1
|
Barbieux E, Potemberg G, Stubbe FX, Fraikin A, Poncin K, Reboul A, Rouma T, Zúñiga-Ripa A, De Bolle X, Muraille E. Genome-wide analysis of Brucella melitensis growth in spleen of infected mice allows rational selection of new vaccine candidates. PLoS Pathog 2024; 20:e1012459. [PMID: 39186777 PMCID: PMC11346958 DOI: 10.1371/journal.ppat.1012459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 07/29/2024] [Indexed: 08/28/2024] Open
Abstract
Live attenuated vaccines (LAVs) whose virulence would be controlled at the tissue level could be a crucial tool to effectively fight intracellular bacterial pathogens, because they would optimize the induction of protective immune memory while avoiding the long-term persistence of vaccine strains in the host. Rational development of these new LAVs implies developing an exhaustive map of the bacterial virulence genes according to the host organs implicated. We report here the use of transposon sequencing to compare the bacterial genes involved in the multiplication of Brucella melitensis, a major causative agent of brucellosis, in the lungs and spleens of C57BL/6 infected mice. We found 257 and 135 genes predicted to be essential for B. melitensis multiplication in the spleen and lung, respectively, with 87 genes common to both organs. We selected genes whose deletion is predicted to produce moderate or severe attenuation in the spleen, the main known reservoir of Brucella, and compared deletion mutants for these genes for their ability to protect mice against challenge with a virulent strain of B. melitensis. The protective efficacy of a deletion mutant for the plsC gene, implicated in phospholipid biosynthesis, is similar to that of the reference Rev.1 vaccine but with a shorter persistence in the spleen. Our results demonstrate that B. melitensis faces different selective pressures depending on the organ and underscore the effectiveness of functional genome mapping for the design of new safer LAV candidates.
Collapse
Affiliation(s)
- Emeline Barbieux
- Unité de Recherche en Biologie des Microorganismes (URBM)-Laboratoire d’Immunologie et de Microbiologie, NARILIS, University of Namur, Namur, Belgium
- Laboratoire de Parasitologie, and ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles, Gosselies, Belgium
| | - Georges Potemberg
- Unité de Recherche en Biologie des Microorganismes (URBM)-Laboratoire d’Immunologie et de Microbiologie, NARILIS, University of Namur, Namur, Belgium
| | - François-Xavier Stubbe
- Unité de recherche en physiologie moléculaire (URPhyM)-Laboratoire de Génétique moléculaire (GéMo), University of Namur, Namur, Belgium
| | - Audrey Fraikin
- Unité de Recherche en Biologie des Microorganismes (URBM)-Laboratoire d’Immunologie et de Microbiologie, NARILIS, University of Namur, Namur, Belgium
| | - Katy Poncin
- Unité de Recherche en Biologie des Microorganismes (URBM)-Laboratoire d’Immunologie et de Microbiologie, NARILIS, University of Namur, Namur, Belgium
| | - Angeline Reboul
- Unité de Recherche en Biologie des Microorganismes (URBM)-Laboratoire d’Immunologie et de Microbiologie, NARILIS, University of Namur, Namur, Belgium
| | - Thomas Rouma
- Unité de Recherche en Biologie des Microorganismes (URBM)-Laboratoire d’Immunologie et de Microbiologie, NARILIS, University of Namur, Namur, Belgium
- Laboratoire de Parasitologie, and ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles, Gosselies, Belgium
| | - Amaia Zúñiga-Ripa
- Departamento de Microbiología y Parasitología - IDISNA, Universidad de Navarra, Pamplona, Spain
| | - Xavier De Bolle
- Unité de Recherche en Biologie des Microorganismes (URBM)-Laboratoire d’Immunologie et de Microbiologie, NARILIS, University of Namur, Namur, Belgium
| | - Eric Muraille
- Unité de Recherche en Biologie des Microorganismes (URBM)-Laboratoire d’Immunologie et de Microbiologie, NARILIS, University of Namur, Namur, Belgium
- Laboratoire de Parasitologie, and ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles, Gosselies, Belgium
| |
Collapse
|
2
|
Coppinger MN, Laramore K, Popham DL, Stabb EV. A prototrophic suppressor of a Vibrio fischeri D-glutamate auxotroph reveals a member of the periplasmic broad-spectrum racemase family (BsrF). J Bacteriol 2024; 206:e0033323. [PMID: 38411059 PMCID: PMC10955857 DOI: 10.1128/jb.00333-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/04/2024] [Indexed: 02/28/2024] Open
Abstract
