, China.,International China-Belgium Joint Laboratory on Sustainable Crop Pest Control Between Southwest University in China and Ghent University in Belgium, Chongqing, China.,Department of Plants and Crops, Ghent University, Ghent, Belgium
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, China.,International China-Belgium Joint Laboratory on Sustainable Crop Pest Control Between Southwest University in China and Ghent University in Belgium, Chongqing, China.,Department of Plants and Crops, Ghent University, Ghent, Belgium
| | - Deng Pan
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, China.,International China-Belgium Joint Laboratory on Sustainable Crop Pest Control Between Southwest University in China and Ghent University in Belgium, Chongqing, China.,Department of Plants and Crops, Ghent University, Ghent, Belgium
| | - Er-Hu Chen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, China.,International China-Belgium Joint Laboratory on Sustainable Crop Pest Control Between Southwest University in China and Ghent University in Belgium, Chongqing, China.,Department of Plants and Crops, Ghent University, Ghent, Belgium
| | - Jin-Zhi Niu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, China.,International China-Belgium Joint Laboratory on Sustainable Crop Pest Control Between Southwest University in China and Ghent University in Belgium, Chongqing, China.,Department of Plants and Crops, Ghent University, Ghent, Belgium
| | - Guy Smagghe
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, China.,International China-Belgium Joint Laboratory on Sustainable Crop Pest Control Between Southwest University in China and Ghent University in Belgium, Chongqing, China.,Department of Plants and Crops, Ghent University, Ghent, Belgium
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, China.,International China-Belgium Joint Laboratory on Sustainable Crop Pest Control Between Southwest University in China and Ghent University in Belgium, Chongqing, China.,Department of Plants and Crops, Ghent University, Ghent, Belgium
| |
Collapse
|
5
|
Sawadro M, Bednarek A, Babczyńska A. The current state of knowledge on the neuroactive compounds that affect the development, mating and reproduction of spiders (Araneae) compared to insects. INVERTEBRATE NEUROSCIENCE 2017; 17:4. [DOI: 10.1007/s10158-017-0197-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 04/03/2017] [Indexed: 12/19/2022]
|
6
|
Zheng J, Tian K, Yuan Y, Li M, Qiu X. Identification and expression patterns of Halloween genes encoding cytochrome P450s involved in ecdysteroid biosynthesis in the cotton bollworm Helicoverpa armigera. BULLETIN OF ENTOMOLOGICAL RESEARCH 2017; 107:85-95. [PMID: 27545316 DOI: 10.1017/s0007485316000663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
20-Hydroxyecdysone (20E) is a key hormone which regulates growth, development and reproduction in insects. Although cytochrome P450 enzymes (P450s) participating in the ecdysteroid biosynthesis of 20E have been characterized in a few model insects, no work has been published on the molecular entity of their orthologs in the cotton bollworm Helicoverpa armigera, a major pest insect in agriculture worldwide. In this study, four cytochrome P450 homologs, namely HarmCYP302A1, HarmCYP306A1, HarmCYP314A1 and HarmCYP315A1 from H. armigera, were identified and evolutional conservation of these Halloween genes were revealed among lepidopteran. Expression analyses showed that HarmCYP302A1 and HarmCYP315A1 were predominantly expressed in larval prothoracic glands, whereas this predominance was not always observed for HarmCYP306A1 and CYP314A1. The expression patterns of Halloween genes indicate that the fat bodies may play an important role in the conversion of ecdysone into 20E in larval-larval molt and in larval-pupal metamorphosis, and raise the possibility that HarmCYP315A1 plays a role in tissue-specific regulation in the steroid biosynthesis in H. armigera. These findings represent the first identification and expression characterization of four steriodogenic P450 genes and provide the groundwork for future functional and evolutionary study of steroid biosynthesis in this agriculturally important pest.
Collapse
Affiliation(s)
- J Zheng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents,Institute of Zoology,Chinese Academy of Sciences,Beijing 100101,China
| | - K Tian
- State Key Laboratory of Integrated Management of Pest Insects and Rodents,Institute of Zoology,Chinese Academy of Sciences,Beijing 100101,China
| | - Y Yuan
- State Key Laboratory of Integrated Management of Pest Insects and Rodents,Institute of Zoology,Chinese Academy of Sciences,Beijing 100101,China
| | - M Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents,Institute of Zoology,Chinese Academy of Sciences,Beijing 100101,China
| | - X Qiu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents,Institute of Zoology,Chinese Academy of Sciences,Beijing 100101,China
| |
Collapse
|
7
|
RNA Interference in Insect Vectors for Plant Viruses. Viruses 2016; 8:v8120329. [PMID: 27973446 PMCID: PMC5192390 DOI: 10.3390/v8120329] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 12/05/2016] [Accepted: 12/06/2016] [Indexed: 01/09/2023] Open
Abstract
Insects and other arthropods are the most important vectors of plant pathogens. The majority of plant pathogens are disseminated by arthropod vectors such as aphids, beetles, leafhoppers, planthoppers, thrips and whiteflies. Transmission of plant pathogens and the challenges in managing insect vectors due to insecticide resistance are factors that contribute to major food losses in agriculture. RNA interference (RNAi) was recently suggested as a promising strategy for controlling insect pests, including those that serve as important vectors for plant pathogens. The last decade has witnessed a dramatic increase in the functional analysis of insect genes, especially those whose silencing results in mortality or interference with pathogen transmission. The identification of such candidates poses a major challenge for increasing the role of RNAi in pest control. Another challenge is to understand the RNAi machinery in insect cells and whether components that were identified in other organisms are also present in insect. This review will focus on summarizing success cases in which RNAi was used for silencing genes in insect vector for plant pathogens, and will be particularly helpful for vector biologists.
