1
|
Abak A, Shoorei H, Taheri M, Ghafouri-Fard S. In vivo Engineering of Chromosome 19 q-arm by Employing the CRISPR/AsCpf1 and ddAsCpf1 Systems in Human Malignant Gliomas (Hypothesis). J Mol Neurosci 2021; 71:1648-1663. [PMID: 33990905 DOI: 10.1007/s12031-021-01855-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/23/2021] [Accepted: 05/03/2021] [Indexed: 11/29/2022]
Abstract
Deletions of the q13.3 region of chromosome 19 have been found commonly in all three main kinds of diffuse human malignant gliomas, powerfully demonstrating the existence of tumor suppressor genes in this region. Consistent with the previous studies, the most common deletion interval has been mapped to a roughly 4 Mb region of 19q13.3 between the APOC2 and HRC genes, between genetic markers D19S219 and D19S246. EML2 is a tumor suppressor gene that is located on 19q13.32 and is considerably methylated in high-grade gliomas. Notably, MIR330 gene that is situated within the non-coding intronic region of EML2 is also detected as an oncosuppressor-miR in a variety of cancers including gliomas. Additionally, glioma oncoprotein Bcl2L12 which is located on 19q13.33 is significantly overexpressed in glioblastoma multiform and has a pivotal role in cancer evolution and resistance to apoptosis. Other genes such as MIR519D and NOP53 are also discovered as tumor suppressor genes in gliomas which are located on 19q13.3 and 19q13.4, respectively. Therefore, we hypothesize that a CRISPR/AsCpf1-based genome engineering strategy might be utilized to attach these deleted sizeable chromosomal portions of genes coding tumor suppressors as vital parts of the chromosome 19 q-arm with the purpose of treatment of this chromosomal abnormality in gliomas. Also, we can concurrently employ the CRISPR-ddAsCpf1 strategy for the precise suppression of Bcl2L12 oncogene in glioma.
Collapse
Affiliation(s)
- Atefe Abak
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics. Shahid, Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Rehnitz J, Youness B, Nguyen XP, Dietrich JE, Roesner S, Messmer B, Strowitzki T, Vogt PH. FMR1 expression in human granulosa cells and variable ovarian response: control by epigenetic mechanisms. Mol Hum Reprod 2021; 27:6119639. [PMID: 33493269 DOI: 10.1093/molehr/gaab001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 12/18/2020] [Indexed: 12/31/2022] Open
Abstract
In humans, FMR1 (fragile X mental retardation 1) is strongly expressed in granulosa cells (GCs) of the female germline and apparently controls efficiency of folliculogenesis. Major control mechanism(s) of the gene transcription rate seem to be based on the rate of CpG-methylation along the CpG island promoter. Conducting CpG-methylation-specific bisulfite-treated PCR assays and subsequent sequence analyses of both gene alleles, revealed three variably methylated CpG domains (FMR1-VMR (variably methylated region) 1, -2, -3) and one completely unmethylated CpG-region (FMR1-UMR) in this extended FMR1-promoter-region. FMR1-UMR in the core promoter was exclusively present only in female GCs, suggesting expression from both gene alleles, i.e., escaping the female-specific X-inactivation mechanism for the second gene allele. Screening for putative target sites of transcription factors binding with CpG methylation dependence, we identified a target site for the transcriptional activator E2F1 in FMR1-VMR3. Using specific electrophoretic mobility shift assays, we found E2F1 binding efficiency to be dependent on CpG-site methylation in its target sequence. Comparative analysis of these CpGs revealed that CpG 94-methylation in primary GCs of women with normal and reduced efficiency of folliculogenesis statistically significant differences. We therefore conclude that E2F1 binding to FMR1-VMR3 in human GCs is part of an epigenetic mechanism regulating the efficiency of human folliculogenesis. Our data indicate that epigenetic mechanisms may control GC FMR1-expression rates.