Although bacterial peptidoglycan (PG) is highly conserved, some natural variations in PG biosynthesis and structure have evolved. Understanding the mechanisms and limits of such variation will inform our understanding of antibiotic resistance, innate immunity, and the evolution of bacteria. We have explored the constraints on PG evolution by blocking essential steps in PG biosynthesis in Vibrio fischeri and then selecting mutants with restored prototrophy. Here, we attempted to select prototrophic suppressors of a D-glutamate auxotrophic murI racD mutant. No suppressors were isolated on unsupplemented lysogeny broth salts (LBS), despite plating >1011 cells, nor were any suppressors generated through mutagenesis with ethyl methanesulfonate. A single suppressor was isolated on LBS supplemented with iso-D-gln, although the iso-D-gln subsequently appeared irrelevant. This suppressor has a genomic amplification formed by the creation of a novel junction that fuses proB to a gene encoding a putative broad-spectrum racemase of V. fischeri, bsrF. An engineered bsrF allele lacking the putative secretion signal (ΔSS-bsrF) also suppressed D-glu auxotrophy, resulting in PG that was indistinguishable from the wild type. The ΔSS-bsrF allele similarly suppressed the D-alanine auxotrophy of an alr mutant and restored prototrophy to a murI alr double mutant auxotrophic for both D-ala and D-glu. The ΔSS-bsrF allele increased resistance to D-cycloserine but had no effect on sensitivity to PG-targeting antibiotics penicillin, ampicillin, or vancomycin. Our work helps define constraints on PG evolution and reveals a periplasmic broad-spectrum racemase in V. fischeri that can be co-opted for PG biosynthesis, with concomitant D-cycloserine resistance. IMPORTANCE D-Amino acids are used and produced by organisms across all domains of life, but often, their origins and roles are not well understood. In bacteria, D-ala and D-glu are structural components of the canonical peptidoglycan cell wall and are generated by dedicated racemases Alr and MurI, respectively. The more recent discovery of additional bacterial racemases is broadening our view and deepening our understanding of D-amino acid metabolism. Here, while exploring alternative PG biosynthetic pathways in Vibrio fischeri, we unexpectedly shed light on an unusual racemase, BsrF. Our results illustrate a novel mechanism for the evolution of antibiotic resistance and provide a new avenue for exploring the roles of non-canonical racemases and D-amino acids in bacteria.
Collapse
Affiliation(s)
- Macey N. Coppinger
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
- Department of Biological Sciences, University of Illinois, Chicago, Illinois, USA
| | - Kathrin Laramore
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - David L. Popham
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Eric V. Stabb
- Department of Biological Sciences, University of Illinois, Chicago, Illinois, USA
| |
Collapse
|
3
|
Bearne SL. Design and evaluation of substrate-product analog inhibitors for racemases and epimerases utilizing a 1,1-proton transfer mechanism. Methods Enzymol 2023; 690:397-444. [PMID: 37858537 DOI: 10.1016/bs.mie.2023.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Racemases and epimerases catalyze the inversion of stereochemistry at asymmetric carbon atoms to generate stereoisomers that often play important roles in normal and pathological physiology. Consequently, there is interest in developing inhibitors of these enzymes for drug discovery. A strategy for the rational design of substrate-product analog (SPA) inhibitors of racemases and epimerases utilizing a direct 1,1-proton transfer mechanism is elaborated. This strategy assumes that two groups on the asymmetric carbon atom remain fixed at active-site binding determinants, while the hydrogen and third, motile group move during catalysis, with the latter potentially traveling between an R- and S-pocket at the active site. SPAs incorporate structural features of the substrate and product, often with geminal disubstitution on the asymmetric carbon atom to simultaneously present the motile group to both the R- and S-pockets. For racemases operating on substrates bearing three polar groups (glutamate, aspartate, and serine racemases) or with compact, hydrophobic binding pockets (proline racemase), substituent motion is limited and the design strategy furnishes inhibitors with poor or modest binding affinities. The approach is most successful when substrates have a large, motile hydrophobic group that binds at a plastic and/or capacious hydrophobic site. Potent inhibitors were developed for mandelate racemase, isoleucine epimerase, and α-methylacyl-CoA racemase using the SPA inhibitor design strategy, exhibiting binding affinities ranging from substrate-like to exceeding that of the substrate by 100-fold. This rational approach for designing inhibitors of racemases and epimerases having the appropriate active-site architectures is a useful strategy for furnishing compounds for drug development.
