1
|
Behrens KA, Koblmueller S, Kocher TD. Diversity of Sex Chromosomes in Vertebrates: Six Novel Sex Chromosomes in Basal Haplochromines (Teleostei: Cichlidae). Genome Biol Evol 2024; 16:evae152. [PMID: 39073759 DOI: 10.1093/gbe/evae152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2024] [Indexed: 07/30/2024] Open
Abstract
African cichlid fishes are known for their high rates of phenotypic evolution. A rapid rate of diversification is apparent also in the diversity of their sex chromosomes. To date, sex determiners have been identified on 18 of 22 chromosomes in the standard karyotype. Here, we use whole-genome sequencing to characterize the sex chromosomes of seven populations of basal haplochromines, focusing on the genus Pseudocrenilabrus. We identify six new sex chromosome systems, including the first report of a cichlid sex-determining system on linkage group 12. We then quantify the rates and patterns of sex chromosome turnover in this clade. Finally, we test whether some autosomes become sex chromosomes in East African cichlids more often than expected by chance.
Collapse
Affiliation(s)
- Kristen A Behrens
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | | | - Thomas D Kocher
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
2
|
Kocher TD, Behrens KA, Conte MA, Aibara M, Mrosso HDJ, Green ECJ, Kidd MR, Nikaido M, Koblmüller S. New Sex Chromosomes in Lake Victoria Cichlid Fishes (Cichlidae: Haplochromini). Genes (Basel) 2022; 13:804. [PMID: 35627189 PMCID: PMC9141883 DOI: 10.3390/genes13050804] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 12/19/2022] Open
Abstract
African cichlid fishes harbor an extraordinary diversity of sex-chromosome systems. Within just one lineage, the tribe Haplochromini, at least 6 unique sex-chromosome systems have been identified. Here we focus on characterizing sex chromosomes in cichlids from the Lake Victoria basin. In Haplochromis chilotes, we identified a new ZW system associated with the white blotch color pattern, which shows substantial sequence differentiation over most of LG16, and is likely to be present in related species. In Haplochromis sauvagei, we found a coding polymorphism in amh that may be responsible for an XY system on LG23. In Pundamilia nyererei, we identified a feminizing effect of B chromosomes together with XY- and ZW-patterned differentiation on LG23. In Haplochromis latifasciatus, we identified a duplication of amh that may be present in other species of the Lake Victoria superflock. We further characterized the LG5-14 XY system in Astatotilapia burtoni and identified the oldest stratum on LG14. This species also showed ZW differentiation on LG2. Finally, we characterized an XY system on LG7 in Astatoreochromis alluaudi. This report brings the number of distinct sex-chromosome systems in haplochromine cichlids to at least 13, and highlights the dynamic evolution of sex determination and sex chromosomes in this young lineage.
Collapse
Affiliation(s)
- Thomas D. Kocher
- Department of Biology, University of Maryland, College Park, MD 20742, USA; (K.A.B.); (M.A.C.)
| | - Kristen A. Behrens
- Department of Biology, University of Maryland, College Park, MD 20742, USA; (K.A.B.); (M.A.C.)
| | - Matthew A. Conte
- Department of Biology, University of Maryland, College Park, MD 20742, USA; (K.A.B.); (M.A.C.)
| | - Mitsuto Aibara
- Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan; (M.A.); (M.N.)
| | - Hillary D. J. Mrosso
- Mwanza Fisheries Research Center, Tanzania Fisheries Research Institute (TAFIRI), Mwanza P.O. Box 475, Tanzania;
| | - Elizabeth C. J. Green
- Department of Biology and Chemistry, Texas A&M International University, Laredo, TX 78041, USA; (E.C.J.G.); (M.R.K.)
| | - Michael R. Kidd
- Department of Biology and Chemistry, Texas A&M International University, Laredo, TX 78041, USA; (E.C.J.G.); (M.R.K.)
| | - Masato Nikaido
- Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan; (M.A.); (M.N.)