Collapse
Affiliation(s)
- Julia Rehnitz
- Division of Reproduction Genetics, Department of Gynecological Endocrinology and Fertility Disorders, University Women Hospital, Heidelberg, Germany.,Department of Gynecologic Endocrinology and Fertility Disorders, University Women Hospital, Heidelberg, Germany
| | - Berthe Youness
- Division of Reproduction Genetics, Department of Gynecological Endocrinology and Fertility Disorders, University Women Hospital, Heidelberg, Germany
| | - Xuan Phuoc Nguyen
- Division of Reproduction Genetics, Department of Gynecological Endocrinology and Fertility Disorders, University Women Hospital, Heidelberg, Germany
| | - Jens E Dietrich
- Department of Gynecologic Endocrinology and Fertility Disorders, University Women Hospital, Heidelberg, Germany
| | - Sabine Roesner
- Department of Gynecologic Endocrinology and Fertility Disorders, University Women Hospital, Heidelberg, Germany
| | - Birgitta Messmer
- Division of Reproduction Genetics, Department of Gynecological Endocrinology and Fertility Disorders, University Women Hospital, Heidelberg, Germany
| | - Thomas Strowitzki
- Department of Gynecologic Endocrinology and Fertility Disorders, University Women Hospital, Heidelberg, Germany
| | - Peter H Vogt
- Division of Reproduction Genetics, Department of Gynecological Endocrinology and Fertility Disorders, University Women Hospital, Heidelberg, Germany
| |
Collapse
|
3
|
Chalertpet K, Pin-On P, Aporntewan C, Patchsung M, Ingrungruanglert P, Israsena N, Mutirangura A. Argonaute 4 as an Effector Protein in RNA-Directed DNA Methylation in Human Cells. Front Genet 2019; 10:645. [PMID: 31333722 PMCID: PMC6620710 DOI: 10.3389/fgene.2019.00645] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 06/18/2019] [Indexed: 01/06/2023] Open
Abstract
DNA methylation of specific genome locations contributes to the distinct functions of multicellular organisms. DNA methylation can be governed by RNA-dependent DNA methylation (RdDM). RdDM is carried out by endogenous small-RNA-guided epigenomic editing complexes that add a methyl group to a precise DNA location. In plants, the Argonaute 4 (AGO4) protein is one of the main catalytic components involved in RdDM. Although small interfering RNA or short hairpin RNA has been shown to be able to guide DNA methylation in human cells, AGO protein-regulated RdDM in humans has not yet been evaluated. This study aimed to identify a key regulatory AGO protein involved in human RdDM by bioinformatics and to explore its function in RdDM by a combination of AGO4 knockdown, Alu small interfering RNA transfection, AGO4-expressing plasmid transfection, chromatin immunoprecipitation, cell-penetrating peptide-tagged AGO4 combined Alu single-guide RNA transfection, and methylation analyses. We found that first, human AGO4 showed stronger genome-wide association with DNA methylation than AGO1–AGO3. Second, endogenous AGO4 depletion demethylated DNA of known AGO4 bound loci. Finally, exogenous AGO4 de novo methylated the bound DNA sequences. Therefore, we discovered that AGO4 plays a role in human RdDM.
Collapse
Affiliation(s)
- Kanwalat Chalertpet
- Interdisciplinary Program of Biomedical Sciences, Faculty of the Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Piyapat Pin-On
- Interdisciplinary Program of Biomedical Sciences, Faculty of the Graduate School, Chulalongkorn University, Bangkok, Thailand.,Faculty of Medicine, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Chatchawit Aporntewan
- Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Maturada Patchsung
- Interdisciplinary Program of Biomedical Sciences, Faculty of the Graduate School, Chulalongkorn University, Bangkok, Thailand.,Center of Excellence in Molecular Genetics of Cancer and Human Diseases, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Praewphan Ingrungruanglert
- Stem Cells and Cell Therapy Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Nipan Israsena
- Stem Cells and Cell Therapy Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Apiwat Mutirangura
- Center of Excellence in Molecular Genetics of Cancer and Human Diseases, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
4
|
Mortlock S, Restuadi R, Levien R, Girling JE, Holdsworth-Carson SJ, Healey M, Zhu Z, Qi T, Wu Y, Lukowski SW, Rogers PAW, Yang J, McRae AF, Fung JN, Montgomery GW. Genetic regulation of methylation in human endometrium and blood and gene targets for reproductive diseases. Clin Epigenetics 2019; 11:49. [PMID: 30871624 PMCID: PMC6416889 DOI: 10.1186/s13148-019-0648-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 03/06/2019] [Indexed: 02/02/2023] Open