Collapse
Affiliation(s)
- Stephen L Bearne
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada; Department of Chemistry, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
4
|
Singh R, Slade JA, Brockett M, Mendez D, Liechti GW, Maurelli AT. Competing Substrates for the Bifunctional Diaminopimelic Acid Epimerase/Glutamate Racemase Modulate Peptidoglycan Synthesis in Chlamydia trachomatis. Infect Immun 2020; 89:IAI.00401-20. [PMID: 33106295 PMCID: PMC7927921 DOI: 10.1128/iai.00401-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/21/2020] [Indexed: 11/20/2022] Open
Abstract
The Chlamydia trachomatis genome encodes multiple bifunctional enzymes, such as DapF, which is capable of both diaminopimelic acid (DAP) epimerase and glutamate racemase activity. Our previous work demonstrated the bifunctional activity of chlamydial DapF in vitro and in a heterologous system (Escherichia coli). In the present study, we employed a substrate competition strategy to demonstrate DapF Ct function in vivo in C. trachomatis We reasoned that, because DapF Ct utilizes a shared substrate-binding site for both racemase and epimerase activities, only one activity can occur at a time. Therefore, an excess of one substrate relative to another must determine which activity is favored. We show that the addition of excess l-glutamate or meso-DAP (mDAP) to C. trachomatis resulted in 90% reduction in bacterial titers, compared to untreated controls. Excess l-glutamate reduced in vivo synthesis of mDAP by C. trachomatis to undetectable levels, thus confirming that excess racemase substrate led to inhibition of DapF Ct DAP epimerase activity. We previously showed that expression of dapFCt in a murI (racemase) ΔdapF (epimerase) double mutant of E. coli rescues the d-glutamate auxotrophic defect. Addition of excess mDAP inhibited growth of this strain, but overexpression of dapFCt allowed the mutant to overcome growth inhibition. These results confirm that DapF Ct is the primary target of these mDAP and l-glutamate treatments. Our findings demonstrate that suppression of either the glutamate racemase or epimerase activity of DapF compromises the growth of C. trachomatis Thus, a substrate competition strategy can be a useful tool for in vivo validation of an essential bifunctional enzyme.