| | - Stephan Koblmüller
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria;
| |
Collapse
|
3
|
Feller AF, Ogi V, Seehausen O, Meier JI. Identification of a novel sex determining chromosome in cichlid fishes that acts as XY or ZW in different lineages. HYDROBIOLOGIA 2021; 848:3727-3745. [PMID: 34720170 PMCID: PMC8550731 DOI: 10.1007/s10750-021-04560-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 02/02/2021] [Accepted: 02/23/2021] [Indexed: 05/02/2023]
Abstract
UNLABELLED Sex determination systems are highly conserved among most vertebrates with genetic sex determination, but can be variable and evolve rapidly in some. Here, we study sex determination in a clade with exceptionally high sex chromosome turnover rates. We identify the sex determining chromosomes in three interspecific crosses of haplochromine cichlid fishes from Lakes Victoria and Malawi. We find evidence for different sex determiners in each cross. In the Malawi cross and one Victoria cross the same chromosome is sex-linked but while females are the heterogametic sex in the Malawi species, males are the heterogametic sex in the Victoria species. This chromosome has not previously been reported to be sex determining in cichlids, increasing the number of different chromosomes shown to be sex determining in cichlids to 12. All Lake Victoria species of our crosses are less than 15,000 years divergent, and we identified different sex determiners among them. Our study provides further evidence for the diversity and evolutionary flexibility of sex determination in cichlids, factors which might contribute to their rapid adaptive radiations. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10750-021-04560-7.
Collapse
Affiliation(s)
- Anna F. Feller
- Division of Aquatic Ecology & Evolution, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland
- Department of Fish Ecology and Evolution, Centre of Ecology, Evolution and Biogeochemistry (CEEB), Eawag Swiss Federal Institute of Aquatic Science and Technology, Seestrasse 79, 6047 Kastanienbaum, Switzerland
| | - Vera Ogi
- Division of Aquatic Ecology & Evolution, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland
- Department of Fish Ecology and Evolution, Centre of Ecology, Evolution and Biogeochemistry (CEEB), Eawag Swiss Federal Institute of Aquatic Science and Technology, Seestrasse 79, 6047 Kastanienbaum, Switzerland
| | - Ole Seehausen
- Division of Aquatic Ecology & Evolution, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland
- Department of Fish Ecology and Evolution, Centre of Ecology, Evolution and Biogeochemistry (CEEB), Eawag Swiss Federal Institute of Aquatic Science and Technology, Seestrasse 79, 6047 Kastanienbaum, Switzerland
| | - Joana I. Meier
- Division of Aquatic Ecology & Evolution, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland
- Department of Fish Ecology and Evolution, Centre of Ecology, Evolution and Biogeochemistry (CEEB), Eawag Swiss Federal Institute of Aquatic Science and Technology, Seestrasse 79, 6047 Kastanienbaum, Switzerland
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ UK
- St John’s College, University of Cambridge, St John’s Street, Cambridge, CB2 1TP UK
| |
Collapse
|
4
|
Gao D, Zheng M, Lin G, Fang W, Huang J, Lu J, Sun X. Construction of High-Density Genetic Map and Mapping of Sex-Related Loci in the Yellow Catfish (Pelteobagrus fulvidraco). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2020; 22:31-40. [PMID: 31897745 DOI: 10.1007/s10126-019-09928-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 10/23/2019] [Indexed: 06/10/2023]
Abstract
The yellow catfish (Pelteobagrus fulvidraco) is a very important aquaculture species distributed in freshwater area of China. All-male yellow catfish is very popular in aquaculture because of their significant sex dimorphism phenomena. The males grow much faster than females in full-sibling family. However, the sex dimorphism mechanism is still unclear in yellow catfish. In order to better understand the genetic basis of yellow catfish sexual dimorphism, it is vital to map the sex-related traits and localize the candidate genes across yellow catfish whole genome. Here, we constructed a high-density linkage map of yellow catfish using genotyping-by-sequencing (GBS) strategy. A total of 5705 single-nucleotide polymorphism (SNP) markers were mapped to 26 different linkage groups (LGs) using 184 F1 offspring. The total genetic map length was 3071.59 cM, with an average interlocus distance of 0.54 cM. Eleven significant sex-related QTLs in yellow catfish were identified. Six sex-related genes were identified from the region of reference genome near these QTLs including amh, gnrhr, vasa, lnnr1, foxl2, and bmp15. The high-density genetic linkage map provides valuable resources for yellow catfish molecular assistant breeding and elucidating sex differentiation process. Moreover, the comparative genomic study was analyzed among yellow catfish, channel catfish, and zebrafish. It revealed highly conserved chromosomal distribution between yellow catfish and channel catfish.