Abstract
Background Major challenges in understanding the functional consequences of genetic risk factors for human disease are which tissues and cell types are affected and the limited availability of suitable tissue. The aim of this study was to evaluate tissue-specific genotype-epigenetic characteristics in DNA samples from both endometrium and blood collected from women at different stages of the menstrual cycle and relate results to genetic risk factors for reproductive traits and diseases. Results We analysed DNA methylation (DNAm) data from endometrium and blood samples from 66 European women. Methylation profiles were compared between stages of the menstrual cycle, and changes in methylation overlaid with changes in transcription and genotypes. We observed large changes in methylation (27,262 DNAm probes) across the menstrual cycle in endometrium that were not observed in blood. Individual genotype data was tested for association with methylation at 443,016 and 443,101 DNAm probes in endometrium and blood respectively to identify methylation quantitative trait loci (mQTLs). A total of 4546 sentinel cis-mQTLs (P < 1.13 × 10−10) and 434 sentinel trans-mQTLs (P < 2.29 × 10−12) were detected in endometrium and 6615 sentinel cis-mQTLs (P < 1.13 × 10−10) and 590 sentinel trans-mQTLs (P < 2.29 × 10−12) were detected in blood. Following secondary analyses, conducted to test for overlap between mQTLs in the two tissues, we found that 62% of endometrial cis-mQTLs were also observed in blood and the genetic effects between tissues were highly correlated. A number of mQTL SNPs were associated with reproductive traits and diseases, including one mQTL located in a known risk region for endometriosis (near GREB1). Conclusions We report novel findings characterising genetic regulation of methylation in endometrium and the association of endometrial mQTLs with endometriosis risk and other reproductive traits and diseases. The high correlation of genetic effects between tissues highlights the potential to exploit the power of large mQTL datasets in endometrial research and identify target genes for functional studies. However, tissue-specific methylation profiles and genetic effects also highlight the importance of also using disease-relevant tissues when investigating molecular mechanisms of disease risk. Electronic supplementary material The online version of this article (10.1186/s13148-019-0648-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sally Mortlock
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, Building 80, St Lucia, QLD, 4072, Australia.
| | - Restuadi Restuadi
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, Building 80, St Lucia, QLD, 4072, Australia
| | - Rupert Levien
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, Building 80, St Lucia, QLD, 4072, Australia
| | - Jane E Girling
- Department of Obstetrics and Gynaecology, and Gynaecology Research Centre, University of Melbourne, Royal Women's Hospital, Parkville, VIC, 3052, Australia.,Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Sarah J Holdsworth-Carson
- Department of Obstetrics and Gynaecology, and Gynaecology Research Centre, University of Melbourne, Royal Women's Hospital, Parkville, VIC, 3052, Australia
| | - Martin Healey
- Department of Obstetrics and Gynaecology, and Gynaecology Research Centre, University of Melbourne, Royal Women's Hospital, Parkville, VIC, 3052, Australia
| | - Zhihong Zhu
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, Building 80, St Lucia, QLD, 4072, Australia
| | - Ting Qi
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, Building 80, St Lucia, QLD, 4072, Australia
| | - Yang Wu
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, Building 80, St Lucia, QLD, 4072, Australia
| | - Samuel W Lukowski
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, Building 80, St Lucia, QLD, 4072, Australia
| | - Peter A W Rogers
- Department of Obstetrics and Gynaecology, and Gynaecology Research Centre, University of Melbourne, Royal Women's Hospital, Parkville, VIC, 3052, Australia
| | - Jian Yang
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, Building 80, St Lucia, QLD, 4072, Australia
| | - Allan F McRae
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, Building 80, St Lucia, QLD, 4072, Australia
| | - Jenny N Fung
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, Building 80, St Lucia, QLD, 4072, Australia
| | - Grant W Montgomery
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, Building 80, St Lucia, QLD, 4072, Australia
| |
Collapse
|
5
|