Collapse
Affiliation(s)
- Raghuveer Singh
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
| | - Jessica A Slade
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
| | - Mary Brockett
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Daniel Mendez
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
| | - George W Liechti
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Anthony T Maurelli
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
5
|
Maitra A, Munshi T, Healy J, Martin LT, Vollmer W, Keep NH, Bhakta S. Cell wall peptidoglycan in Mycobacterium tuberculosis: An Achilles' heel for the TB-causing pathogen. FEMS Microbiol Rev 2020; 43:548-575. [PMID: 31183501 PMCID: PMC6736417 DOI: 10.1093/femsre/fuz016] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 06/07/2019] [Indexed: 02/06/2023] Open
Abstract
Tuberculosis (TB), caused by the intracellular pathogen Mycobacterium tuberculosis, remains one of the leading causes of mortality across the world. There is an urgent requirement to build a robust arsenal of effective antimicrobials, targeting novel molecular mechanisms to overcome the challenges posed by the increase of antibiotic resistance in TB. Mycobacterium tuberculosis has a unique cell envelope structure and composition, containing a peptidoglycan layer that is essential for maintaining cellular integrity and for virulence. The enzymes involved in the biosynthesis, degradation, remodelling and recycling of peptidoglycan have resurfaced as attractive targets for anti-infective drug discovery. Here, we review the importance of peptidoglycan, including the structure, function and regulation of key enzymes involved in its metabolism. We also discuss known inhibitors of ATP-dependent Mur ligases, and discuss the potential for the development of pan-enzyme inhibitors targeting multiple Mur ligases.
Collapse
Affiliation(s)
- Arundhati Maitra
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Tulika Munshi
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Jess Healy
- Department of Pharmaceutical and Biological Chemistry, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Liam T Martin
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Waldemar Vollmer
- The Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Richardson Road, Newcastle upon Tyne, NE2 4AX, UK
| | - Nicholas H Keep
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Sanjib Bhakta
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| |
Collapse
|
6
|
Muhammad M, Bai J, Alhassan AJ, Sule H, Ju J, Zhao B, Liu D. Significance of Glutamate Racemase for the Viability and Cell Wall Integrity of Streptococcus iniae. BIOCHEMISTRY (MOSCOW) 2020; 85:248-256. [PMID: 32093601 DOI: 10.1134/s0006297920020121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Streptococcus iniae is a pathogenic and zoonotic bacterium responsible for human diseases and mortality of many fish species. Recently, this bacterium has demonstrated an increasing trend for antibiotics resistance, which has warranted a search for new approaches to tackle its infection. Glutamate racemase (MurI) is a ubiquitous enzyme of the peptidoglycan synthesis pathway that plays an important role in the cell wall integrity maintenance; however, the significance of this enzyme differs in different species. In this study, we knocked out the MurI gene in S. iniae in order to elucidate the role of glutamate racemase in maintaining cell wall integrity in this bacterial species. We also cloned, expressed, and purified MurI and determined its biochemical characteristics. Biochemical analysis revealed that the MurI gene in S. iniae encodes a functional enzyme with a molecular weight of 30 kDa, temperature optimum at 35°C, and pH optimum at 8.5. Metal ions, such as Cu2+, Mn2+, Co2+ and Zn2+, inhibited the enzyme activity. MurI was found to be essential for the viability and cell wall integrity of S. iniae. The optimal growth of the MurI-deficient S. iniae mutant can be achieved only by adding a high concentration of D-glutamate to the medium. Membrane permeability assay of the mutant showed an increasing extent of the cell wall damage with time upon D-glutamate starvation. Moreover, the mutant lost its virulence when incubated in fish blood. Our results demonstrated that the MurI knockout leads to the generation of S. iniae auxotroph with damaged cell walls.
Collapse
Affiliation(s)
- M Muhammad
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China.,Kano University of Science and Technology, Department of Biochemistry, Wudil, Nigeria
| | - J Bai
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - A J Alhassan
- Bayero University Kano, Department of Biochemistry, Kano, Nigeria
| | - H Sule
- Bayero University Kano, Department of Medical Laboratory Science, Kano, Nigeria
| | - J Ju
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - B Zhao
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China.
| | - D Liu
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China.