Collapse
|
8
|
Van Ekert E, Wang M, Miao YG, Brent CS, Hull JJ. RNA interference-mediated knockdown of the Halloween gene Spookiest (CYP307B1) impedes adult eclosion in the western tarnished plant bug, Lygus hesperus. INSECT MOLECULAR BIOLOGY 2016; 25:550-565. [PMID: 27189651 DOI: 10.1111/imb.12242] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Ecdysteroids play a critical role in coordinating insect growth, development and reproduction. A suite of cytochrome P450 monooxygenases coded by what are collectively termed Halloween genes mediate ecdysteroid biosynthesis. In this study, we describe cloning and RNA interference (RNAi)-mediated knockdown of the CYP307B1 Halloween gene (Spookiest) in the western tarnished plant bug, Lygus hesperus. Transcripts for Ly. hesperus Spookiest (LhSpot) were amplified from all life stages and correlated well with timing of the pre-moult ecdysteroid pulse. In adults, LhSpot was amplified from heads of both genders as well as female reproductive tissues. Heterologous expression of a LhSpot fluorescent chimera in cultured insect cells co-localized with a fluorescent marker of the endoplasmic reticulum/secretory pathway. RNAi-mediated knockdown of LhSpot in fifth instars reduced expression of ecdysone-responsive genes E74 and E75, and prevented adult development. This developmental defect was rescued following application of exogenous 20-hydroxyecdysone but not exogenous 7-dehydrocholesterol. The unequivocal RNAi effects on Ly. hesperus development and the phenotypic rescue by 20-hydroxyecdysone are causal proof of the involvement of LhSpot in ecdysteroid biosynthesis and related developmental processes, and may provide an avenue for development of new control measures against Ly. hesperus.
Collapse
Affiliation(s)
- E Van Ekert
- USDA-ARS Arid Land Agricultural Research Center, Maricopa, AZ, USA
| | - M Wang
- Zhejiang University, Hangzhou, China
| | - Y-G Miao
- Zhejiang University, Hangzhou, China
| | - C S Brent
- USDA-ARS Arid Land Agricultural Research Center, Maricopa, AZ, USA
| | - J J Hull
- USDA-ARS Arid Land Agricultural Research Center, Maricopa, AZ, USA
| |
Collapse
|
9
|
Zhu J, Dong YC, Li P, Niu CY. The effect of silencing 20E biosynthesis relative genes by feeding bacterially expressed dsRNA on the larval development of Chilo suppressalis. Sci Rep 2016; 6:28697. [PMID: 27352880 PMCID: PMC4926234 DOI: 10.1038/srep28697] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 06/06/2016] [Indexed: 12/20/2022] Open
Abstract
RNA interference (RNAi) is a robust tool to study gene functions as well as potential for insect pest control. Finding suitable target genes is the key step in the development of an efficient RNAi-mediated pest control technique. Based on the transcriptome of Chilo suppressalis, 24 unigenes which putatively associated with insect hormone biosynthesis were identified. Amongst these, four genes involved in ecdysteroidogenesis i.e., ptth, torso, spook and nm-g were evaluated as candidate targets for function study. The partial cDNA of these four genes were cloned and their bacterially expressed dsRNA were fed to the insects. Results revealed a significant reduction in mRNA abundance of target genes after 3 days. Furthermore, knocked down of these four genes resulted in abnormal phenotypes and high larval mortality. After 15 days, the survival rates of insects in dsspook, dsptth, dstorso, and dsnm-g groups were significantly reduced by 32%, 38%, 56%, and 67% respectively, compared with control. Moreover, about 80% of surviving larvae showed retarded development in dsRNA-treated groups. These results suggest that oral ingestion of bacterially expressed dsRNA in C. suppressalis could silence ptth, torso, spook and nm-g. Oral delivery of bacterially expressed dsRNA provides a simple and potential management scheme against C. suppressalis.