Puttipanyalears C, Arayataweegool A, Chalertpet K, Rattanachayoto P, Mahattanasakul P, Tangjaturonsasme N, Kerekhanjanarong V, Mutirangura A, Kitkumthorn N. TRH site-specific methylation in oral and oropharyngeal squamous cell carcinoma. BMC Cancer 2018; 18:786. [PMID: 30081853 PMCID: PMC6080527 DOI: 10.1186/s12885-018-4706-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/30/2018] [Indexed: 11/10/2022] Open
Abstract
Background The incidence of oral squamous cell carcinoma (OSCC) continues to increase each year. Clinical examination and biopsy usually detect OSCC at an advanced stage that is difficult to treat, leading to poor prognosis. DNA methylation pattern is tissue specific and has emerged as a biomarker for the detection of cancers of tissue origin. Herein, we aimed to discover a novel site-specific methylation marker for OSCC. Methods We selected OSCC datasets analyzed using the IlluminaHumanMethylation27 BeadChip from the Gene Expression Omnibus repository of the National Center for Biotechnology Information using a bioinformatics approach. From 27,578 CG dinucleotide (CpG) sites, the CpG site with the highest difference in methylation level between healthy and cancerous cells was selected for further validation. A total of 18 mucosal tissue samples were collected from nine healthy controls and nine from OSCC subjects and subjected to microdissection for cell purification, followed by DNA extraction, bisulfite conversion, and pyrosequencing. Additionally, epithelial cells were collected from 2 cohorts including oral rinse from healthy controls, oral rinse and oral swab from OSCC subjects and oral rinse from oropharyngeal squamous cell carcinoma (SCC) were examined for their methylation status using real-time polymerase chain reaction (PCR). Results Among the 27,578 differentially methylated CpG sites, cg01009664 of the thyrotropin-releasing hormone (TRH) gene showed the greatest difference in methylation level between healthy and cancerous cells. Validation of the TRH gene using pyrosequencing revealed a methylation percentage of 7% ± 3.43% in healthy cells in contrast to 63% ± 19.81% in cancerous cells. Screening of epithelial cells using real-time PCR showed that the DNA methylation level was significantly higher in oral swab and rinse samples collected from OSCC and oropharyngeal SCC subjects than those from healthy controls (p < 0.001). In addition, when using a cutoff at 3.31 ng/μL, the TRH methylation biomarker was able to distinguish OSCC and oropharyngeal SCC subjects from healthy controls with high level of area under the curve, sensitivity and specificity. Conclusion We demonstrated cg01009664 of TRH as a potential biomarker for OSCC and oropharyngeal SCC screening using oral rinse and swab techniques. Electronic supplementary material The online version of this article (10.1186/s12885-018-4706-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- C Puttipanyalears
- Department of Anatomy, Faculty of Medicine, Center of Excellence in Molecular Genetics of Cancer and Human Diseases, Chulalongkorn University, Bangkok, 10330, Thailand
| | - A Arayataweegool
- Department of Anatomy, Faculty of Medicine, Center of Excellence in Molecular Genetics of Cancer and Human Diseases, Chulalongkorn University, Bangkok, 10330, Thailand
| | - K Chalertpet
- Department of Anatomy, Faculty of Medicine, Center of Excellence in Molecular Genetics of Cancer and Human Diseases, Chulalongkorn University, Bangkok, 10330, Thailand
| | - P Rattanachayoto
- Division of Medical Oncology, Department of Medicine, Chulalongkorn University and The King Chulalongkorn Memorial Hospital, Bangkok, 10330, Thailand
| | - P Mahattanasakul
- Department of Otolaryngology, Head and Neck Surgery, Faculty of Medicine, Chulalongkorn University, Pathumwa, Bangkok, 10330, Thailand.,Department of Otolaryngology, Head and Neck Surgery, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Pathumwan, Bangkok, 10330, Thailand
| | - N Tangjaturonsasme
- Department of Otolaryngology, Head and Neck Surgery, Faculty of Medicine, Chulalongkorn University, Pathumwa, Bangkok, 10330, Thailand
| | - V Kerekhanjanarong
- Department of Otolaryngology, Head and Neck Surgery, Faculty of Medicine, Chulalongkorn University, Pathumwa, Bangkok, 10330, Thailand
| | - A Mutirangura
- Department of Anatomy, Faculty of Medicine, Center of Excellence in Molecular Genetics of Cancer and Human Diseases, Chulalongkorn University, Bangkok, 10330, Thailand
| | - N Kitkumthorn
- Department of Oral Biology, Faculty of Dentistry, Mahidol University, 6 Yothi Road, Ratchathewi, Bangkok, 10400, Thailand.