| |
Collapse
|
7
|
Riggs-Shute SD, Falkinham JO, Yang Z. Construction and Use of Transposon MycoTetOP 2 for Isolation of Conditional Mycobacteria Mutants. Front Microbiol 2020; 10:3091. [PMID: 32038540 PMCID: PMC6985430 DOI: 10.3389/fmicb.2019.03091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 12/20/2019] [Indexed: 11/13/2022] Open
Abstract
Mycobacteria are unique in many aspects of their biology. The development of genetic tools to identify genes critical for their growth by forward genetic analysis holds great promises to advance our understanding of their cellular, physiological and biochemical processes. Here we report the development of a novel transposon, MycoTetOP2, to aid the identification of such genes by direct transposon mutagenesis. This mariner-based transposon contains nested anhydrotetracycline (ATc)-inducible promoters to drive transcription outward from both of its ends. In addition, it includes the Escherichia coli R6Kγ origin to facilitate the identification of insertion sites. MycoTetOP2 was placed in a shuttle plasmid with a temperature-sensitive DNA replication origin in mycobacteria. This allows propagation of mycobacteria harboring the plasmid at a permissive temperature. The resulting population of cells can then be subjected to a temperature shift to select for transposon mutants. This transposon and its delivery system, once constructed, were tested in the fast-growing model Mycobacterium smegmatis and 13 mutants with ATc-dependent growth were isolated. The identification of the insertion sites in these mutants led to nine unique genetic loci with genes critical for essential processes in both M. smegmatis and Mycobacterium tuberculosis. These results demonstrate that MycoTetOP2 and its delivery vector provide valuable tools for the studies of mycobacteria by forward genetics.
Collapse
Affiliation(s)
- Sarah D Riggs-Shute
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States.,Department of Biology, Tidewater Community College, Portsmouth, VA, United States
| | - Joseph O Falkinham
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Zhaomin Yang
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
8
|
Mackie J, Kumar H, Bearne SL. Changes in quaternary structure cause a kinetic asymmetry of glutamate racemase-catalyzed homocysteic acid racemization. FEBS Lett 2018; 592:3399-3413. [PMID: 30194685 DOI: 10.1002/1873-3468.13248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 07/30/2018] [Accepted: 08/24/2018] [Indexed: 11/07/2022]
Abstract
Glutamate racemases (GR) catalyze the racemization of d- and l-glutamate and are targets for the development of antibiotics. We demonstrate that GR from the periodontal pathogen Fusobacterium nucleatum (FnGR) catalyzes the racemization of d-homocysteic acid (d-HCA), while l-HCA is a poor substrate. This enantioselectivity arises because l-HCA perturbs FnGR's monomer-dimer equilibrium toward inactive monomer. The inhibitory effect of l-HCA may be overcome by increasing the total FnGR concentration or by adding glutamate, but not by blocking access to the active site through site-directed mutagenesis, suggesting that l-HCA binds at an allosteric site. This phenomenon is also exhibited by GR from Bacillus subtilis, suggesting that enantiospecific, "substrate"-induced dissociation of oligomers to form inactive monomers may furnish a new inhibition strategy.
Collapse
Affiliation(s)
- Joanna Mackie
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Canada
| | - Himank Kumar
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Canada
| | - Stephen L Bearne
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Canada.,Department of Chemistry, Dalhousie University, Halifax, Canada
| |
Collapse
|
9
|
Mortuza R, Aung HL, Taiaroa G, Opel-Reading HK, Kleffmann T, Cook GM, Krause KL. Overexpression of a newly identified d-amino acid transaminase inMycobacterium smegmatiscomplements glutamate racemase deletion. Mol Microbiol 2017; 107:198-213. [DOI: 10.1111/mmi.13877] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2017] [Indexed: 11/27/2022]
Affiliation(s)
- Roman Mortuza
- Department of Biochemistry; University of Otago; Otago New Zealand
- Department of Microbiology and Immunology; University of Otago; Otago New Zealand
| | - Htin Lin Aung