Collapse
Affiliation(s)
- Dong Gao
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Min Zheng
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, China.
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China.
| | - Genmei Lin
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wenyu Fang
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jing Huang
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jianguo Lu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, China.
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China.
| | - Xiaowen Sun
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| |
Collapse
|
5
|
Böhne A, Weber AAT, Rajkov J, Rechsteiner M, Riss A, Egger B, Salzburger W. Repeated Evolution Versus Common Ancestry: Sex Chromosome Evolution in the Haplochromine Cichlid Pseudocrenilabrus philander. Genome Biol Evol 2019; 11:439-458. [PMID: 30649313 PMCID: PMC6375353 DOI: 10.1093/gbe/evz003] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2019] [Indexed: 12/15/2022] Open
Abstract
Why sex chromosomes turn over and remain undifferentiated in some taxa, whereas they degenerate in others, is still an area of ongoing research. The recurrent occurrence of homologous and homomorphic sex chromosomes in distantly related taxa suggests their independent evolution or continued recombination since their first emergence. Fishes display a great diversity of sex-determining systems. Here, we focus on sex chromosome evolution in haplochromines, the most species-rich lineage of cichlid fishes. We investigate sex-specific signatures in the Pseudocrenilabrus philander species complex, which belongs to a haplochromine genus found in many river systems and ichthyogeographic regions in northern, eastern, central, and southern Africa. Using whole-genome sequencing and population genetic, phylogenetic, and read-coverage analyses, we show that one population of P. philander has an XX-XY sex-determining system on LG7 with a large region of suppressed recombination. However, in a second bottlenecked population, we did not find any sign of a sex chromosome. Interestingly, LG7 also carries an XX-XY system in the phylogenetically more derived Lake Malawi haplochromine cichlids. Although the genomic regions determining sex are the same in Lake Malawi cichlids and P. philander, we did not find evidence for shared ancestry, suggesting that LG7 evolved as sex chromosome at least twice in haplochromine cichlids. Hence, our work provides further evidence for the labile nature of sex determination in fishes and supports the hypothesis that the same genomic regions can repeatedly and rapidly be recruited as sex chromosomes in more distantly related lineages.
Collapse
Affiliation(s)
- Astrid Böhne
- Department of Environmental Sciences, Zoological Institute, University of Basel, Switzerland
| | - Alexandra Anh-Thu Weber
- Department of Environmental Sciences, Zoological Institute, University of Basel, Switzerland
- Museums Victoria, Melbourne, Victoria, Australia
| | - Jelena Rajkov
- Department of Environmental Sciences, Zoological Institute, University of Basel, Switzerland
| | - Michael Rechsteiner
- Department of Environmental Sciences, Zoological Institute, University of Basel, Switzerland
| | - Andrin Riss
- Department of Environmental Sciences, Zoological Institute, University of Basel, Switzerland
| | - Bernd Egger
- Department of Environmental Sciences, Zoological Institute, University of Basel, Switzerland
- Program Man Society Environment, University of Basel, Switzerland
| | - Walter Salzburger
- Department of Environmental Sciences, Zoological Institute, University of Basel, Switzerland
| |
Collapse
|
6
|
Gammerdinger WJ, Kocher TD. Unusual Diversity of Sex Chromosomes in African Cichlid Fishes. Genes (Basel) 2018; 9:E480. [PMID: 30287777 PMCID: PMC6210639 DOI: 10.3390/genes9100480] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 09/26/2018] [Accepted: 10/01/2018] [Indexed: 11/30/2022] Open
Abstract
African cichlids display a remarkable assortment of jaw morphologies, pigmentation patterns, and mating behaviors. In addition to this previously documented diversity, recent studies have documented a rich diversity of sex chromosomes within these fishes. Here we review the known sex-determination network within vertebrates, and the extraordinary number of sex chromosomes systems segregating in African cichlids. We also propose a model for understanding the unusual number of sex chromosome systems within this clade.