| |
Collapse
|
6
|
Jiao C, Zhang C, Dai R, Xia Y, Wang K, Giase G, Chen C, Liu C. Positional effects revealed in Illumina methylation array and the impact on analysis. Epigenomics 2018; 10:643-659. [PMID: 29469594 PMCID: PMC6021926 DOI: 10.2217/epi-2017-0105] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 01/17/2018] [Indexed: 12/18/2022] Open
Abstract
AIM We aimed to prove the existence of positional effects in the Illumina methylation beadchip data and to find an optimal correction method. MATERIALS & METHODS Three HumanMethylation450, three HumanMethylation27 datasets and two EPIC datasets were analyzed. ComBat, linear regression, functional normalization and single-sample Noob were used for minimizing positional effects. The corrected results were evaluated by four methods. RESULTS We detected 52,988 CpG loci significantly associated with sample positions, 112 remained after ComBat correction in the primary dataset. The pre- and postcorrection comparisons indicate the positional effects could alter the measured methylation values and downstream analysis results. CONCLUSION Positional effects exist in the Illumina methylation array and may bias the analyses. Using ComBat to correct positional effects is recommended.
Collapse
Affiliation(s)
- Chuan Jiao
- Center for Medical Genetics, Central South University, Changsha, Hunan 410012, PR China
| | - Chunling Zhang
- Department of Neurology and Physiology, SUNY Upstate Medical University, Syracuse, NY 13201, USA
| | - Rujia Dai
- Center for Medical Genetics, Central South University, Changsha, Hunan 410012, PR China
| | - Yan Xia
- Center for Medical Genetics, Central South University, Changsha, Hunan 410012, PR China
| | - Kangli Wang
- Center for Medical Genetics, Central South University, Changsha, Hunan 410012, PR China
| | - Gina Giase
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Chao Chen
- Center for Medical Genetics, Central South University, Changsha, Hunan 410012, PR China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, Hunan 410012, PR China
| | - Chunyu Liu
- Center for Medical Genetics, Central South University, Changsha, Hunan 410012, PR China
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY 13201, USA
| |
Collapse
|
7
|
Samsuwan J, Muangsub T, Yanatatsaneejit P, Mutirangura A, Kitkumthorn N. Combined Bisulfite Restriction Analysis for brain tissue identification. Forensic Sci Int 2018; 286:42-45. [PMID: 29558685 DOI: 10.1016/j.forsciint.2018.02.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/25/2018] [Accepted: 02/27/2018] [Indexed: 10/17/2022]
Abstract
According to the tissue-specific methylation database (doi: 10.1016/j.gene.2014.09.060), methylation at CpG locus cg03096975 in EML2 has been preliminarily proven to be specific to brain tissue. In this study, we enlarged sample size and developed a technique for identifying brain tissue in aged samples. Combined Bisulfite Restriction Analysis-for EML2 (COBRA-EML2) technique was established and validated in various organ samples obtained from 108 autopsies. In addition, this technique was also tested for its reliability, minimal DNA concentration detected, and use in aged samples and in samples obtained from specific brain compartments and spinal cord. COBRA-EML2 displayed 100% sensitivity and specificity for distinguishing brain tissue from other tissues, showed high reliability, was capable of detecting minimal DNA concentration (0.015ng/μl), could be used for identifying brain tissue in aged samples. In summary, COBRA-EML2 is a technique to identify brain tissue. This analysis is useful in criminal cases since it can identify the vital organ tissues from small samples acquired from criminal scenes. The results from this analysis can be counted as a medical and forensic marker supporting criminal investigations, and as one of the evidences in court rulings.