- Department of Microbiology and Immunology; University of Otago; Otago New Zealand
| | - George Taiaroa
- Department of Microbiology and Immunology; University of Otago; Otago New Zealand
| | | | | | - Gregory M. Cook
- Department of Microbiology and Immunology; University of Otago; Otago New Zealand
| | - Kurt L. Krause
- Department of Biochemistry; University of Otago; Otago New Zealand
| |
Collapse
|
10
|
Exploring the structure of glutamate racemase from Mycobacterium tuberculosis as a template for anti-mycobacterial drug discovery. Biochem J 2016; 473:1267-80. [PMID: 26964898 DOI: 10.1042/bcj20160186] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 03/09/2016] [Indexed: 11/17/2022]
Abstract
Glutamate racemase (MurI) is responsible for providing D-glutamate for peptidoglycan biosynthesis in bacteria and has been a favoured target in pharmaceutical drug design efforts. It has recently been proven to be essential in Mycobacterium tuberculosis, the causative organism of tuberculosis, a disease for which new medications are urgently needed. In the present study, we have determined the protein crystal structures of MurI from both M. tuberculosis and Mycobacterium smegmatis in complex with D-glutamate to 2.3 Å and 1.8 Å resolution respectively. These structures are conserved, but reveal differences in their active site architecture compared with that of other MurI structures. Furthermore, compounds designed to target other glutamate racemases have been screened but do not inhibit mycobacterial MurI, suggesting that a new drug design effort will be needed to develop inhibitors. A new type of MurI dimer arrangement has been observed in both structures, and this arrangement becomes the third biological dimer geometry for MurI found to date. The mycobacterial MurI dimer is tightly associated, with a KD in the nanomolar range. The enzyme binds D- and L-glutamate specifically, but is inactive in solution unless the dimer interface is mutated. We created triple mutants of this interface in the M. smegmatis glutamate racemase (D26R/R105A/G194R or E) that have appreciable activity (kcat=0.056-0.160 min(-1) and KM=0.26-0.51 mM) and can be utilized to screen proposed antimicrobial candidates for inhibition.
Collapse
|
11
|
Zhang J, Liu J, Ling J, Tong Z, Fu Y, Liang M. Inactivation of glutamate racemase (MurI) eliminates virulence in Streptococcus mutans. Microbiol Res 2016; 186-187:1-8. [PMID: 27242137 DOI: 10.1016/j.micres.2016.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/04/2016] [Accepted: 02/08/2016] [Indexed: 10/22/2022]
Abstract
Inhibition of enzymes required for bacterial cell wall synthesis is often lethal or leads to virulence defects. Glutamate racemase (MurI), an essential enzyme in peptidoglycan biosynthesis, has been an attractive target for therapeutic interventions. Streptococcus mutans, one of the many etiological factors of dental caries, possesses a series of virulence factors associated with cariogenicity. However, little is known regarding the mechanism by which MurI influences pathogenesis of S. mutans. In this work, a stable mutant of S. mutans deficient in glutamate racemase (S. mutans FW1718) was constructed to investigate the impact of murI inactivation on cariogenic virulence in S. mutans UA159. Microscopy revealed that the murI mutant exhibited an enlarged cell size, longer cell chains, diminished cell⬜cell aggregation, and altered cell surface ultrastructure compared with the wild-type. Characterization of this mutant revealed that murI deficiency weakened acidogenicity, aciduricity, and biofilm formation ability of S. mutans (P<0.05). Real-time quantitative polymerase chain reaction (qRT-PCR) analysis demonstrated that the deletion of murI reduced the expression of the acidogenesis-related gene ldh by 44-fold (P<0.0001). The expression levels of the gene coding for surface protein antigen P (spaP) and the acid-tolerance related gene (atpD) were down-regulated by 99% (P<0.0001). Expression of comE, comD, gtfB and gtfC, genes related to biofilm formation, were down-regulated 8-, 43-, 85- and 298-fold in the murI mutant compared with the wild-type (P<0.0001), respectively. Taken together, the current study provides the first evidence that MurI deficiency adversely affects S. mutans virulence properties, making MurI a potential target for controlling dental caries.