Collapse
Affiliation(s)
- William J Gammerdinger
- Institute of Science and Technology (IST) Austria, Am Campus 1, 3400 Klosterneuburg, Austria.
| | - Thomas D Kocher
- Department of Biology, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
7
|
Feulner PGD, Schwarzer J, Haesler MP, Meier JI, Seehausen O. A Dense Linkage Map of Lake Victoria Cichlids Improved the Pundamilia Genome Assembly and Revealed a Major QTL for Sex-Determination. G3 (BETHESDA, MD.) 2018; 8:2411-2420. [PMID: 29760203 PMCID: PMC6027883 DOI: 10.1534/g3.118.200207] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/13/2018] [Indexed: 01/09/2023]
Abstract
Genetic linkage maps are essential for comparative genomics, high quality genome sequence assembly and fine scale quantitative trait locus (QTL) mapping. In the present study we identified and genotyped markers via restriction-site associated DNA (RAD) sequencing and constructed a genetic linkage map based on 1,597 SNP markers of an interspecific F2 cross of two closely related Lake Victoria cichlids (Pundamilia pundamilia and P sp. 'red head'). The SNP markers were distributed on 22 linkage groups and the total map size was 1,594 cM with an average marker distance of 1.01 cM. This high-resolution genetic linkage map was used to anchor the scaffolds of the Pundamilia genome and estimate recombination rates along the genome. Via QTL mapping we identified a major QTL for sex in a ∼1.9 Mb region on Pun-LG10, which is homologous to Oreochromis niloticus LG 23 (Ore-LG23) and includes a well-known vertebrate sex-determination gene (amh).
Collapse
Affiliation(s)
- Philine G D Feulner
- Department of Fish Ecology and Evolution, Centre of Ecology, Evolution and Biogeochemistry, EAWAG Swiss Federal Institute of Aquatic Science and Technology, 6047 Kastanienbaum, Switzerland
- Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, 3012 Switzerland
| | - Julia Schwarzer
- Department of Fish Ecology and Evolution, Centre of Ecology, Evolution and Biogeochemistry, EAWAG Swiss Federal Institute of Aquatic Science and Technology, 6047 Kastanienbaum, Switzerland
- Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, 3012 Switzerland
- Zoologisches Forschungsmuseum Alexander Koenig, 53113 Bonn, Germany
| | - Marcel P Haesler
- Department of Fish Ecology and Evolution, Centre of Ecology, Evolution and Biogeochemistry, EAWAG Swiss Federal Institute of Aquatic Science and Technology, 6047 Kastanienbaum, Switzerland
- Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, 3012 Switzerland
| | - Joana I Meier
- Department of Fish Ecology and Evolution, Centre of Ecology, Evolution and Biogeochemistry, EAWAG Swiss Federal Institute of Aquatic Science and Technology, 6047 Kastanienbaum, Switzerland
- Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, 3012 Switzerland
| | - Ole Seehausen
- Department of Fish Ecology and Evolution, Centre of Ecology, Evolution and Biogeochemistry, EAWAG Swiss Federal Institute of Aquatic Science and Technology, 6047 Kastanienbaum, Switzerland
- Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, 3012 Switzerland
| |
Collapse
|
8
|
Peterson EN, Cline ME, Moore EC, Roberts NB, Roberts RB. Genetic sex determination in Astatotilapia calliptera, a prototype species for the Lake Malawi cichlid radiation. Naturwissenschaften 2017; 104:41. [DOI: 10.1007/s00114-017-1462-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 04/06/2017] [Accepted: 04/09/2017] [Indexed: 11/30/2022]
|
9
|
Böhne A, Wilson CA, Postlethwait JH, Salzburger W. Variations on a theme: Genomics of sex determination in the cichlid fish Astatotilapia burtoni. BMC Genomics 2016; 17:883. [PMID: 27821061 PMCID: PMC5100337 DOI: 10.1186/s12864-016-3178-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 10/18/2016] [Indexed: 12/17/2022] Open
Abstract
Background Sex chromosomes change more frequently in fish than in mammals or birds. However, certain chromosomes or genes are repeatedly used as sex determinants in different members of the teleostean lineage. East African cichlids are an enigmatic model system in evolutionary biology representing some of the most diverse extant vertebrate adaptive radiations. How sex is determined and if different sex-determining mechanisms contribute to speciation is unknown for almost all of the over 1,500 cichlid species of the Great Lakes. Here, we investigated the genetic basis of sex determination in a cichlid from Lake Tanganyika, Astatotilapia burtoni, a member of the most species-rich cichlid lineage, the haplochromines. Results We used RAD-sequencing of crosses for two populations of A. burtoni, a lab strain and fish