Collapse
Affiliation(s)
- Jarunya Samsuwan
- Sub Division of Forensic Biochemistry, Institute of Forensic Medicine, Police General Hospital, Royal Thai Police, Bangkok 10330, Thailand
| | - Tachapol Muangsub
- Center of Excellence in Molecular Genetics of Cancer and Human Diseases, Chulalongkorn University, Bangkok 10330, Thailand
| | | | - Apiwat Mutirangura
- Center of Excellence in Molecular Genetics of Cancer and Human Diseases, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nakarin Kitkumthorn
- Department of Oral Biology, Faculty of Dentistry, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
8
|
Differentially methylated embryonal Fyn-associated substrate (EFS) gene as a blood-specific epigenetic marker and its potential application in forensic casework. Forensic Sci Int Genet 2017; 29:165-173. [DOI: 10.1016/j.fsigen.2017.04.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 04/08/2017] [Accepted: 04/14/2017] [Indexed: 12/19/2022]
|
9
|
SHP-1 promoter 2 methylation in cerebrospinal fluid for diagnosis of leptomeningeal epithelial-derived malignancy (carcinomatous meningitis). J Neurooncol 2016; 129:395-403. [PMID: 27401153 DOI: 10.1007/s11060-016-2199-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 07/03/2016] [Indexed: 10/21/2022]
Abstract
Current diagnostic methods for leptomeningeal metastasis (LM) from epithelial-derived malignancy (EDM) have limited sensitivity. Here, we explored SHP-1 promoter 2 methylation (SHP1P2)-an epithelial-specific methylation marker previously proven as risk stratification and potential diagnostic marker in non-small cell lung cancer-for EDM with LM. We prospectively recruited 136 patients who were diagnosed EDM with LM (n = 25), EDM without LM (n = 14), non-EDM with LM (n = 8), and benign meningeal diseases (n = 89). The primary cancer sites for EDM with LM were lung (n = 17), breast (n = 5), and colon (n = 3). We performed quantitative analyses of cell-free (cfSHP1P2) and whole fraction (wSHP1P2) from cerebrospinal fluid (CSF); results were correlated with the clinicopathological data, including CSF cytology. Median cfSHP1P2 and wSHP1P2 were 3.08 [range: 0-163.5] and 9.35 [0.69-91.63] ng/ml, respectively, in EDM with LM; 0 [0-0.08] and 0.23 [0-7.84] ng/ml in EDM without LM; and were undetectable in most cases of benign meningeal diseases and non-EDM with LM. The cut-off values of 0.22 ng/ml for methylated cfSHP1P2 and 0.59 ng/ml for wSHP1P2 were the best to discriminate EDM with LM from EDM without LM (sensitivity: 79-100 %; specificity: 83-100 %), as well as from other benign conditions (sensitivity: 85-100 % specificity: 78-100 %). CSF cytology yielded 76 % sensitivity for diagnosing EDM with LM. Further validation of CSF SHP1P2 methylation detection as a role of adjunctive tool for LM from EDM should be interested based on our study.
Collapse
|
10
|
Nayyeri M, Sharifi Noghabi H. Cancer classification by correntropy-based sparse compact incremental learning machine. GENE REPORTS 2016. [DOI: 10.1016/j.genrep.2016.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
11
|
Srisuttee R, Ota J, Muangsub T, Keelawat S, Trirattanachat S, Kitkumthorn N, Mutirangura A. FRY site-specific methylation differentiates pancreatic ductal adenocarcinoma from other adenocarcinomas. APMIS 2016; 124:469-74. [PMID: 26990916 DOI: 10.1111/apm.12527] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 01/26/2016] [Indexed: 12/19/2022]
Abstract
Adenocarcinoma is a type of cancer that occurs in the glandular cells throughout the body. There are several metastatic adenocarcinoma of unknown primary origin. Currently, there is no highly effective method to differentiate pancreatic ductal adenocarcinoma (PDAC) from other adenocarcinomas. Here, we identified pancreas tissue by site-specific methylation at FRY and found that it can also detect PDAC. The establishment of Combined Bisulphite Restriction Analysis (COBRA) and quantitative real-time PCR techniques of FRY revealed FRY hypermethylation in 21 out of 24 normal pancreatic tissue samples, whereas all other normal tissue samples from thirteen other organs (80 samples) remained totally unmethylated. Similarly in application to PDAC, this marker effectively indicated 25 PDAC among 151 other common adenocarcinomas with values of 100%, 98.7%, 92.6%, and 100% in sensitivity, specificity, positive predictive value and negative predictive value, respectively. In summary, we have demonstrated that this epigenetic site-specific marker has high potential for pancreatic tissue identification and can be applied in PDAC diagnosis.