Collapse
Affiliation(s)
- Jianying Zhang
- Guangdong Province Key Laboratory of Stomatology, Sun Yat-Sen University, 74 Zhong Shan ER Road, Guangzhou 510080, China; Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, 56 Lingyuanxi Road, Guangzhou 510055, China
| | - Jia Liu
- Guangdong Province Key Laboratory of Stomatology, Sun Yat-Sen University, 74 Zhong Shan ER Road, Guangzhou 510080, China; Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, 56 Lingyuanxi Road, Guangzhou 510055, China
| | - Junqi Ling
- Guangdong Province Key Laboratory of Stomatology, Sun Yat-Sen University, 74 Zhong Shan ER Road, Guangzhou 510080, China; Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, 56 Lingyuanxi Road, Guangzhou 510055, China.
| | - Zhongchun Tong
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, 56 Lingyuanxi Road, Guangzhou 510055, China
| | - Yun Fu
- Department of Periodontology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, 56 Lingyuanxi Road, Guangzhou 510055, China
| | - Min Liang
- Department of Periodontology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, 56 Lingyuanxi Road, Guangzhou 510055, China
| |
Collapse
|
12
|
Hernández SB, Cava F. Environmental roles of microbial amino acid racemases. Environ Microbiol 2015; 18:1673-85. [DOI: 10.1111/1462-2920.13072] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 09/15/2015] [Accepted: 09/27/2015] [Indexed: 02/02/2023]
Affiliation(s)
- Sara B. Hernández
- Laboratory for Molecular Infection Medicine Sweden; Department of Molecular Biology; Umeå Centre for Microbial Research; Umeå University; 90187 Umeå Sweden
| | - Felipe Cava
- Laboratory for Molecular Infection Medicine Sweden; Department of Molecular Biology; Umeå Centre for Microbial Research; Umeå University; 90187 Umeå Sweden
| |
Collapse
|
13
|
Oh SY, Richter SG, Missiakas DM, Schneewind O. Glutamate Racemase Mutants of Bacillus anthracis. J Bacteriol 2015; 197:1854-61. [PMID: 25777674 PMCID: PMC4420906 DOI: 10.1128/jb.00070-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 03/06/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED D-Glutamate is an essential component of bacterial peptidoglycan and a building block of the poly-γ-D-glutamic acid (PDGA) capsule of Bacillus anthracis, the causative agent of anthrax. Earlier work suggested that two glutamate racemases, encoded by racE1 and racE2, are each essential for growth of B. anthracis, supplying D-glutamic acid for the synthesis of peptidoglycan and PDGA capsule. Earlier work could not explain, however, why two enzymes that catalyze the same reaction may be needed for bacterial growth. Here, we report that deletion of racE1 or racE2 did not prevent growth of B. anthracis Sterne (pXO1(+) pXO2(-)), the noncapsulating vaccine strain, or of B. anthracis Ames (pXO1(+) pXO2(+)), a fully virulent, capsulating isolate. While mutants with deletions in racE1 and racE2 were not viable, racE2 deletion delayed vegetative growth of B. anthracis following spore germination and caused aberrant cell shapes, phenotypes that were partially restored by exogenous D-glutamate. Deletion of racE1 or racE2 from B. anthracis Ames did not affect the production or stereochemical composition of the PDGA capsule. A model is presented whereby B. anthracis, similar to Bacillus subtilis, utilizes two functionally redundant racemase enzymes to synthesize D-glutamic acid for peptidoglycan synthesis. IMPORTANCE Glutamate racemases, enzymes that convert L-glutamate to D-glutamate, are targeted for antibiotic development. Glutamate racemase inhibitors may be useful for the treatment of bacterial infections such as anthrax, where the causative agent, B. anthracis, requires d-glutamate for the synthesis of peptidoglycan and poly-γ-D-glutamic acid (PDGA) capsule. Here we show that B. anthracis possesses two glutamate racemase genes that can be deleted without abolishing either bacterial growth or PDGA synthesis. These data indicate that drug candidates must inhibit both glutamate racemases, RacE1 and RacE2, in order to block B. anthracis growth and achieve therapeutic efficacy.
Collapse
Affiliation(s)
- So-Young Oh
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, Illinois, USA Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Stefan G Richter
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, Illinois, USA Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Dominique M Missiakas
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, Illinois, USA Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Olaf Schneewind
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, Illinois, USA Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|