Collapse
Affiliation(s)
- Jian Zhu
- College of Plant Science &Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yong-Cheng Dong
- College of Plant Science &Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ping Li
- Pest Control Division, National Agricultural Technology Extension and Service Center, Ministry of Agricultural, Beijing 100125, China
| | - Chang-Ying Niu
- College of Plant Science &Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
10
|
An XK, Hou ML, Liu YD. Reference Gene Selection and Evaluation for Gene Expression Studies Using qRT-PCR in the White-Backed Planthopper, Sogatella furcifera (Hemiptera: Delphacidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2016; 109:879-886. [PMID: 26612891 DOI: 10.1093/jee/tov333] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The white-backed planthopper, Sogatella furcifera (Hemiptera, Delphacidae), is one of the most devastating rice pests. For a better control strategy, various genetic studies have been conducted using reverse-transcription quantitative real-time polymerase chain reaction (qRT-PCR). The appropriate application of qRT-PCR requires reliable endogenous controls; however, studies on this aspect of the white-backed planthopper are lacking. In the present study, nine commonly used reference genes, elongation factor 1-α (EF1-α), polyubiquitin (UB), ribosomal protein S18 (RPS18), actin 1 (ACT), α-1 tubulin (TUB), glyceraldehyde-3-phosphate (GAPDH), ribosomal protein L9 (RPL9), ribosomal protein L10 (RPL10), and 18S ribosomal RNA (18S), were evaluated by qRT-PCR for their expression stability under four different experimental conditions (different developmental stages, acquisition of Southern rice black-streaked dwarf virus (SRBSDV), different tissues, and different temperature stress). These results were analyzed using four software programs (geNorm, NormFinder, BestKeeper, and the delta Ct method) and a Web-based comprehensive tool RefFinder to compare and rank candidate reference genes. According to the results of RefFinder analysis, which integrates the abovementioned four software programs, TUB was ranked as the most suitable reference gene at different developmental stages and under different temperature stress, and GAPDH and RPL9 showed the highest stability for acquisition of SRBSDV and different tissues, respectively. These results will provide a solid foundation for future gene expression study on the white-backed planthopper, and also will give aids in establishing a standardized qRT-PCR procedure for other related insects.
Collapse
|
11
|
Enya S, Daimon T, Igarashi F, Kataoka H, Uchibori M, Sezutsu H, Shinoda T, Niwa R. The silkworm glutathione S-transferase gene noppera-bo is required for ecdysteroid biosynthesis and larval development. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 61:1-7. [PMID: 25881968 DOI: 10.1016/j.ibmb.2015.04.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 04/03/2015] [Accepted: 04/03/2015] [Indexed: 06/04/2023]
Abstract
Insect molting and metamorphosis are tightly controlled by ecdysteroids, which are important steroid hormones that are synthesized from dietary sterols in the prothoracic gland. One of the ecdysteroidogenic genes in the fruit fly Drosophila melanogaster is noppera-bo (nobo), also known as GSTe14, which encodes a member of the epsilon class of glutathione S-transferases. In D. melanogaster, nobo plays a crucial role in utilizing cholesterol via regulating its transport and/or metabolism in the prothoracic gland. However, it is still not known whether the orthologs of nobo from other insects are also involved in ecdysteroid biosynthesis via cholesterol transport and/or metabolism in the prothoracic gland. Here we report genetic evidence showing that the silkworm Bombyx mori ortholog of nobo (nobo-Bm; GSTe7) is essential for silkworm development. nobo-Bm is predominantly expressed in the prothoracic gland. To assess the functional importance of nobo-Bm, we generated a B. mori genetic mutant of nobo-Bm using TALEN-mediated genome editing. We show that loss of nobo-Bm function causes larval arrest and a glossy cuticle phenotype, which are rescued by the application of 20-hydroxyecdysone. Moreover, the prothoracic gland cells isolated from the nobo-Bm mutant exhibit an abnormal accumulation of 7-dehydrocholesterol, a cholesterol metabolite. These results suggest that the nobo family of glutathione S-transferases is essential for development and for the regulation of sterol utilization in the prothoracic gland in not only the Diptera but also the Lepidoptera. On the other hand, loss of nobo function mutants of D. melanogaster and B. mori abnormally accumulates different sterols, implying that the sterol utilization in the PG is somewhat different between these two insect species.
Collapse
Affiliation(s)
- Sora Enya
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
| | - Takaaki Daimon
- National Institute of Agrobiological Sciences, Owashi 1-2, Tsukuba, Ibaraki 305-8634, Japan
| | - Fumihiko Igarashi
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha 5-1-5, Kashiwa, Chiba 277-8562, Japan
| | - Hiroshi Kataoka
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha 5-1-5, Kashiwa, Chiba 277-8562, Japan
| | - Miwa Uchibori
- National Institute of Agrobiological Sciences, Owashi 1-2, Tsukuba, Ibaraki 305-8634, Japan
| | - Hideki Sezutsu
- National Institute of Agrobiological Sciences, Owashi 1-2, Tsukuba, Ibaraki 305-8634, Japan
| | - Tetsuro Shinoda
- National Institute of Agrobiological Sciences, Owashi 1-2, Tsukuba, Ibaraki 305-8634, Japan
| | - Ryusuke Niwa
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan; PRESTO, JST, Honcho 4-1-8, Kawaguchi, Saitama 332-0012, Japan.
| |
Collapse
|