Collapse
Affiliation(s)
- Ratakorn Srisuttee
- Department of Anatomy, Center of Excellence in Molecular Genetics of Cancer and Human Diseases, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Jun Ota
- Department of Anatomy, Center of Excellence in Molecular Genetics of Cancer and Human Diseases, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Faculty of Medicine, School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tachapol Muangsub
- Department of Anatomy, Center of Excellence in Molecular Genetics of Cancer and Human Diseases, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Somboon Keelawat
- Department of Pathology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Surang Trirattanachat
- Gynecologic Cytopathology Unit, Department of Obstetrics and Gynecology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Nakarin Kitkumthorn
- Department of Oral Biology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | - Apiwat Mutirangura
- Department of Anatomy, Center of Excellence in Molecular Genetics of Cancer and Human Diseases, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
12
|
Saare M, Modhukur V, Suhorutshenko M, Rajashekar B, Rekker K, Sõritsa D, Karro H, Soplepmann P, Sõritsa A, Lindgren CM, Rahmioglu N, Drong A, Becker CM, Zondervan KT, Salumets A, Peters M. The influence of menstrual cycle and endometriosis on endometrial methylome. Clin Epigenetics 2016; 8:2. [PMID: 26759613 PMCID: PMC4710036 DOI: 10.1186/s13148-015-0168-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 12/30/2015] [Indexed: 12/29/2022] Open
Abstract
Background Alterations in endometrial DNA methylation profile have been proposed as one potential mechanism initiating the development of endometriosis. However, the normal endometrial methylome is influenced by the cyclic hormonal changes, and the menstrual cycle phase-dependent epigenetic signature should be considered when studying endometrial disorders. So far, no studies have been performed to evaluate the menstrual cycle influences and endometriosis-specific endometrial methylation pattern at the same time. Results Infinium HumanMethylation 450K BeadChip arrays were used to explore DNA methylation profiles of endometrial tissues from various menstrual cycle phases from 31 patients with endometriosis and 24 healthy women. The DNA methylation profile of patients and controls was highly similar and only 28 differentially methylated regions (DMRs) between patients and controls were found. However, the overall magnitude of the methylation differences between patients and controls was rather small (Δβ ranging from –0.01 to –0.16 and from 0.01 to 0.08, respectively, for hypo- and hypermethylated CpGs). Unsupervised hierarchical clustering of the methylation data divided endometrial samples based on the menstrual cycle phase rather than diseased/non-diseased status. Further analysis revealed a number of menstrual cycle phase-specific epigenetic changes with largest changes occurring during the late-secretory and menstrual phases when substantial rearrangements of endometrial tissue take place. Comparison of cycle phase- and endometriosis-specific methylation profile changes revealed that 13 out of 28 endometriosis-specific DMRs were present in both datasets. Conclusions The results of our study accentuate the importance of considering normal cyclic epigenetic changes in studies investigating endometrium-related disease-specific methylation patterns. Electronic supplementary material The online version of this article (doi:10.1186/s13148-015-0168-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Merli Saare
- Competence Centre on Health Technologies Tartu, Tartu, Estonia.,Tartu University Women's Clinic, Tartu, Estonia.,Institute of Bio- and Translational Medicine, University of Tartu, Tartu, Estonia
| | | | | | | | - Kadri Rekker
- Competence Centre on Health Technologies Tartu, Tartu, Estonia.,Tartu University Women's Clinic, Tartu, Estonia
| | - Deniss Sõritsa
- Competence Centre on Health Technologies Tartu, Tartu, Estonia.,Tartu University Women's Clinic, Tartu, Estonia.,Elite Clinic, Tartu, Estonia.,Women's Clinic, Tartu University Hospital, Tartu, Estonia
| | - Helle Karro
- Tartu University Women's Clinic, Tartu, Estonia.,Women's Clinic, Tartu University Hospital, Tartu, Estonia