caught at the south of Lake Tanganyika. Using association mapping and comparative genomics, we confirmed male heterogamety in A. burtoni and identified different sex chromosomes (LG5 and LG18) in the two populations of the same species. LG5, the sex chromosome of the lab strain, is a fusion chromosome in A. burtoni. Wnt4 is located on this chromosome, representing the best candidate identified so far for the master sex-determining gene in our lab strain of A. burtoni. Conclusions Cichlids exemplify the high turnover rate of sex chromosomes in fish with two different chromosomes, LG5 and LG18, containing major sex-determining loci in the two populations of A. burtoni examined here. However, they also illustrate that particular chromosomes are more likely to be used as sex chromosomes. Chromosome 5 is such a chromosome, which has evolved several times as a sex chromosome, both in haplochromine cichlids from all Great Lakes and also in other teleost fishes. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3178-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Astrid Böhne
- Zoological Institute, University of Basel, Vesalgasse 1, 4051, Basel, Switzerland.
| | | | | | - Walter Salzburger
- Zoological Institute, University of Basel, Vesalgasse 1, 4051, Basel, Switzerland
| |
Collapse
|
10
|
Roberts NB, Juntti SA, Coyle KP, Dumont BL, Stanley MK, Ryan AQ, Fernald RD, Roberts RB. Polygenic sex determination in the cichlid fish Astatotilapia burtoni. BMC Genomics 2016; 17:835. [PMID: 27784286 PMCID: PMC5080751 DOI: 10.1186/s12864-016-3177-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 10/18/2016] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The East African riverine cichlid species Astatotilapia burtoni serves as an important laboratory model for sexually dimorphic physiology and behavior, and also serves as an outgroup species for the explosive adaptive radiations of cichlid species in Lake Malawi and Lake Victoria. An astounding diversity of genetic sex determination systems have been revealed within the adaptive radiation of East African cichlids thus far, including polygenic sex determination systems involving the epistatic interaction of multiple, independently segregating sex determination alleles. However, sex determination has remained unmapped in A. burtoni. Here we present mapping results supporting the presence of multiple, novel sex determination alleles, and thus the presence of polygenic sex determination in A. burtoni. RESULTS Using mapping in small families in conjunction with restriction-site associated DNA sequencing strategies, we identify associations with sex at loci on linkage group 13 and linkage group 5-14. Inheritance patterns support an XY sex determination system on linkage group 5-14 (a chromosome fusion relative to other cichlids studied), and an XYW system on linkage group 13, and these associations are replicated in multiple families. Additionally, combining our genetic data with comparative genomic analysis identifies another fusion that is unassociated with sex, with linkage group 8-24 and linkage group 16-21 fused in A. burtoni relative to other East African cichlid species. CONCLUSIONS We identify genetic signals supporting the presence of three previously unidentified sex determination alleles at two loci in the species A. burtoni, strongly supporting the presence of polygenic sex determination system in the species. These results provide a foundation for future mapping of multiple sex determination genes and their interactions. A better understanding of sex determination in A. burtoni provides important context for their use in behavioral studies, as well as studies of the evolution of genetic sex determination and sexual conflicts in East African cichlids.
Collapse
Affiliation(s)
- Natalie B. Roberts
- Department of Biological Sciences and W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC USA
| | - Scott A. Juntti
- Department of Biology, Stanford University, Stanford, CA USA
| | - Kaitlin P. Coyle
- Department of Biological Sciences and W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC USA
| | - Bethany L. Dumont
- Department of Biological Sciences and W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC USA
| | - M. Kaitlyn Stanley
- Department of Biological Sciences and W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC USA
| | - Allyson Q. Ryan
- Department of Biological Sciences and W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC USA
| | | | - Reade B. Roberts
- Department of Biological Sciences and W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC USA
| |
Collapse
|