| | | | | | - Cecilia M Lindgren
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Nilufer Rahmioglu
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Alexander Drong
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Christian M Becker
- Endometriosis CaRe Centre, Nuffield Department of Obstetrics & Gynaecology, University of Oxford, Oxford, UK
| | - Krina T Zondervan
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK.,Endometriosis CaRe Centre, Nuffield Department of Obstetrics & Gynaecology, University of Oxford, Oxford, UK
| | - Andres Salumets
- Competence Centre on Health Technologies Tartu, Tartu, Estonia.,Tartu University Women's Clinic, Tartu, Estonia.,Institute of Bio- and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Maire Peters
- Competence Centre on Health Technologies Tartu, Tartu, Estonia.,Tartu University Women's Clinic, Tartu, Estonia
| |
Collapse
|
13
|
Karahan G, Sayar N, Gozum G, Bozkurt B, Konu O, Yulug IG. Relative expression of rRNA transcripts and 45S rDNA promoter methylation status are dysregulated in tumors in comparison with matched-normal tissues in breast cancer. Oncol Rep 2015; 33:3131-45. [PMID: 25962577 DOI: 10.3892/or.2015.3940] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 03/14/2015] [Indexed: 11/06/2022] Open
Abstract
Ribosomal RNA (rRNA) expression, one of the most important factors regulating ribosome production, is primarily controlled by a CG-rich 45 S rDNA promoter. However, the DNA methylation state of the 45 S rDNA promoter, as well as its effect on rRNA gene expression in types of human cancers is controversial. In the present study we analyzed the methylation status of the rDNA promoter (-380 to +53 bp) as well as associated rRNA expression levels in breast cancer cell lines and breast tumor-normal tissue pairs. We found that the aforementioned regulatory region was extensively methylated (74-96%) in all cell lines and in 68% (13/19 tumor-normal pairs) of the tumors. Expression levels of rRNA transcripts 18 S, 28 S, 5.8 S and 45 S external transcribed spacer (45 S ETS) greatly varied in the breast cancer cell lines regardless of their methylation status. Analyses of rRNA transcript expression levels in the breast tumor and normal matched tissues showed no significant difference when normalized with TBP. On the other hand, using the geometric mean of the rRNA expression values (GM-rRNA) as reference enabled us to identify significant changes in the relative expression of rRNAs in the tissue samples. We propose GM-rRNA normalization as a novel strategy to analyze expression differences between rRNA transcripts. Accordingly, the 18S rRNA/GM-rRNA ratio was significantly higher whereas the 5.8S rRNA/GM-rRNA ratio was significantly lower in breast tumor samples than this ratio in the matched normal samples. Moreover, the 18S rRNA/GM-rRNA ratio was negatively correlated with the 45 S rDNA promoter methylation level in the normal breast tissue samples, yet not in the breast tumors. Significant correlations observed between the expression levels of rRNA transcripts in the normal samples were lost in the tumor samples. We showed that the expression of rRNA transcripts may not be based solely on promoter methylation. Carcinogenesis may cause dysregulation of the correlation between spliced rRNA expression levels, possibly due to changes in rRNA processing, which requires further investigation.
Collapse
Affiliation(s)
- Gurbet Karahan
- Department of Molecular Biology and Genetics, Bilkent University, Faculty of Science, TR-06800 Ankara, Turkey
| | - Nilufer Sayar
- Department of Molecular Biology and Genetics, Bilkent University, Faculty of Science, TR-06800 Ankara, Turkey
| | - Gokcen Gozum
- Department of Molecular Biology and Genetics, Bilkent University, Faculty of Science, TR-06800 Ankara, Turkey
| | - Betul Bozkurt
- Department of General Surgery, Ankara Numune Research and Teaching Hospital, TR-06100 Ankara, Turkey
| | - Ozlen Konu
- Department of Molecular Biology and Genetics, Bilkent University, Faculty of Science, TR-06800 Ankara, Turkey
| | - Isik G Yulug
- Department of Molecular Biology and Genetics, Bilkent University, Faculty of Science, TR-06800 Ankara, Turkey
| |
Collapse
|